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Dilatancy, shear jamming, and a generalized jamming
phase diagram of frictionless sphere packings†

Varghese Babu,∗a Deng Pan,∗b Yuliang Jin,b,c‡ Bulbul Chakraborty, d and Srikanth Sastrya¶

Granular packings display the remarkable phenomenon of dilatancy , wherein their volume increases
upon shear deformation. Conventional wisdom and previous results suggest that dilatancy, as also the
related phenomenon of shear-induced jamming, requires frictional interactions. Here, we show that
the existence of isotropic jamming densities φ j above the minimal density (or the J-point density) φJ ,
leads both to the emergence of shear-induced jamming and dilatancy in frictionless packings. Under
constant pressure shear, the system evolves into a steady-state at sufficiently large strains, whose
density only depends on the pressure and is insensitive to the initial jamming density φ j. In the limit
of vanishing pressure, the steady-state exhibits critical behavior at φJ . While packings for different φ j

display equivalent scaling properties under compression, they exhibit striking differences in rheological
behaviour under shear. The yield stress under constant volume shear increases discontinuously with
density when φ j > φJ , contrary to the continuous behaviour in generic packings that jam at φJ . Our
results thus lead to a more coherent, generalised picture of jamming in frictionless packings, which
also have important implications for how dilatancy is understood in the context of frictional granular
matter.

1 Introduction
A large variety of familiar materials, made of macroscopic or
mesoscopic constituent particles, may be characterized as gran-
ular matter. Sands, powders and grains are some examples.
Given their large sizes, the individual particles (unlike atoms and
molecules in a liquid) do not exhibit spontaneous – Brownian –
motion, and are thus referred to as being athermal. They flow in
response to externally applied small forces, but at sufficiently high
densities or applied stresses, cease to flow, or jam1,2. Density- or
stress-driven jamming is of central importance in comprehend-
ing a wide variety of complex rheological properties of granular
matter, and forms an essential part of a broader understanding
of the transition from flowing states of matter to non-flowing or
structurally arrested states, including, e. g., the glass transition.
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Density-driven jamming, unjamming and yielding of friction-
less hard and soft particles have been investigated extensively
since the proposal of the jamming phase diagram2, which has,
as originally proposed, a unique density (packing fraction) at φJ

characterizing the jamming transition at zero temperature and
shear stress. Since then it has been shown that the jamming den-
sity φ j is protocol-dependent and therefore not unique3–10 satis-
fying in general φ j ≥ φJ

10. However, critical behavior associated
with jamming, for example the scaling relationship between pres-
sure and density, remains the same, irrespective of φ j

8.
An early proposal that shear deformation, besides density, can

induce jamming1, has recently been explored extensively in ex-
perimental and theoretical investigations, largely of frictional, but
also frictionless hard and soft sphere systems11–24. In shear jam-
ming, the development of an anisotropic contact network under
shear leads to the emergence of a state of finite shear stress and
pressure, with their ratio peaking at a density-dependent charac-
teristic strain11–14,18–20.

The shear-strain dependent pressure was termed Reynolds pres-
sure in12, reflecting the idea that shear jamming occurs because
constant volume conditions frustrate the tendency of granular
materials to dilate under shear25, a phenomenon widely referred
to as dilatancy. With a similar view, impact-driven and shear-
driven jamming in dense suspensions have been related to “frus-
trated dilatancy” effects26,27. Shear jamming and dilatancy in
frictional granular matter have thus been viewed as two sides of
the same coin.
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Reynolds’ dilatancy in granular materials has been extensively
investigated, motivated by the relevance of the phenomena to
soil mechanics28,29. Many available results suggest an intimate
relationship between frictional interactions and dilatancy: stress-
dilatancy relations couple dilatancy and friction between parti-
cles30. Recent studies indicate that friction is important for ob-
serving shear jamming and dilatancy31. Numerical studies32–34

have reported, and experiments27 have also indirectly indicated,
the absence of dilatancy in frictionless systems.

These observations are at variance with the simple picture sug-
gested by Reynolds25, where dilatancy arises purely from geo-
metric exclusion effects of hard particles, which should therefore
be observed also in frictionless systems. We aim here to resolve
this paradox, and demonstrate conditions under which dilatancy
emerges naturally in frictionless sphere assemblies. We show that
such conditions depend critically on the presence of a line of jam-
ming points at densities φ j above φJ . These dense jamming
points can be systematically obtained by using proper jamming
protocols10, and the distinction between φ j and φJ was shown to
be robust in the limit of large system size8.

