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Zhaoyu Xie,a and Timothy J. Atherton∗a

We examine the regime between crystalline and amorphous packings of anisotropic objects on
surfaces of different genus by continuously varying their size distribution or shape from monodis-
persed spheres to bidispersed mixtures or monodispersed ellipsoidal particles; we also con-
sider an anisotropic variant of the Thomson problem with a mixture of charges. With increasing
anisotropy, we first observe the disruption of translational order with an intermediate orientation-
ally ordered hexatic phase as proposed by Nelson, Rubinstein and Spaepen, and then a transition
to amorphous state. By analyzing the structure of the disclination motifs induced, we show that
the hexatic-amorphous transition is caused by the growth and connection of disclination grain
boundaries, suggesting this transition lies in the percolation universality class in the scenarios
considered.

1 Introduction
Packing problems, where a set of objects are arranged in a spec-
ified container to optimize the density, are an important model
of many materials including granular media, colloids and amor-
phous solids1–6. In two-dimensional unbounded Euclidean space,
the highest-density packing of disks is the hexagonal lattice where
each particle is surrounded by six neighbors. Numerous situations
where this highly regular crystalline arrangement becomes disor-
dered have been explored: If the boundaries of the container are
not commensurate with the lattice7,8, or if the packing occurs on
a curved surface so that the lattice is incompatible with the cur-
vature9–12, or if the particles are no longer circular and equal in
size13–16, the overall arrangement may lose either translational
or orientational order, or both.

Topological defects, deviations from crystalline order that can-
not be removed by continuous deformations, are an invaluable
concept to understand the resulting packings. The elementary
defect in a hexagonal lattice is a disclination, a site that possesses
a coordination number n 6= 6; these tend to disrupt the orienta-
tional order as they promote rotation of the lattice vectors. Inter-
actions between disclinations are analogous to electrostatics, mo-
tivating the definition of a topological charge q = (6− n). Other
defect motifs that occur include dislocations, disclination dipoles,
scars, chains of disclinations of alternating sign that are induced
on curved surfaces to accommodate the curvature10, pleats that
are bound to the edge of an open curved manifold11 and grain
boundaries that separate uncorrelated regions of crystalline or-
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der17.

Consider perturbing the crystalline packing of monodispersed
disks of radius r by replacing some fraction χ with a larger ra-
dius R such that R/r > 1. We may define a dimensionless pa-
rameter, the bidispersity b = (R− r)/(R+ r) ∈ [0,1], to describe
the deviation from monodispersity. As b increases, Nelson, Ru-
binstein and Spaepen (NRS)7,8 predict the following sequence:
first dislocations appear introducing stacking faults that disrupt
long range translational order. There then exists an intermediate
hexatic phase that possesses either long range or power-law orien-
tational order as the lattice vectors of adjacent patches of crystal
remain correlated. Further increasing b leads to an amorphous
phase that lacks both translational and orientational order. The
hexatic phase is a zero-temperature analog of the intermediate
hexatic phase that mediates melting in the Kosterlitz-Thouless-
Halperin-Nelson-Young theory18–20. This phase transition into
the amorphous phase triggered by the unbinding of topological
defects also occurs in systems of hard disks21,22, hard regular
polygons23, soft disks with repulsive power-law interactions24,25

and active Brownian particles26,27.

On a curved surface, such as a sphere, the NRS picture must be
modified because defects are required even in the ground state,
leading to a regime referred to as spherical crystallography1,9,10,
and vector transport properties of the curved surface complicates
the measurement of long-range orientational correlations28–30.
Isolated disclinations occur for a small number of particles N
while for large N these become spatially extended scars trading
off the free energy cost of creating additional defects in order to
reduce deformation of the lattice9,10. On spheres, these struc-
tures are icosahedrally ordered29, while the distribution for less
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Fig. 1 Elongation and percolation of defect networks occurs with increasing anisotropy in a variety of anisotropic packing problems. (A)
Packings as a function of anisotropy with particles colored by coordination number; the defect subgraph for each packing is calculated from the neighbor
graph by retaining only non-hexagonally coordinated vertices. (B) Packing fraction as a function of anisotropy. (C) Fraction of defects and (D) the fraction
of largest scar length as a function of anisotropy show a characteristic shape that is a signature of the percolation transition.
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symmetric surfaces is driven by the distribution of Gaussian cur-
vature1,10,11,31–34.

