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Shape-driven entropic self-assembly of an open, re-
configurable, binary host–guest colloidal crystal†

Timothy C. Moore,a Joshua A. Anderson,a and Sharon C. Glotzera,b∗

Entropically driven self-assembly of hard anisotropic particles, where particle shape gives rise
to emergent valencies, provides a useful perspective for the design of nanoparticle and colloidal
systems. Hard particles self-assemble into a rich variety of crystal structures, ranging in com-
plexity from simple close-packed structures to structures with 432 particles in the unit cell. En-
tropic crystallization of open structures, however, is missing from this landscape. Here, we report
the self-assembly of a two-dimensional binary mixture of hard particles into an open host–guest
structure, where nonconvex, triangular host particles form a honeycomb lattice that encapsulates
smaller guest particles. Notably, this open structure forms in the absence of enthalpic interac-
tions by effectively splitting the structure into low- and high-entropy sublattices. This is the first
such structure to be reported in a two-dimensional athermal system. We discuss the observed
compartmentalization of entropy in this system, and show that the effect of the size of the guest
particle on the stability of the structure gives rise to a reentrant phase behavior. This reentrance
suggests the possibility for a reconfigurable colloidal material, and we provide a proof-of-concept
by showing the assembly behavior while changing the size of the guest particles in situ. Our find-
ings provide a strategy for designing open colloidal cystals, as well as binary systems that exhibit
co-crystallization, which have been elusive thus far.

1 Introduction
The self-assembly of hard particles has revealed a rich landscape
of structures whose assembly and thermodynamic stability are,
by virtue of the volume exclusion interactions between particles,
driven by entropy.1 This landscape includes crystalline phases,2–7

rotator crystal phases,3,4,6 liquid crystal phases,4 and quasicrys-
tals.8,9 Recent work has reported on the self-assembly of hard
truncated tetrahedra into a clathrate structure with an astonish-
ing 432 particles in the unit cell.10

Recent theoretical work has produced a framework that ex-
plains the entropic driving forces of self-assembly in hard particle
systems.11,12 Within this framework, shape entropy gives rise to
directional entropic forces (DEFs) that favor facet-aligned, locally
dense packings of particles. Hence, structures self-assembled
from hard particle building blocks lack porous microstructure,
i.e., they are “closed” and not “open” structures.

While shape entropy generally drives the formation of closed
strucures, open structures are of both theoretical and practical in-
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terest.13 From a theoretical standpoint, it is interesting how dif-
ferent entropic effects can stabilize an open crystalline structure,
and how they may drive self-assembly. Practical applications of
open structures include photonic materials,14–16 materials with
unique mechanical properties,17–19 and materials that leverage
the porosity, for example, for filtration.20,21 Shape-driven self-
assembly of an open structure would aid in these pursuits by mak-
ing the self-assembly more robust in practice; an inherent, shape-
based drive towards an open structure would allow the addition
of specific, synergistic enthalpic interactions to the particles to
tune the assembly behavior. Hence, understanding how to design
building blocks that favor open structures is of broad interest.

Nonconvex particles offer a promising route to open structures,
even within the framework of directional entropic forces, since lo-
cally dense packings of concave particles allow the possibility to
form porous structures. Despite this possibility, few open/porous
structures have been predicted or observed to self-assemble in
hard particle systems, and a small but growing body of work has
focused on nonconvex particles. Experimental studies of colloidal
hard crosses reveal the self-assembly of chiral rhombic and square
2D crystals,22 which, despite consisting of concave particles, is
still a densest packing arrangement. Simulation studies report
the self-assembly of hard, colloidal nanorings into porous smectic
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structures23, the assembly of bowl-shaped particles into worm-
like liquids and columnar phases24, and the liquid crystalline
phase behavior of helical particles.25–27 Numerical studies on the
packing of nonconvex objects have yielded putative densest pack-
ings of a wide variety of shapes, ranging from relatively simple
crescents and curved triangles28 to more exotic shapes includ-
ing the great stellated dodecahedron, a hammerhead shark, and
the Stanford Bunny.29 While the literature on nonconvex hard
particles is still growing, it has yet to report self-assembled open
structures with long-ranged translational and orientational order.

