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Static adhesion hysteresis in elastic structures†

Edvin Memet,a Feodor Hilitski,b, Zvonimir Dogicb,c, and L. Mahadevana,d

Adhesive interactions between elastic structures such as graphene sheets, carbon nanotubes, and
microtubules have been shown to exhibit hysteresis due to irrecoverable energy loss associated with
bond breakage, even in static (rate-independent) experiments. To understand this phenomenon,
we start with a minimal theory for the peeling of a thin sheet from a substrate, coupling the local
event of bond breaking to the nonlocal elastic relaxation of the sheet and show that this can drive
static adhesion hysteresis over a bonding/debonding cycle. Using this model we quantify hysteresis
in terms of the adhesion and elasticity parameters of the system. This allows us to derive a scaling
relation that preserves hysteresis at different levels of granularity while resolving a seeming paradox
of lattice trapping in the continuum limit of a discrete fracture process. Finally, to verify our theory,
we use new experiments to demonstrate and measure adhesion hysteresis in bundled microtubules.

1 Introduction
The ubiquity of hysteretic behavior in peeling, fracture, or adhe-
sion processes has long been known in systems spanning many or-
ders of magnitude including graphene and carbon nanotubes1,2,
gecko adhesion, actin bundling and dissolution3, DNA melt-
ing and denaturation4–7, adhering vesicles8, partially frayed dy-
namic axonemes9, extensile microtubule bundles that generate
autonomous flows10, and elastic contact in soft materials and
structures11–15. Although it has been nearly a century since
Obreimoff measured the energy required to split a multilayer
mica sheet16–18, and interpreted it in terms of an adhesion en-
ergy, the microscopic mechanisms behind hysteresis often re-
main poorly understood1. While hysteresis is often attributed to
velocity-dependent processes17,19–22, numerous observations of
static hysteresis have been reported23–26 such as in the peeling of
a thin graphene sheet from a substrate1. Accordingly, theoretical
frameworks for static hysteresis have been developed in the con-
text of membrane adhesion26–28, lattice trapping29,30, Griffith
cracks31, adhesive contact32–34, and composite materials35,36.

In this paper we develop a general theoretical framework for
rate-independent adhesion hysteresis in elastic structures. In par-
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ticular, our model is grounded in experimental observations of
this phenomenon in two specific systems with distinct geometries:
(i) old experiments involving the peeling of a graphene sheet from
a fixed, flat substrate (Fig. 1A, top left)1 and (ii) new experimen-
tal measurement of hysteresis in the buckling-induced fraying of
a pair of bundled microtubules, in which one of the microtubules
acts as a curved substrate with a variable shape as a function of
strain (Fig. 2A).

2 Hysteresis in peeling off a flat surface

2.1 Equations of motion

We start by considering two elastic chains interacting with each
other adhesively through reversibly breakable, non-hysteretic
springs (Fig. 1A). Each chain has n particles spaced apart by
∆l ≈ L/n, where L is the length of a chain. The adhesive inter-
action is associated with breakable elastic links of stiffness K, rest
length y0, and cutoff y0 + yc that connect corresponding particles
on the two chains. One chain is fixed, acting as a rigid foun-
dation, while the other one initially starts in equilibrium and is
quasi-statically loaded and unloaded at one end. The potential
energy of such a system is

Φ =
1
2

[
n−1

∑
i=2

B
∆l

(θi−π)2 +
n−1

∑
k=1

k (|rk+1− rk|−∆l)2

]

+
1
2

n

∑
k=1

min
(

K
(
|r′k− rk|

)2
,Ky2

c

)
, (1)

where the first term represents filament bending energy defined
in terms of the angle θi formed by triplets of neighboring particles
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Fig. 1 (A) Top: Representation of peeling graphene sheet (left) and experimental image of peeling a pressure sensitive adhesive (right). Images
reproduced from1 and22, respectively. Bottom: Discrete elastic chain peeling away from a flat adherent substrate. Zoomed in region illustrates
chain and bond rearrangement after bond breakage: as the rightmost bond breaks and moves away from the substrate, remaining bonds stretch
more to accomodate the increased stress. (B) Plot of scaled bending energy Êb = Eb/E0

b versus scaled endpoint displacement y/yc from simulation
(E0

b = Bκ2
c lH = By2

c/l3
H is the natural scale for bending energy). Arrows indicate the sequence of motion of the free end displacement: first increasing