We recently showed for packing bidispersed spheres on a
sphere that as the bidispersity is increased from zero, the de-
fect motifs begin to elongate above a critical value of bidispersity
b= 0.08, continue to grow and eventually form a connected struc-
ture; at the same time the orientational order parameter becomes
increasingly short range35. The hexatic-amorphous transition in
this specific system may therefore be equivalently viewed as elon-
gation and percolation of the scars, providing a connection be-
tween the regimes of spherical crystallography and random close
packing and, by leveraging the results of percolation theory36,37,
successfully predicting the distribution and microstructure of the
defects.

An obvious question arises whether the percolation of defects
also applies to the NRS picture since the behaviors of defects are
rather similar as the system goes to amorphous phase. Addition-
ally, it is natural to ask whether the percolation mechanism is
universal for other amorphization scenarios on surfaces of dif-
ferent geometry. Understanding the organization of defects can
help design particle structures for multiple applications, such as
colloidosomes38, photonic crystals39 or building blocks for new
materials40. Particle anisotropy has also been shown to play a
key role in local unjamming in biological media41.

In this work, we demonstrate that the percolation mechanism
occurs in the original NRS scenario, and for many other kinds
of anisotropy that could be present. We examine: bidispersed
mixtures on flat surfaces as considered by NRS, mixtures of iden-
tical elongated particles of varying aspect ratio λ , such as ellip-
soids, on curved surfaces of different topology. We also consider
a system with long-range interactions, an anisotropic generaliza-
tion of the Thomson problem42–44, whereby mixtures of differ-
ent charge with ratio ρ = q2/q1 are arranged to minimize the
electrostatic energy. Henceforth, we shall unify all these mea-
sures of anisotropy by collectively defining a single parameter
a ∈ [0,1], which depending on the system may be the bidisper-
sity (R− r)/(R+ r), shape anisotropy (λ − 1)/(λ + 1) or charge
anisotropy (q2−q1)/(q1 +q2).

2 Results & Discussion
To do so, we generate packings of N = 1000 particles on flat sur-
faces, spherical surfaces and toroidal surfaces with aspect ratio
2, using a Monte Carlo procedure inspired by the Lubachevsky-
Stillinger algorithm45,46: particles are initially randomly placed
on a large surface, then diffuse both translationally and rotation-
ally by Brownian motion while the size of the suface is gradually
reduced. After reduction moves, gradient descent is performed on
an objective function that penalizes overlaps. If overlaps cannot
be removed, the algorithm backtracks and reduces the rate of re-
duction; the algorithm is halted when the reduction rate reaches
a critical threshold. For bidispersed packings, a fraction χ = 1

2 of
particles are inflated. Details of this algorithm are presented in
previous work35,47,48 and necessary modifications to deal with
anisotropic particles are described in Methods below. For the
Thomson problem, all charges are initially set equal and a mini-
mum is found by conjugate gradient descent; a fraction χ = 1

2 of

charges are randomly selected and increased in magnitude; then
the energy is reminimized.

Disclinations are identified by the following procedure: We
first generate a Voronoi diagram that approximates the navigation
map49,50 from a cloud of points generated to lie on the boundary
of the particles; particles that possess a connected edge in this
graph are identified as neighbors. From the resulting neighbor
graph, we find the subgraph of defects, i.e. vertices that have
connectivity other than 6.

Representative packings as a function of anisotropy a and their
corresponding defect subgraphs are shown in Fig. 1A. Note that
the representation of the subgraphs displayed here is designed
to emphasize the topological features; there is no significance to
the spatial position of the nodes. For monodispersed particles,
the packings are crystalline as expected. On the flat surface, a
few isolated defect motifs are typically present because the lattice
may be incommensurate with the periodic boundary conditions.
On curved surfaces the scars of spherical crystallography occur
together with a number of dislocations. While defects are not
topologically required on the torus, because the genus is 1 and
the Euler characteristic is 0, the higher curvature present locally
deforms the crystal lattice and therefore tends to promote longer
scars and star motifs. As the degree of anisotropy is increased, the
size of the defect motifs increases for all cases, and, eventually, a
system-spanning structure emerges. In these packings, our focus
is the process of elongation of defect networks hence packings
beyond the system-spanning structures are not the interest of this
manuscript.

The packing fraction as a function of anisotropy a for bidis-
persed spheres on the flat surface and ellipsoids on the surface
of a sphere or a torus are displayed in Fig. 1B. For the bidis-
persed mixture, as a increases, the packing fraction decreases ini-
tially due to the introduction of disorder and afterwards slowly
increases because the small particles tend to fill in the gap be-
tween large particles, consistent with the research on spherical
surface35. On the contrary, for ellipsoids, when a increases, the
packing fraction also increases to balance the additional rota-
tional degree of freedom then decreases due to exclusion-volume
effects, in agreement with previous results14.