Multicomponent systems offer another route to form open
structures, as the extra component(s) can induce effective en-
tropic attractions between particles that differ from the single-
component case, and therefore may stabilize the open structure.
However, very few studies have focused on binary, hard parti-
cle systems, and none have reported results on multicomponent
mixtures containing hard nonconvex particles. Several papers
have reported on the phase behavior30 and design rules for self-
assembling binary hard particle mixtures.5,31,32 Yet, to date, the
only studies involving binary systems of anisotropic hard parti-
cles that showed self-assembly of substitutionally ordered crys-
talline structures are a system comprising a space-filling mixture
of tetrahedra and octahedra33 and a mixture of shape allophiles
that hierarchically self-assembled a space-filling square lattice.34

As expected for convex polyhedra within the DEFs framework,
the structures in the tetrahedron-octahedron phase diagram are
all closed.

Consideration of these possibilities raises the question: can
porous structures with long-range order self-assemble in ather-
mal systems, where entropy is the sole driving force? If so, an-
other challenge remains: what kinds of particles in the essen-
tially infinite design space of particle shape should we expect to
self-assemble open structures? In this paper, we answer the first
question in the affirmative by showing the entropy-driven self-
assembly of a binary host–guest structure, where the host parti-
cles are located on the sites of an open honeycomb lattice. While
entropy has been shown to stabilize an open structure in systems
with enthalpic interactions between particles,35–37 they have not
been observed in athermal systems; thus, our results illustrate a
novel means of using shape to stabilize a porous, ordered struc-
ture. Our results also provide an answer to the second question
by showing that a combination of unique concave “host” particles
and smaller, convex “guest” particles self-assemble into a host–
guest structure with long-range order.

2 Model and Methods
We performed two-dimensional Monte Carlo simulations of hard
anisotropic particles using the hard particle Monte Carlo (HPMC)
module38 of HOOMD-Blue.39 We simulated systems comprised of
two types of perfectly hard particles (i.e., two different shapes),
denoted “host” (H) and “guest” (G) particles, illustrated in Fig-
ure 1. The host particles are regular triangles with edges of length
σ , with a thin notch cut out of each edge, rendering them noncon-
vex. These particles are characterized by the depth d and length
l of the notches. We only focus on particles with l = 0.4 for the
following reasons. For the “uncut” part of each edge to fit into

the notch for self-assembly to occur, we have the constraint that
l > 0.33. The maximum depth of the notch is then defined by the
length of the notch; if a notch is too deep, the particle is no longer
a single, solid object. Hence, we restrict our focus to a single
notch length, one that is long enough to enable the self-assembly,
but not so long that the range of possible notch depths is greatly
affected. The guest particles are convex polygons, generated by
applying an (an)isotropic scaling transformation to regular poly-
gons to modify the aspect ratio and size relative to the host parti-
cles. We characterize the size of the guest particles by their aspect
ratio and the area they occupy relative to the concave host par-
ticles, and denote this ratio s/σ2. In all HPMC simulations, the
sizes of the trial displacements and rotations of the particles were
tuned independently to achieve an acceptance rate of 33%. All
simulations were performed in an isobaric ensemble. We also in-
cluded moves on the box aspect ratio and shear. On each MC
sweep, we attempted a move on either the box volume, shear, or
aspect ratio. In addition to trial moves on the box volume, we
attempted moves on the box aspect ratio and shear at each step;
all box moves were tuned to achieve a 33% acceptance ratio.

Host particle  Hexamer motif with guest

σ

ld

d = 0.06σ d = 0.1σ

d = 0.14σ d = 0.16σ

Fig. 1 The particles studied in this work. The host particle is an equilat-
eral triangle with notches cut out of the edges, characterized by the depth
d and length l of the notch. The guest particle is a rectangle, character-
ized by its aspect ratio and area relative to that of the hosts. The guest
particle shown here has an aspect ratio of 1:2, and occupies 25% of the
area of the host particles in the hexamer motif.