(upper part), then decreasing back to zero (lower part). Filament configurations are represented visually at pairs of points indicated by red and
orange symbols, respectively. (Inset): Sawtooth pattern accompanies bond breakage or re-forming. δEb (red) is the energy loss following single bond
breakage, while δUb (green) is the net bending energy change that accompanies peeling of one segment.

(i−1, i, i+1) along the mobile chain, the second term corresponds
to filament stretching, where rk = (xi,yi), r′k =

(
x j,y j

)
are position

vectors for the mobile and fixed chains, respectively, and k is the
intrachain stifness, while the third term – modeling interfilament
adhesion – corresponds to stretching the links between chains. In
the limit of thin filaments or sheets, the geometric scale separa-
tion implies that stretching is very expensive relative to bending
(i.e. the material is effectively inextensible), so that we may take
the springs connecting particles on the same chain to have a large
stiffness, i.e. k(∆l)2/B→ ∞.

Starting from the energy (1), we can write the overdamped
equations of motion for the system as −dΦ/drk = γt ṙk and
−dΦ/dθi = γrθ̇i, where γt and γr are translational and rotational
damping coefficients. We note that a similar model was used by
Thomson to study the lattice trapping of fracture cracks 29. How-
ever, Thomson’s classic theory only works in the discrete limit,
with the trapping effect vanishing in the continuum limit. As we
will show, our framework provides a self-consistent way of taking
the continuum limit while still having lattice trapping/hysteresis.

2.2 Length scales and dimensionless parameters

Our system is characterized by three independent length scales:
a lattice (discrete) length scale ∆l, a maximum displacement as-
sociated with adhesive bond breakage yc, and the radius of cur-
vature at the peeling boundary 1/κc. Geometrically, the critical
curvature can be expressed in terms of the “rise” yc and “run”
lH : κc ∼ yc/l2

H . The latter, lH , is called the healing length and
determines how far the perturbation effectively extends into the
bonded region (Eq. 3). That is, to the right of the peeling bound-
ary (Fig. 1A) we have the perturbed (peeled) domain, while far
enough inside the bulk, to the left of the boundary, the pertur-

bation decays exponentially; lH sets the scale of the transition
zone between the perturbed domain and the unperturbed bulk
region37,38. These three independent length scales generate two
independent dimensionless quantities (besides n): ∆l/lH , which
characterizes the mechanical response along the filament direc-
tion, and yc/lH , which relates to the peeling angle (see SM).

2.3 Continuum theory

A continuum theory for the height profile y(x) inside the bonded
region x > 0 (Fig. 1A and Eq. 2) in the limit of small slopes and
deformations provides a quantitative value of the healing length
lH . Indeed, by coarse-graining the discrete energy (1) over length
scales large compared to the spacing ∆l between bonds, replac-
ing differences by derivatives (π−θ → y′; r′k− rk→ y(x)), we find
that the Euler-Lagrange equation associated with the continuum
version of the functional (1) is given by37

By′′′′+
K
∆l

(y− y0) = 0. (2)

With boundary conditions y(∞)→ y0, y′ (∞)→ 0,, and y(0) = y0 +

yc, By′′′ (0) = F (the vertical applied peeling force), the solutions
for y(x) and κ (x) = y′′(x) are

y(x) = y0 + yc e−x/lH cos(x/lH) , (3)