In Fig. 1C we show how the fraction of defects p varies as
a function of the relevant anisotropy parameter a, showing that
although the detailed variation of p depends on the particular
scenario considered, these have a similar functional form: As, a→
0, p is small and constant. Above a certain value of a, p begins to
increase rapidly and eventually saturates. The value of anisotropy
at which defect clusters begin to form, and the ultimate value of
p, varies between the scenarios considered; ellipsoidal packings
saturate at a significantly lower p than for the isotropically shaped
particles; increasing the charge ratios in Thomson problem can
achieve a larger p than elongated particles.

In Fig. 1D, we also display the growth of a spanning structure
indicated by the fraction of scar length of the largest connected
defect subgraph among all defects for various extent of anisotropy
a in different systems. The fraction quickly rises to 1 as we in-
crease the anisotropy, indicating the percolation transition occurs
with the formation of a globally connected cluster. Also note that
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the formation of a system-spanning structure is slower by varying
the shape of particles than by adding bidispersity. We note that
a rescaling of the form a→ aα can be used to bring the transi-
tion points of the different scenarios into alignment and hence
partially collapse the curves in both Fig. 1C and D. The physical
significance of these powers remains unclear, however, and hence
understanding the detailed form of these curves is left to future
work.

As the degree of anisotropy and defect motifs increase in size,
the system goes from crystalline phase into the amorphous phase
as indicated by various structural order parameters. The trans-
lational order can be examined by the pair correlation func-
tion28,30,51,52 g(r) = ρ(r)/ρ0 where ρ0 is the overall density of
particles and ρ(r) is the density at distance r from the centered
reference particle. The local orientational order of particle i can
be measured by bond orientational order ψ6(

−→ri ) = ∑exp(i6θi j)/n,
where θi j is the angle of the bond connecting particle i and its
neighbor j with respect to some local axis and n is the number of
nearest neighbors. The bond orientational correlation function

G6(r =
∣∣−→ri −−→r j

∣∣) = 〈ψ∗6 (−→ri )ψ6(
−→r j )
〉
,

displays the global orientational order7,8,22,29,53–56. Previous
work29 points out that vector transport on the curved surface
complicates measurement of this quantity in contrast to flat space
where a global reference coordinate system can be defined, and
develops a procedure of selecting proper local reference axis
to calculate ψ6 on spherical surfaces, where the particles are
projected onto the faces of the icosahedron whose vertices are
aligned with the position of defects and then the local reference
axis on each face is determined such that they are in the same
direction after the icosahedron is unfolded onto a plane; further
details are presented in Methods below. We use the angle θ to rep-
resent the distance between two particles on spherical surfaces.

Fig. 2 displays the evolution of g and G6 with increas-
ing anisotropy for bidispersed packings on flat surfaces and el-
lipsoidal particles on spherical surfaces. On flat surfaces(Fig.
2A&B), we recover the NRS results: the system is in crystalline
phase at b = 0, with both translational order and orientational
order over the whole system. As b goes above 0.04, the trans-
lational order becomes short range but the orientational order
remains from the algebraical decay of G6, indicating the packing
is in the hexatic phase. After that, exponential decay of G6 marks
the system entering amorphous phase. For ellipsoidal packings on
spherical surface(Fig. 2C&D), initially the system has long range
order without anisotropy. As the particles are elongated, the long
range order is lost with G6 turning into algebraical and then ex-
ponential decay as the system transitions into the hexatic phase
and then the amorphous phase.

We now show that this transition lies in the percolation univer-
sality class, which describes systems with a parameter p that con-
trols the occupancy of sites or bonds. With increasing p, clusters
of connected components arise with increasing size, and above a
critical value pc, the mean cluster size diverges for infinite lattices.
The value of pc depends on details of the particular system, but
in the vicinity of p→ pc, the cluster size distribution and struc-
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Fig. 2 Structural signatures of packings on flat surfaces and spher-
ical surfaces reveal the transition from crystalline to amorphous
phase with increasing anisotropy.(A) Pair correlation function g(r) and
(B) bond orientational correlation function G6(r) for bidispersed pack-
ings on flat surfaces. (C) Pair correlation function g(θ) and (D) bond
orientational correlation function G6(θ) for ellipsoidal packings of differ-
ent anisotropy on spherical surfaces. Numbers indicate the value of
anisotropy.

ture exhibit universal behavior: For example, the clusters become
fractalline and the cluster radius R,

R2 =
1
2 ∑

i6= j

di j

n2 (1)

where di j is the distance between pairs of sites (i, j) and n is the
number of sites, scales with the number of sites like n ∝ RD where
D is the fractal dimension. In two dimensions this has a value
at pc of 91/48 = 1.896 independent of the structure of the sys-
tem37,57–61. Many disordered systems, both discrete58,59,62 and
continuous57,63–67 lie in this class, including forest fires, distribu-
tion of oil inside porous rock, the diffusion of atoms and conduc-
tivity of electrical networks36,37.