We initialized the systems for self-assembly (both for constant
guest size and variable guest size) in a dilute, well-mixed con-
figuration of the particles. The constant guest size self-assembly
simulations contained 2,400 particles, while the variable guest
size simulations contained 900 particles. We then compressed the
systems to packing fraction φ = 50% and started isobaric simula-
tions. We ran the constant guest size systems for a minimum of
40 million HPMC steps, after which we stopped them if no open
hexamer motifs were detected (see below), or continued them
until the number of hexamers remained approximately constant
for 10 million HPMC steps. We ran the variable guest size systems
for 200 millions HPMC steps. We ran three replicas at each state
point for both types of simulations.

The equations of state (EOS) were calculated by decompress-
ing the systems from the ideal solid structure. We first initialized
2,400 particles in the crystal structure at the ideal stoichiometry
and a packing fraction of 70%, and then performed isobaric sim-
ulations at the set pressure. After determining the density had
stabilized for at least two million HPMC timesteps, we averaged
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the packing fraction over the final one million HPMC timesteps.
We estimated the statistical error in the packing fraction by aver-
aging over five replicas at each pressure and taking the standard
deviation of the mean packing fraction for each system. The EOS
curves show two branches connected by a transition region, char-
acteristic of first-order phase transitions commonly observed in
hard particle systems. We took the melting pressure to be the
average of the two pressures between which the packing fraction
showed the largest change.

We define the fraction of the host particles that are part of an
open hexamer motif as an order parameter χ, and we define six
host particles to constitue an open hexamer motif if they meet the
following three criteria. First, to find groups of six particles upon
which to test the criteria, we build a neighbor list containing the
nearest 14 host particles to each host particle in the system. From
this neighbor list, we loop over all groups of six particles. The
first criterion is that the six particles must be arranged such that
the set of six vectors from the center of the cluster to the centroid
of each particle has high hexatic order. This criterion is stated
quantitatively as

|ψ|= 1
6

∣∣∣∣∣ 6

∑
j=1

e6iθ j

∣∣∣∣∣≥ δψ ,

where θ j is the angle between an arbitrary reference vector and
the vector from the cluster center to the centroid of the jth parti-
cle in the cluster. We used a value of δψ = 0.95 for all analyses.
Second, the orientation of each particle in the cluster must be
such that the (symmetry-reduced) angle θor between the vector
connecting the center of the cluster to the particle and the vec-
tor defining the particle’s orientation (i.e., the centroid-to-vertex
vector) is close to π/6. Specifically, we require that θor be within
π/12 of π/6. The final criterion requires that each of the six par-
ticles in the cluster be within 0.1σ of the mean particle-centroid-
to-cluster-center distance. Visual inspection of the systems con-
firmed that these criteria select the open hexamers, while reject-
ing similar arrangements of six host particles. Hence, χ is defined
as χ = NH,hex/NH, where NH,hex is the number of host particles
in the system that are a part of at least one hexamer that meets
the three criteria listed above, and NH is the total number of host
particles in the system.

The computational workflow and data management for this
publication were supported by the signac data management
framework.40,41 We utilized the freud analysis library42 for data
analysis and OVITO43 for system visualization. All plots in this
paper were generated with Matplotlib.44 This work utilizes sig-
nificant computational resources on XSEDE45 Stampede2.

3 Results

3.1 Self-assembly of a host–guest structure

A phase diagram from self-assembly simulations in the pressure–
stoichiometry plane is shown in Figure 2a, where we observed
several phases to assemble. The systems remained fluid at low
pressures and high guest fractions. In contrast, at high pressures
and low guest fractions, the systems readily jammed into disor-
dered configurations. Between these two regions, we observed

the entropy-driven self-assembly of a unique host–guest structure.
At moderate pressures and fractions of guest particles, the par-