In motivating our study, we note that, below φJ , initially un-
jammed frictionless sphere assemblies develop structures under
shear, with average geometric contact numbers that increase with
density, which can be mechanically stabilized by friction16. If
the unjammed configurations are at densities above φJ , shear de-
formations may create contact networks that satisfy the isostatic
jamming condition for frictionless packings which are mechani-
cally stable, leading to the possibility of both shear jamming and
dilatancy. Thus, the absence of dilatancy33 and shear jamming32

in earlier studies could be due to the failure to obtain unjammed
initial configurations above φJ rather than to the absence of fric-
tion. Mean-field theories, which are exact in large dimensions,
indeed predicted the possibility of shear jamming24 and shear
dilatancy35 in deeply annealed glasses of thermal hard spheres,
where friction is absent. However, it is not clear if these two ef-
fects can be indeed disentangled from friction in realistic systems
in physical dimensions.

In this paper, we explicitly demonstrate the phenomena of
shear jamming and dilatancy in two simulated frictionless granu-
lar models (see Electronic Supplementary Information (ESI) †for
details) in three dimensions, and propose a concrete method for
experimental verifications. Both effects emerge in systems with
φ j > φJ , and vanish as φ j → φJ , consistent with previous stud-
ies32,33,36. The steady-states in the large strain limit are governed
by a universal equation of state (EOS), while the EOS for the ini-
tially isotropically jammed states at zero strain depends on the
preparation protocol. This difference results in a discontinuous
jump of the yield stress at ϕ j for ϕ j > ϕJ , generalizing (in the
athermal case) the Liu-Nagel jamming phase diagram2.

2 Models and Methods
Two independent protocols are used to create initially unjammed
states that jam at different jamming densities φ j (where an iso-
static force network emerges) under isotropic compressions. (i)
Mechanical annealing of the bi-disperse (BD) system by the ap-
plication of cyclic athermal quasistatic shear (AQS) results in un-

jamming of packings in the density range above φJ ' 0.648, as
described in37. These unjammed configurations correspond to
packings with jamming densities φ j ∈ [0.648,0.661]. (ii) Thermal
annealing of the poly-disperse (PD) system, with the help of an
extremely efficient Monte Carlo algorithm which involves artifi-
cial swap dynamics38, is used to generate configurations with
jamming densities φ j ∈ [0.655,0.69], above φJ ' 0.655 (see ESI
†for more details). We then apply uniform AQS (see ESI †) to
the initial configurations, under both constant volume and con-
stant pressure conditions, in order to investigate shear jamming
and dilatancy. For the constant pressure shear, we isotropically
compress the system initially at φ j and P = 0 to the desired pres-
sure before the first shear step. We clarify that the observations
here under quasistatic shear do not always apply when shear rates
are finite.

3 Results and discussions
We first show that an unjammed configuration at φ < φ j, where
φ j > φJ , can be jammed at a certain strain γ j by uniform constant
volume AQS. The onset of shear jamming is characterised consis-
tently by a steep increase of the shear stress σxz (Fig. 1(a) and
(b)), of the non-rattler contact number ZNR (Fig. 1(c)), of the
pressure (Fig. S1(a) and (b) and Fig. S2 of ESI †), and of the po-
tential energy PE (Fig. S1(c) and (d)), around γ j. We observe
that ZNR exceeds the isostatic value Ziso = 2D = 6, where D = 3
is the spatial dimensionality, for γ > γ j, indicating that the shear
jammed systems are mechanically stable. The non-rattler contact
number ZNR jumps discontinuously at γ j (Fig. 1(c)), associated
with an abrupt increase of the potential energy PE (Fig. 1(d)).
The value of γ j, as well as the stress overshoot amplitude, depends
on the distance to the isotropic jamming ∆φ = φ j − φ , and the
value of φ j that characterizes the degree of mechanical/thermal
annealing in the initial preparation procedure (Fig. 1 (b)). The
data of PE(ZNR), on the other hand, follow a universal function on
the jamming side ZNR > Ziso, that is independent of the jamming
strain γ j, the model, and the jamming protocol (shear or com-
pression), see (Fig. 1(d)). The data for φ j ≈ φJ in Fig. 1(b) also
offers a clear visual demonstration (to be more precisely shown
later) that shear jamming disappears in the limit φ j→ φJ