An important feature of the packing problems considered is
that they involve a finite number of particles, either for reasons
of tractability or because they occur in compact geometries. In
finite systems, the percolation transition becomes second order.
For example, the fraction of simulations u(p) that yield a globally
connected cluster as a function of p is, in an infinite system, the
unit step function θ(p− pc) centered on the percolation point pc.
At finite N, u(p) become sigmoidal in shape and converges toward
θ(p− pc) as the number of particles is increased. The value of pc

may therefore be extrapolated from a sequence of simulations of
different size58,59,66,68. An alternative approach is to study the
cluster size R as a function of p, which saturates at pR(N) as R
approaches the system size35. The saturation point converges on
pc as N→ ∞. These different definitions need not necessarily co-
incide in finite systems.
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Fig. 3 Size and structure of defect networks is well predicted by a percolation model for several different anisotropy scenarios. (A) For
bidispersed packings on flat surfaces, fraction of packings with connected spanning structure(left), fraction of particles in the largest connected com-
ponent(middle), cluster radius of the largest connected component and fractal dimensions(right) as a function of defect fraction p. Data points are
calculated from an ensemble of packings as described in the text; solid lines are the predictions of a percolation model with no fitting parameters. (B)—
(D) show corresponding figures for ellipsoid packings on sphere, ellipsoid packings on torus and generalized Thomson problem. Error bars indicate
standard deviation computed from our dataset.
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Further, in contrast to the canonical site and bond percolation
problems described above where p is a parameter that can be di-
rectly varied—in these problems p is the fraction of sites or bonds
chosen on a specified lattice—here in packing problems it is the
degree of anisotropy that is varied. The neighbor graphs and de-
fect subgraphs are not known ahead of time and must be deter-
mined from the packing. We therefore identify p as the fraction of
sites that lie in the defect subgraphs. This identification enables
us to make an explicit comparison between a system that is not
manifestly in the percolation universality class with one that is by
construction: In each of scenarios considered, we create a zero
anisotropy packing—which is of course crystalline—and compute
its neighbor graph. We then study the site percolation problem on
this graph, where we randomly select p fraction of sites iteratively
and investigate their structure for every trial.

We may now examine the growth and structure of the clus-
ters in the percolation model. The fraction of trials where the
selected sites connect into a spanning structure is counted and
showed as gray lines in left column of Fig. 3. The fraction be-
comes nonzero at around pc = 0.5 on flat surfaces and pc = 0.55
on spherical or toroidal surfaces, which is in good agreement with
previous literature35,58,59.We also compute the fraction of sites in
the largest connected component, displayed as gray lines in the
middle column of Fig. 3. In addition the structures of unselected
sites are also computed and the corresponding results are dis-
played as black lines, which has the mirror symmetry compared
with those of the selected sites as expected. The largest cluster
radius R and fractal dimension of the selected sites are shown as
a function of p in right column of Fig. 3. The radius saturates at
the percolation transition pc mentioned above where the value of
fractal dimension is consistent with the universal value of 1.896,
marked by the dash lines.

We further compare the structure of the defect subgraphs with
this percolation model where the non-hexatic defects are recog-
nized as the selected sites and the hexatic particles are treated
as unselected sites. We compute the fraction of packings whose
defects form a globally spanning structure, the fraction of sites in
the largest defect subgraphs, the largest radius of the defect sub-
graphs and fractal dimension. The corresponding quantities are
overlaid onto the curves of percolation model as dots in Fig. 3,
described quite well by the model with no fitting parameters. The
deviation of those dots from the curves is likely due to the finite-
size effect. To plot those curves from the percolation model, we
selected fraction p of particles thousands of times on the same lat-
tice. However we can only generate a finite number of packings.
Another possible reason is the existence of rattlers46, i.e. particles
that don’t contribute to the connected networks. Therefore these
rattlers can slightly reduce the fraction of packings that have a
system-spanning structure. Nonetheless the agreement, particu-
larly around the percolation point, is very good indeed, showing
that the growth and structure of the clusters are well predicted
by percolation theory. Note that for ellipsoid packings showed in
Fig. 3B and C, the fraction of defects, represented by selected
fraction, just exceeds the percolation threshold since the defect
ratios saturate at around that value, as showed in Fig. 1C.