ticles self-assembled into an interesting structure with long-range
order, as illustrated in Figure 2c and in the ESI.† The structure
consists of the host particles arranged on the sites of a honey-
comb lattice, oriented such that the host particles interlock with
each other at the notch. This configuration of host particles yields
open hexamer motifs of the host particles with roughly hexagonal
pores that are occupied by the guest particles. Given this config-
uration, with the hosts forming pores that the guests occupy, the
host particles have well-defined positions and orientations in the
lattice, while the guest particles do not, as shown in the ESI.† The
unit cell of the structure thus consists of three particles: two in-
terlocking host particles with an orientational offset of π/3, and
the associated guest particle, yielding a stoichiometry of H2G. We
note that the host–guest structure occupies approximately 65–
70% of space (e.g., see Figure 3); however, when considering only
the host particles, the packing fraction is much lower, around 30–
35%. This network arrangement of the anisotropic host particles
yields a chiral structure, where a hexamer of host particles can
adopt one of two chiralities, reminiscent of the chiral phase ob-
served in hard equilateral triangles near close-packing.46 For any
given single system, hexamers of both chiralities are observed,
albeit in different grains, as the different chiralities are incompat-
ible with one another.

While we find that the optimal assembly (based on the final
value of χ) occurs near the H2G stoichiometry (i.e., where the
mole fraction of guests in the system xG = 1/3) as seen in Fig-
ure 2a, we observe the formation of the open hexamer motif in
systems away from this stoichiometry as well. In a large excess
of guest particles, isolated clusters of host particles arrange into
the open hexamer motif, and we often observe two guest parti-
cles in the pore that forms, as seen in Figure 2h. In a large ex-
cess of host particles, we find that the host particles tend to trap
the few guest particles in the system, as seen in Figure 2g. The
guest particles appear to be required for the host particle hexam-
ers to form, as the host particles do not form the open hexamers
in the absence of guest particles, as shown in Figure 2f and the
xG = 0 slice of Figure 2a. Instead, the host particles form a dis-
torted triangular lattice in the absence of guest particles; a grain
of this crystal can be seen in the middle section of Figure 2f. Ad-
ditionally, there is a dependence on the depth of the notch in the
host particles on the ability to assemble the open structure; as-
sembly only occurs for particles with a notch depth in the range
0.08σ < d < 0.17σ , as shown in Figure 2b. We find that below
a notch depth of approximately 0.08σ , no open hexamer motifs
are found in the systems, as a result of the effectively smoother
edges that allow more entropically-favored edge–edge alignment.
Above a notch depth of approximately 0.17σ , we find the systems
tend to jam into kinetically arrested configurations, limiting the
ability of the systems to form large grains of the host–guest struc-
ture. These observations suggest a strong local driving force for
the formation of the hexamers of host particles present in the
open structure (given the notch depth is within the assembling
range), as opposed to the denser local structures that the host
particles adopt in the absence of guest particles (as shown in Fig-
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Fig. 2 Self-assembly phase diagrams (a, b) and representative snapshots (c–h) of the binary host–guest systems . The data in (a) was obtained for
triangle host particles with a notch depth of 0.1σ , and the data in (b) was obtained at a stoichiometry xG = 0.5. In (a) and (b), the pixel color indicates
the value of the order parameter χ (see Methods) at the end of the simulations, averaged over 3 replicas (standard deviation of χ across replicas <
0.01). In all snapshots in (c–h), the host particles are characterized by d = 0.1σ and l = 0.4σ . In all cases, the host particles are characterized by a
relative size s/σ2 = 0.25 and an aspect ratio of 1:2. The snapshot in (c) shows the system with the highest value of the order parameter in (a); the
system contains several crystal grains separated by guest-rich fluid regions. Note that the Gibbs phase rule allows up to two phases in thermodynamic
equilibrium for a system with a fixed number of particles, pressure, and temperature. Zoomed-in snapshots of a solid region and hexamer motif are
shown in (d,e), respectively, showing the details of the host–guest structure. (f–h) show representative motifs from systems in the regions of the phase
diagram in (a) denoted by each letter. The guestless system (f) shows several grains of the distorted triangular lattice formed by the host particles. The
host-rich system (g) shows sparse, guest-occupied pores surrounded by disordered arrangements of the hosts, and the guest-rich system (h) shows
clusters of doubly-occupied pores surrounded by a mixed fluid of host and guest particles. In all snapshots, host particles identified as belonging to a
hexamer are highlighted to aid in identifying regions containing the host–guest structure.
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ure 2f). These hexamers are compatible with long-range order,
and hence these systems form extended host–guest networks un-
der the right conditions. With a picture of the phase diagram,
we turn our attention to examining the entropic interactions that
stabilize this unique open structure.