κ (x) =
2yc

l2
H

e−x/lH sin(x/lH) , (4)

where the healing length

lH =
√

2
(

B∆l
K

)1/4
. (5)
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Fig. 2 (A) Fraying of a composite MT bundle in response to a tensile force applied with optical tweezers (bottom) alongside corresponding schematics
(top, not to-scale). Red circles indicate trap positions. (B) Measured force-strain exhibited hysteresis associated with bundle fraying and rehealing.
Filament configurations corresponding to points (a) to (d) are shown in panel A. Arrows indicate the measured force as the optical trap applies buckling
forces and subsequently relaxes back towards the equilibrium. Strain ε is defined as ε = (d−L)/L, where d is the bead separation and L is the filament
length between the two attachment points.

and the peeling force F = 2yc/Bl3
H . From Eq. (4), the curvature at

the peeling boundary is κc = κ (0) = 2yc/l2
H (as predicted geomet-

rically in terms of the “rise” and “run”), which can be rewritten
in a more familiar form39,40 in terms of the adhesion energy per
unit length J = nKy2

c/(2L):

κc = κ (0) =
2yc

l2
H

=

√
2J
B

(6)

2.4 Simulations

To compare our results of the simple continuum model with those
obtained from our discrete model for the energy given by (Eq.
1), we simulate the dynamics of the adhesive interaction via an
overdamped viscous relaxation numerical method41 (see SM for
details). We find that, as we quasi-statically raise one end of
the mobile chain, corresponding to the loading phase, bonded
segments successively peel from the substrate, as the boundary
that separates the bonded and debonded phases advances (Fig.
1A). In the unloading phase, we reverse the displacement direc-
tion of the free end, which causes debonded segments to succes-
sively re-enter the interaction range and thus re-adhere to the
substrate, leading to healing. The healing pathway is mechani-
cally and thermodynamically different from the peeling pathway,
a hallmark of hysteresis. Hysteresis is apparent, for example, in
a plot of scaled bending energy versus strain (Fig. 1B). The same
plot also reveals a characteristic pinning-depinning “sawtooth”
pattern, which arises from alternating cycles of bending energy
accumulation and sudden bond breakage25,26.

2.5 Quantification of hysteresis

When a bond breaks, stress redistribution causes it (and the rest
of the free chain) to move further away from the range of the
adhesive potential (Fig. 1A, inset) such that on the way back it
needs to travel more in order to re-form. Thus, even if individual
bonds are not intrinsically hysteretic, macroscopic hysteresis will
still emerge via the coupling of a local event (bond breaking) to
a nonlocal event (overall elastic relaxation). Indeed, simulations
show that the decrease in bending energy δEb upon bond break-
age (Fig. 1B, inset) is only partially balanced by an increased load
on the remaining springs, i.e. an increase in the adhesion energy

δEs. This imbalance results in a net energy loss for the filament
δE = δEb + δEs < 0. Meanwhile, when a bond reforms, δEb > 0
and δEs < 0 such that we still have net energy dissipation δE < 0.

We expect bending and adhesion energy jumps (δEb and δEs)
to scale as the energy of a single bond Ky2

c : δEb, δEs ∼ Ky2
c . This

can also be written in terms of the natural bending energy scale
E0

b of the entire filament, E0
b ≡ Bκ2

c lH (since lH rather than L is
the scale of the deformed region):

δEb, δEs ∼ Ky2
c ∼ E0

b
∆l
lH

(7)

The same scaling also applies to δUb, the bending energy change
across a single pinning-depinning cycle (Fig. 1B, inset). Indeed,
since the end result of the cyle is the peeling of a single segment
of size ∆l, we might expect δUb ∼ Bκ2

c ∆l ∼ Bκ2
c lH × (∆l/lH) ∼

E0
b ∆l/lH .