3 Conclusions
In this work, we have considered the emergence, elongation and
global connection of defect structures as a function of different
kinds of anisotropy. Besides bidispersity on flat and curved sur-
faces that link our work to the well-explored KTHNY transition,
we demonstrate that elongating particles, or changing the nature
of the interaction have a similar effect: anisotropy induces dis-
locations that cause the system to successively lose translational
and orientational order, during which process the newly gener-
ated dislocations gradually form a globally connected cluster. We
have further shown that structural features of the clusters, e.g.
fractal dimension, are well predicted by the percolation model.

Our results suggest an apparent universality in that the defect
structures that emerge when adding anisotropy to a crystalline
system appear to be independent of the source of anisotropy.
Bidispersity on the flat surface or on the surface of a sphere yield
similar results to elongating particles or soft long-range interac-
tions, or to packings on the surface of a torus. Intriguingly, our
results for ellipsoidal particles show that the defect fraction only
just exceeds the percolation threshold: we speculate that there
may exist kinds of anisotropy that do not yield percolating defects
and hence suppress the amorphous phase. One possible strategy
to do so is to consider mixtures of particles that together form a
tessellating structure; e.g. octagons and suitably sized squares,
girih tiles69. Continuously deforming from uniform spheres to-
wards such special configurations might eliminate the percola-
tion effect. We suspect that other strategies might exist, perhaps
involving non-convex particles for example as recent paper shows
they can change the geometrical percolation threshold70, and this
newfound connection between particle shape and defect structure
should open new avenues for tunability in the mechanics of par-
ticulate media.

4 Methods
Packing algorithm for ellipsoidal particles

Our algorithm to pack spherical particles is as described above
and in previous work35,47,48. The extension to ellipsoidal parti-
cles involves modifications to overlap detection and diffusion as
follows: The range parameter σi j is given by,

σi j = 2b/

√
1− χ

2
(

d̂i j · ûi + d̂i j · û j

1+χ(ûi · û j)
+

d̂i j · ûi− d̂i j · û j

1−χ(ûi · û j)
),

where a and b are the half lengths of the major and minor axes,
χ = (a2−b2)/(a2+b2), û is a unit vector describing the overall ori-
entation of the particle and d̂i j is the unit vector pointing from one
center to the other. If the center-to-center distance di j is smaller
than the range parameter σi j, there is overlap. This criterion has
been successfully implemented in other work71–74. If two ellip-
soidal particles overlap, we exert the Gaussian model potential75

V (ui,u j,di j) = ε0

[
1−χ

2(ûi · û j)
2
]−1/2

exp
(
−d2

i j/σ
2
i j

)
,

where ε0 is the strength parameter, to remove the overlaps by
gradient descent.

Diffusion of particles is another feature of our algorithm.
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Spheres can diffuse simply by Langevin equation

x
′
i(t +δ t) = xi(t)+ηi

√
2Dδ t,

where ηi is a random step drawn from Gaussian distribution, D is
the diffusion constant such that

√
2Dδ t determines the variance

of the displacement for a timestep δ t. For ellipsoids, we must also
account for rotations. First we rotate the director of an ellipsoid
by

δθ(δ t) = ηθ

√
2Dθ δ t.

Then in the local coordination system x̃ and ỹ along the major and
minor axes, it is displaced by

δ r(δ t) = ηa
√

2Daδ tx̃+ηb
√

2Dbδ tỹ.

Finally we transform this local displacement into the global coor-
dinate system by multiplying the rotation matrix76.

Orientational correlation on spherical surfaces

Here we describe how to find the icosahedron that align with the
defects following the method previously reported29. A non-trivial
icosahedrally symmetric function can be defined as

h6(x̂) = Y6,0(x̂)+
√

7/11(Y6,−5(x̂)−Y6,5(x̂)),

where Y is the spherical harmonics. The positions of local max
values align with the vertices of an icosahedron. The defects on
the spherical surface can be rotated by the rotational matrix

Rω (θ ,φ) =

 cosθ 0 sinθ

0 1 0
−sinθ 0 θ


 cosφ −sinφ 0

sinφ cosφ 0
0 0 1

 .

Then (θ ,φ) is computed by minimizing ∑i h6(Rω (θ ,φ) ·−→ri ) where
−→ri represents coordinates of defects. The inverse rotation gives
the icosahedron that align with the defects.
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