We next show that packings with φ j > φJ dilate under con-
stant pressure AQS (see ESI †Fig. S7 for constant volume shear).
For this purpose, we modify the original AQS protocol, which is
based on energy minimization at constant volume, to minimize
instead the enthalpy, allowing changes in the volume of the sim-
ulation box to ensure a fixed pressure (see Sec. S2 of ESI †). In
this constant pressure AQS protocol, the system traverses only
those potential energy minima that have the specified pressure,
P. Since the pressure is finite, the system is jammed throughout
this process. For both BD and PD models, during the constant
pressure shear deformation the system dilates until reaching a
steady-state at packing fraction φs that depends on the pressure
applied (Fig. 2). Correspondingly, the stress σxz increases initially
with strain, and eventually also reaches a steady-state plateau af-
ter an overshoot (Fig. 2(b) and 2(d)). The magnitude of stress
overshoot is more significant in systems with larger φ j. The pres-
ence of a maximum at a characteristic value of the strain is the
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Fig. 1 Shear jamming. Shear stress σxz as a function of strain γ for (a) BD model, (b) PD model, and a few different φ j and φ . (c) Non-rattler
contact number ZNR, which is calculated after removing rattlers (particles with less than D+1 contacts) recursively, as a function of γ/γ j. Inset shows
unscaled data, configurations at different densities jam at different strains. (d) The potential energy PE is a universal function of ZNR above jamming,
for both BD and PD systems, for different φ j and φ (and therefore different γ j), and for both compression and shear jamming. The data are averaged
over 20 and 64 independent samples in BD and PD systems respectively.
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Fig. 2 Dilatancy. The evolution of (a) packing fraction φ and (b) shear stress σxz as functions of strain γ under constant pressure AQS in the BD
model, for φ j = 0.654 (dashed) and φ j = 0.66 (solid), and for a few different pressures P (indicated in (b)). (c,d) Same data in the PD model (P values
indicated in (d)), for φ j = 0.660 (dashed) and φ j = 0.689 (solid). The data are averaged over 10 and 64 independent samples in BD and PD systems
respectively.
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constant pressure analog of the maximum in stress anisotropy ob-
served in the constant volume protocol as shown in the ESI †Fig.
S3 (a) and (b). The development of the maximum in the stress
anisotropy, or in the macroscopic friction µ = σxz/P, therefore,
seems to be a universal feature associated with shear jamming
and dilatancy, in both frictionless15 and frictional systems, under
both uniform14,22,39,40 and cyclic shear deformations20.

The degree of dilation, δφ = φinit − φs, where φinit is the initial
density, increases with φ j and decreases with P, as seen from Fig.
2(a) and 2(c) and shown in Fig. S4 of ESI †. In the limit φ j → φJ

and P→ 0, the dilation effect disappears (δφ → 0), which is con-
sistent with previous results33. The PD model shows more sig-
nificant dilation, because higher φ j, relative to φJ , is obtained,
thanks to the efficient swap algorithm. We emphasize that the di-
latancy effect characterized by δφ is a steady-state property that
is distinct from the increase of Reynolds pressure, which occurs
at small strains under constant volume conditions and does not
extend beyond yielding12,24,41. In contrast, the steady-state be-
havior is reached asymptotically at large strains often after many
plastic failure events.

The steady-states follow the EOSs, Ps(φs) and σxz,s(φs), which
are independent of initial conditions (φ j), as shown in Fig. 3(a)
and 3(b). Extrapolating the EOSs to the limit of zero pressure
and stress, we find that the steady-states converge to a critical
state at density φc, i.e., Ps(φs → φc)→ 0 and σxz,s(φs → φc)→ 0,
where φc ≈ 0.648 for the BD and φc ≈ 0.656 for the PD models
(Fig. 3(c)). Within our numerical precision, the critical-state den-
sity φc coincides with the J-point density φJ in large systems (see
Fig. S5 in ESI †for finite-size analysis), φc ' φJ , which confirms
the absence of dilatancy in the limit φ j → φJ . Our observation is
qualitatively consistent with the mean-field theory42, which sug-
gests that shear jamming (and therefore dilatancy as well) dimin-
ishes with poor annealing.

Despite the fact that the steady-state stress is anisotropic,
Ps(φs) agrees well with the isotropic EOS, Piso(φ), obtained by
an isotropic compression from φJ (Fig. 3(a)). The critical scal-
ing of Ps also obeys a linear relationship, Ps(φs) ∼ φs− φc, as in
the isotropic jamming case, where Piso ∼ φ −φJ