However, it should be apparent that the net energy loss δE =

δEb + δEs should scale differently from δEb and δEs. For ex-
ample, as ∆l/lH → 0 we expect the breaking of a single bond to
have a negligible effect on the shape of the peeled filament and
on the stress distribution, meaning that we must have δE → 0
as ∆l/lH → 0. The simplest scaling satisfying this requirement is
δE ∼ Ky2

c × (∆l/lH) ∼ E0
b × (∆l/lH)

2, which is confirmed by sim-
ulations (Fig. S2B). In order to obtain the dimensionless energy
loss due to the breakage of a single bond we divide δE by the
bending energy scale E0

b :

δe = δE/E0
b ∼ (∆l/lH)

2 . (8)

2.6 Parameter scalings that preserve hysteresis

As we change the discretization n, hysteresis size will change if
we naively scale the spring stiffness K inversely with n (Fig. S4).
Therefore, in order to find the scaling that will render hysteresis
independent of n, we require the invariance of several quantities:
(i) the dimensionless energy loss summed across all segments,
which we approximate as nδe, (ii) the adhesion energy per unit
length J = nKy2

c/(2L), and (iii) the curvature at the scaling bound-
ary κc (Eq. 6). Substituting K = 2JL/

(
ny2

c
)

and lH (Eq. 5) in the
expression for δe (Eq. 8) we get
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Fig. 3 (A) Generalized elastic chain model in which both filaments are free to deform. The longer filament (blue) is attached rigidly to two optical
beads (yellow), while the shorter, adhering filament (red) is attached to only one bead. The right optical bead is mobile, while the left one is fixed.
(B) Scaled force F̂ = F/

(
B/L2) plotted as a function of imposed strain ε for three simulations with parameter scaling as K→ n3K, yc → yc/n2. (C)

Energy loss per bond broken or re-formed versus the cumulative number of bonds broken/re-formed for two of the simulations in panel B, with n =
100 (blue) and n = 200 (red). The two profiles can be made to collapse (signifying equal scaled hysteresis size) by scaling the horizontal axis by a
factor of ∆l and the vertical axis by the bending energy scale E0

b .

nδe∼ κcL2

nyc
. (9)

Considering L to be fixed, invariance of the energy loss nδe in
the continuum limit implies yc ∼ 1/n, while invariance of J then
requires K ∼ n. As a result, lH ∼ (nK)−1/4 ∼ 1/

√
n, which means

that in the continuum limit the transition between the bonded
and debonded regions occurs instantly (lH→ 0), without a weakly
bound intermediate region.

2.7 Graphene peeling experiments

To test our theory on real data, we start with observations1 of
substantial hysteresis in peeling a graphene sheet from a flat sur-
face, with the energy required for delamination reported to be
100 times larger than the energy recovered upon readhesion,
but with no explanation given. Using the experimental param-
eters for the graphene sheet of length L = 60 µm, bending rigid-
ity B ≈ 3× 109 pN× µm2, and effective adhesion energy per unit
length J ≈ 106 pN, and choosing a discretization size n = 80, our
simulations yield that there is a factor of ∼ 10 difference between
curvature κc in the peeling regime compared to that in the heal-
ing regime (Fig. S6B) seen in experiments, and a peeling front
displacement of around 5 µm per µm of vertical displacement
(Fig. S6A, inset), which is also close (within a factor of two) to
the measured value1.

3 Hysteresis in buckled microtubule bundles: peel-
ing from a curved substrate

3.1 Microtubule experiments

To further test our theory in a completely different setting, we
chose to consider the adhesion between stiff cytoskeletal poly-
mers, microtubules (MTs). We designed and conducted experi-
ments involving a pair of microtubules (MTs) held together by
the depletion interaction, induced by addition of non-adsorbing
polymers. The range and strength of the tunable depletion attrac-
tion between the filaments is determined respectively by the size
and the concentration of the polymer42,43.

To obtain our bundled MT system, we start by using optical

Fig. 4 Measured force versus strain (blue) for a MT bundle composed
of two MTs (8.2 µm and 5.6 µm). The buckling curve of the longer mi-
crotubule alone is shown in red. Simulation results are shown in green
(B = 19pN µm2, n = 100, K = 40pN/µm, and yc = 0.02 µm) with filament
configurations shown at two points of equal strain (green symbols).

tweezers to attach micron-sized silica beads at two points along
a single MT as described elsewhere44. Next, we attach a shorter
MT to the longer filament by the depletion interaction and we link
it to one bead by the biotin-streptavidin linkage (Fig. 2A). The
mobile optical traps are displaced quasi-statically, subjecting the
composite bundle to buckling forces that are measured using con-
ventional techniques44. While the adhering MTs initially buckle
together, above a critical strain the free end of the shorter MT be-
gins to detach (“fray”). Further increasing strain leads to almost
complete peeling of the shorter MT (Fig. 2A). From this point
on, only the longer MT contributes to the buckling force, which
is roughly independent of strain due to the effective softening in-
duced by cross-sectional flattening44,45. Reversing optical trap
displacement reduces strain, eventually leading to re-adhesion,
albeit at smaller curvatures/strains than for peeling. Hysteresis is
apparent in the force-strain curves associated with this measure-
ment, where strain ε = (d−L)/L (Fig. 2B).

Compared to peeling from a flat substrate, the microtubule sys-
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tem exhibits added complexity, as both microtubules are allowed
to bend. Consequently, we need to revisit the theory, generalizing
it for flexible substrates. Towards that end, we examine an elastic
chain model in which both filaments are mobile and we can apply
a buckling force at one end, through a bead attached to the longer
filament (Fig. 3A). Letting functions κ (s) and κ ′ (s) characterize
the curvatures of the two filaments, our previous results still hold
(e.g. Eq. 4), but for relative curvature κr (s) = |κ (s)− κ ′ (s) |,
whose maximal value κc determines the onset of fraying. Pre-
viously, κ ′ = 0, κr = κ and the bending energy scale could be
expressed in terms of κc: E0

b ∼ Bκ2
c lH . Here, the proper bending

energy scale E0
b is not related to the relative curvature, but can

be instead expressed as E0
b = B/L (force B/L2 times length L).

Meanwhile, we denote by Ẽ0
b the energy scale Bκ2

c lH and deem it
the “relative” bending energy, since κc now refers to the relative
curvature κr.

3.2 Quantification of hysteresis and parameter scalings
If we assume, in analogy with results from our first model, that
the net energy loss δE ∼ Bκ2

c lH×(∆l/lH)
2 and express the dimen-

sionless energy loss nδe = nδE/E0
b in terms of adhesion energy

per unit length J, we get

nδe∼ L3κ
5/2
c

ny1/2
c

, (10)

where κc and L are invariants. Therefore, invariance of nδe re-
quires that yc ∼ 1/n2. Furthermore, we also need K ∼ n3 to keep J
invariant. Simulations (using the same molecular dynamics setup
as in the 1D model in44 and adding a second filament and a
breakable adhesive interaction between corresponding beads on
each filament – see SM for details) confirm that the scaling forms
K→ n3K and yc→ yc/n2 preserve hysteresis∗ (Fig. 3B, 3C). More-
over, plugging in the previously measured value J∼ 0.1 pN for MT
depletion-induced cohesion43 allows us to reproduce both the on-
set of fraying and approximate hysteresis size (Fig. 4, green). No-
tably, we ignored factors such as the cross-sectional flattening of
MTs44 and the hysteresis-narrowing effect of thermal fluctuations
(Fig. S7), which would likely further improve the fit.