43. Fig. 3(a) fur-
ther shows that, up to a scale factor, the EOSs for pressure col-
lapse onto the same master curve, that is not only independent
of the initial condition (φj), but also the polydispersity (BD or PD
model), and the jamming protocol (constant volume shear, con-
stant pressure shear, or isotropic compression). The stress EOSs
σxz,s(φs) of steady-states (Fig.3(b)) for different shear protocols
collapse on to a master curve, but unlike pressure, we cannot
compare with the isotropic compression case, where the shear
stress is always zero. Fig. 3 (c) shows the steady-state packing
fraction φs vs. pressure, indicating more clearly the approach to
the asymptotic density ϕc as pressure goes to zero, independently
of protocol, but the value of ϕc is different for the two stud-
ied systems. Figure 3 (d) shows that, the macroscopic friction
of steady states µs = σxz,s/Ps is non-zero, and slowly decreases

with pressure as µs = µ0 − cPβ
s

44, where µ0 = 0.113,β = 0.453
for the BD model, and µ0 = 0.122,β = 0.458 for the PD model.
The exponent β is model-independent within the numerical er-

ror and close to (and not distinguishable within the precision of
our data from) the value of 0.5 reported in 44. The values of µ0

are also close to the previously reported data µ0 ' 0.1 for mono-
disperse spheres with Hertzian interactions33. This scaling of µs

suggests that, near the critical-state (φs → φc), the stress is pro-
portional to the pressure, σxz,s ∼ µ0Ps, and the stress EOS is lin-
ear, σxz,s(φs) ∼ φs−φc, as confirmed in ESI †Fig. S9 (b). Further
details of steady-states may be found in the ESI †, Figs. S8 and
S9.

To summarize the above described behaviors on shear jamming
and dilatancy, we propose a generalized zero-temperature jam-
ming phase diagram. The original jamming phase diagram, intro-
duced by Liu and Nagel2, conjectures that, in the athermal limit,
the jammed states at φJ should be extremely fragile under shear –
the yield stress vanishes at φJ continuously from above jamming,
σY (φJ) = 0, suggesting that infinitesimal shear stress is required
to yield (unjam) a packing at φJ . While this picture is well sup-
ported by previous numerical studies where φ j ≈ φJ

33,43,45, here
we show explicitly a remarkable discontinuity of the yield stress
σY (as well as the yield pressure PY ) at the jamming density φ j,
when φ j > φJ (see Fig. 4 for the PD system and ESI †Fig. S10 for
the BD system). This discontinuous nature is independent of the
definition of σY (here we define σY = σs, see ESI †Fig. S11 for
other definitions).

On the contrary, the pressure Piso under isotropic compression
vanishes continuously at φ j (Fig. 4(a)), which is independent of
φ j, as shown previously8. It demonstrates the reason why un-
der constant pressure shear, the volume expands from the ini-
tial isotropic states to the final steady-states (Fig. 2), and the
unjammed states below φ j jam under constant volume shear, as
shown in Fig. 1. Interestingly, the yield stress σY of shear jammed
systems at a constant density φ below φ j is a continuation of that
of isotropically jammed ones. This observation is consistent with
the universality of the EOSs as shown in Fig. 3. The stress jump
σY (φ j) at the isotropic jamming transition point φ j vanishes as
φ j→ φJ , as does the regime of frictionless shear jamming.

4 Conclusions
We conclude by firstly comparing the dilatancy effect between
amorphous and crystal/polycrystal assemblies. In the seminal pa-
per 25 where the concept of dilatancy was introduced for the first
time, Reynolds proposed a pure geometric mechanism based on
the idea that one type of lattice packing (e.g., a tetrahedral ar-
rangement) could expand its volume under shear by transforming
into another type of lattice packing (e.g., a cubic arrangement)
Here we recover the same geometric mechanism for amorphous
packings, which has been missed in previous studies33,34. Like
lattices, the amorphous ensemble also includes multiple states
with different packing densities, although jammed packings at
φ j = φJ are more abundant. The paths connecting these states,
driven by external agitations such as shear, are accompanied by
dilatancy, shear jamming, and additional rich phenomena such as
avalanches, plasticity, shear softening and hardening, and yield-
ing.

There are a couple of parallel studies46,47 focusing on friction-
less shear jamming. Here we show that shear jamming is nec-
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essarily associated to another interesting phenomenon, shear di-
latancy, in frictionless granular systems. We further reveal the
universality of the EOSs of dilated systems (steady-states at large
strains) and those of isotropic jamming (initial states at the zero
strain). The evolution from the initial states to the steady-states is
highly non-trivial, for which the Liu-Nagel jamming diagram has
to be generalized.

Although generic protocols lead to jammed systems with φ j ≈
φJ , where friction is necessary for dilatancy27,48, here we pro-
pose a novel approach based on cyclic shear, which can be repro-
duced in experiments to generate packings with φ j > φJ (see ESI
†Sec. S10 for a concrete proposal). Our research therefore opens
the way for experimental studies on exploring the complex phase
space of jamming.
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