4 Comparison between theory and experiments
Equations (9) and (10) express hysteresis for the flat and curved
substrate cases in terms of system parameters such as length L,
interaction range yc, adhesion strength J, and flexural rigidity B
(the latter two entering through κc =

√
2J/B). This allows us to

predict, control, or compare the hysteresis of different systems.
For instance, we notice that there is significantly less hysteresis in
our microtubule experiments than in the graphene peeling exper-
iments1. This observation can be understood in the context of our
model by examining equations (9) and (10) for hysteresis in the
graphene sheet (flat) and microtubule bundle (curved), respec-
tively. Hysteresis in both cases is proportional to the adhesive

∗ provided we adjust the length of the shorter filament to account for the changing
healing length lH ∼ 1/n, since the filaments are weakly bonded over this length
scale.

length L and with κc =
√

2J/B but inversely proportional to yc.
While the factor of

√
J/B is comparable between the two experi-

ments (see SM), the other two length scales are not. The length of
the graphene sheet is slightly larger (Lgr = 60µm > LMT ∼ 10µm)
and, most importantly, the interaction in the graphene experi-
ments is much shorter-range: ygr

c ∼ 0.1 nm� yMT
c ∼ 15 nm. Thus,

the much larger hysteresis observed in graphene peeling experi-
ments is primarily due to the much shorter interaction range in
graphene versus microtubules.

Physically, we can understand the inverse dependence of hys-
teresis on yc by noting that, everything else being constant (i.e. L,
B, and J), reducing yc results in stiffer springs K (since J = nKy2

c/L
is constant). When one of these springs break, it will have a rel-
atively large effect on the stress redistribution which will cause
the newly broken bond to “jump” significantly (as in the inset of
the schematic in Fig. 1A). We can see how such a jump relates
to hysteresis by noting that if the direction of the free end dis-
placement is reversed, the newly broken bond will have to travel
extra distance (due to the jump) in order to re-enter the interac-
tion range. In contrast, larger yc means weaker springs, less effect
of bond breakage, and thus less of a jump in the position of the
broken bond (and consequently, smaller hysteresis).

5 Summary and outlook
Our theory of rate-independent adhesion hysteresis provides a
quantitative mechanism for previously unexplained results show-
casing substantial static hysteresis in graphene peeling1 as well as
in microtubule bundles. More generally, our results are applica-
ble to any adhesive elastic system driven either quasi-statically
and thus are relevant to diverse fields including nanoscience
(graphene), cellular biophysics (microtubules), active matter
(bundle disintegration), or material science (lattice trapping). We
have shown that adhesion hysteresis arises due to energy lost
at transitions between metastable states25,26 and quantified the
manner in which hysteresis depends on elastic and adhesion pa-
rameters of the system, both for the case of a simple geometry in
which the substrate is fixed and for that of a complex geometry
in which the substrate is allowed to deform.

Our manuscript also describes a new experimental approach to
the measurement of adhesion hysteresis in bundled filamentous
polymers. Since filamentous bundles are an essential structural
motif of the cellular cytoskeleton as well as the basic building
block of biosynthetic active matter, understanding how they fray
and disintegrate is relevant for the rich non-equilibrium dynam-
ics of one of the best understood experimental systems in active
matter, that of microtubules interacting with motors.

Complementing the classic work of Thomson on lattice trap-
ping29, we also show how the size and strength of the adhesive
springs must be scaled with n in order to preserve hysteresis in the
continuum limit n→∞, thus eliminating a long-standing paradox
by emphasizing the nature of distinguished limits required. The
practical significance of our hysteresis-preserving scaling with n is
that it enables the self-consistent simulation of hysteretic systems
at different levels of granularity. For example, in the case of a sys-
tem in which the adhesion interaction is characterized by some
finite spacing ∆l as well as known stiffness K and cutoff yc, the
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length scale may be too small to simulate the system efficiently.
In that case, we may speed up the computational model by coarse-
graining, starting from the real adhesive parameters and scaling
them according to the hysteresis-preserving scaling laws.

Interestingly, the hysteresis mechanism we propose bears some
resemblance to a phenomenon in polymer fracture known as the
Lake-Thomas effect46, which remains an active area of research47

despite being proposed over 50 years ago. In the Lake-Thomas ef-
fect the energy required to rupture an elastomer is much larger
than the energy to break the chains crossing the fracture plane48

due to the energy loss when the stretched chains away from the
fracture zone relax as the crack propagates23,48–52. To some ex-
tent, this notion of stretching (quasi-)globally while breaking lo-
cally also features in our theory, wherein at any given moment
adhesive bonds within a region of size lH are stretched whereas
upon peeling or healing, energy is released from a single bond,
spanning a region of size ∆l. Although we have focused on the
case of normal loading, in the context of shear loading of soft
adhesive bonds, such as might be relevant in sliding friction be-
tween dissimilar materials, our proposed mechanism might also
serve to explain energy loss even when the contact zone moves
quasi-statically53. All together, our results should prove impor-
tant in facilitating the modeling and simulation of adhesive hys-
teresis in many quasi-continuum elastic systems in both passive
and active settings.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
For partial financial support, we thank DMR-2011754 (L.M.),
DMR-1922321 (L.M.) and EFRI-1830901 (L.M.).

Notes and references
1 M. Z. Miskin, C. Sun, I. Cohen, W. R. Dichtel and P. L. McEuen,

Nano letters, 2017, 18, 449–454.
2 N. Sasaki, A. Toyoda, N. Itamura and K. Miura, e-J Surf Sci

Nanotechnol, 2008, 6, 72–78.
3 M. Hosek and J. Tang, Phys. Rev. E, 2004, 69, 051907.
4 S. Whitelam, S. Pronk and P. L. Geissler, Biophysical Journal,

2008, 94, 2452–2469.
5 S. B. Smith, Y. Cui and C. Bustamante, Science, 1996, 271,

795–799.
6 I. Rouzina and V. A. Bloomfield, Biophysical journal, 2001, 80,

882–893.
7 M. Peyrard, Nonlinearity, 2004, 17, R1.
8 M. Dembo, D. Torney, K. Saxman and D. Hammer, Proc. R.

Soc. Lond. B, 1988, 234, 55–83.
9 S. Aoyama and R. Kamiya, Biophys. J., 2005, 89, 3261–3268.

10 T. Sanchez, D. T. Chen, S. J. DeCamp, M. Heymann and
Z. Dogic, Nature, 2012, 491, 431.

11 D. Maugis, Contact, adhesion and rupture of elastic solids,
Springer, 2013, vol. 130.

12 N. S. Pesika, Y. Tian, B. Zhao, K. Rosenberg, H. Zeng,

P. McGuiggan, K. Autumn and J. N. Israelachvili, J. Adhes.,
2007, 83, 383–401.

13 A. Molinari and G. Ravichandran, J. Adhes., 2008, 84, 961–
995.

14 T. Cohen, C. U. Chan and L. Mahadevan, Soft matter, 2018,
14, 1771–1779.

15 J. A. Williams, J. Phys. D: Appl. Phys., 2014, 48, 015401.
16 J. Obreimoff, Proc. R. Soc. Lond. A, 1930, 127, 290–297.
17 K. Kendall, Molecular adhesion and its applications: the sticky

universe, Springer, 2007.
18 A. V. Pocius and D. A. Dillard, Adhesion science and engineer-

ing: surfaces, chemistry and applications, Elsevier, 2002.
19 Z. Liu, H. Lu, Y. Zheng, D. Tao, Y. Meng and Y. Tian, Sci.

reports, 2018, 8, 6147.
20 J. Y. Chung and M. K. Chaudhury, J. R. Soc. Interface, 2005, 2,

55–61.
21 V. De Zotti, K. Rapina, P.-P. Cortet, L. Vanel and S. Santucci,

Phys. Rev. Lett., 2019, 122, 068005.
22 R. Villey, C. Creton, P.-P. Cortet, M.-J. Dalbe, T. Jet, B. Sain-

tyves, S. Santucci, L. Vanel, D. J. Yarusso and M. Ciccotti, Soft
Matter, 2015, 11, 3480–3491.

23 Y. Chen, C. Helm and J. Israelachvili, J. Phys. Chem., 1991,
95, 10736–10747.

24 Y. Sekiguchi, P. Hemthavy, S. Saito and K. Takahashi, Int. J.
Adhes. Adhes., 2014, 49, 1–6.

25 G. Puglisi and L. Truskinovsky, Phys. Rev. E, 2013, 87, 032714.
26 F. Maddalena, D. Percivale, G. Puglisi and L. Truskinovsky,

Cont. Mech. Therm., 2009, 21, 251.
27 E. A. Evans, Biophysical journal, 1985, 48, 175–183.
28 E. Evans, Biophysical Journal, 1985, 48, 185–192.
29 R. Thomson, C. Hsieh and V. Rana, J. Appl. Phys., 1971, 42,

3154–3160.
30 H. Gao and J. R. Rice, 1989.
31 J. Rice, Journal of the Mechanics and Physics of Solids, 1978,

26, 61–78.
32 P. Guduru, Journal of the Mechanics and Physics of Solids,

2007, 55, 445–472.
33 W. Noderer, L. Shen, S. Vajpayee, N. Glassmaker, A. Jagota

and C.-Y. Hui, Proceedings of the Royal Society A: Mathemati-
cal, Physical and Engineering Sciences, 2007, 463, 2631–2654.

34 H. Kesari and A. J. Lew, Journal of the Mechanics and Physics
of Solids, 2011, 59, 2488–2510.

35 S. Xia, L. Ponson, G. Ravichandran and K. Bhattacharya, Jour-
nal of the Mechanics and Physics of Solids, 2013, 61, 838–851.

36 K. Kendall, Proceedings of the Royal Society of London. A. Math-
ematical and Physical Sciences, 1975, 341, 409–428.

37 S. Zapperi and L. Mahadevan, Biophys. J., 2011, 101, 267–
275.

38 I. M. Jánosi, D. Chrétien and H. Flyvbjerg, Eur. Biophys. J.,
1998, 27, 501–513.

39 M. Stewart, A. D. McLachlan and C. R. Calladine, Proc. R. Soc.
Lond. B, 1987, 229, 381–413.

40 C. Majidi, O. M. O’Reilly and J. A. Williams, J. Mech. Phys.
Sol., 2012, 60, 827–843.

6 | 1–7Journal Name, [year], [vol.],

Page 6 of 7Soft Matter



41 A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger,
D. Roehm, P. Košovan and C. Holm, Meshfree Methods for
Partial Differential Equations VI, 2013, pp. 1–23.

42 S. Asakura and F. Oosawa, J. Chem. Phys., 1954, 22, 1255–
1256.

43 F. Hilitski, A. R. Ward, L. Cajamarca, M. F. Hagan, G. M. Gra-
son and Z. Dogic, Phys. Rev. Lett., 2015, 114, 138102.

44 E. Memet, F. Hilitsk, M. A. Morris, W. J. Schwenger, Z. Dogic
and L. Mahadevan, eLife, 2018, 7, e34695.

45 R. A. Cross, Curr. Opin. Cell Biol., 2019, 56, 88 – 93.
46 G. Lake and A. Thomas, Proc. R. Soc. Lond. A, 1967, 300, 108–

119.

47 S. Wang, S. Panyukov, M. Rubinstein and S. L. Craig, Macro-
molecules, 2019, 52, 2772–2777.

48 C.-Y. Hui, A. Jagota, S. Bennison and J. Londono, Proc. R. Soc.
Lond. A, 2003, pp. 1489–1516.

49 X. Zhao, Soft Matter, 2014, 10, 672–687.
50 C. Creton and M. Ciccotti, Rep. Prog. Phys., 2016, 79, 046601.
51 E. Andrews, T. Khan and N. Lockington, J. Mater. Sci., 1987,

22, 2833–2841.
52 H. R. Brown, Macromolecules, 2007, 40, 3815–3818.
53 B. N. Persson, Sliding friction: physical principles and applica-

tions, Springer Science & Business Media, 2013.

Journal Name, [year], [vol.],1–7 | 7

Page 7 of 7 Soft Matter