3.2 Entropic contributions to stability of host–guest struc-
ture

Here, we investigate the question of how entropy is maximized
by the host–guest structure. All results we present are from sim-
ulations of an isobaric ensemble, and hence the Gibbs free en-
ergy G = −T S+PV is the quantity that is minimized (note the
PV term in addition to the entropic term). We obtain similar
results when sampling an isochoric ensemble, and hence the en-
tropy is the major driving force for the observed behavior. At
the finite pressures investigated, the PV term in the free energy
is negligible, as we find a negligible volume non-additivity be-
tween the host and guest particles. The ideal mixing entropy,
proportional to ∑i∈{H,G} xi lnxi, favors mixing of fluids of the indi-
vidual species, but does not favor either fluid or crystalline mixed
phases. Therefore, the configurational entropy of systems in the
crystalline state must be greater than that of systems in fluid
states for self-assembly to occur. In the following, we consider
the entropies of subsystems composed of host and guest parti-
cles separately, and demonstrate that the total system entropy is
maximized by sacrificing the entropy of the former for that of the
latter. Further, we explain trends that we observe in the context
of an entropic attraction between host particles brought about by
the presence of the guest particles.

We first consider the relevant contributions to the entropy of
the solid host–guest structure. The guests have only weakly de-
fined positions and orientations (e.g., they behave like hard poly-
gons in a discrete plastic crystal mesophase47), and therefore
have high configurational entropy. In contrast, the hosts have
both well-defined postitions and orientations, and oscillate about
their lattice sites. On a per particle basis, the guest subsystem
therefore has a larger entropy than the host subsystem, as the
guests are able to explore more of their positional and orienta-
tional phase space. Notice also that there is an inherent compe-
tition between these two entropies; if the hosts oscillate with a
larger amplitude, the average size of the pores decreases, leaving
less space available for the guest particles to sample.

Given the athermal nature of these systems, attractions be-
tween particles are an entropic effect,11,12 but we can interpret
the melting pressure as a proxy for an effective cohesive free en-
ergy between the particles. In the same way that solids with a
higher cohesive free energy have higher melting temperatures,
structures in athermal hard particle systems with a higher effec-
tive cohesive free energy will have lower melting pressures; that
is, less external pressure is required to keep the particles in the
solid structure. We observe this behavior in the equations of state
for these systems, shown as a function of the size and aspect ratio
of the guest particles in Figure 3a–d. In the equations of state, for
a given guest particle size, starting from a high pressure and mov-
ing to lower pressures, there is a clear melting transition where

the density of the system abruptly drops, indicating a first order
phase transition. From these equations of state, we determined
the melting pressure curves as a function of the size of the guest
particles. These melting pressure curves are shown in Figure 3e.

Figure 3e shows that for small guest particles, the melting pres-
sure decreases with increasing guest size, indicating an increasing
effective cohesive free energy with guest size. This trend is a re-
sult of the aforementioned entropic competition in these systems;
as the size of the guest particles is increased, the space they can
explore is reduced (for a fixed pore size), giving rise to an effec-
tive entropic pressure within the pore. To alleviate this pressure,
the host particles can increase the size of the pores by packing
tighter and oscillating with a smaller amplitude (which costs a
small entropic penalty that must be offset by the corresponding
gain in configurational entropy of the guest particles). Hence, in-
creasing the size of the guest particles in the host–guest structure
leads to an increased effective attraction between the host parti-
cles, whose origin is in maximizing the entropy available to the
guest particles. This mechanism is similar to the osmotic pres-
sure that depletant molecules exert on colloidal particles in the
Asakura–Oosawa model.48,49 However, in contrast to the usual
entropically-driven close packing of colloidal particles seen in de-
pletant systems, the entropic attraction described here drives par-
ticles to a lower-density packing as a result of the shape of the
host particles.

Clearly, the guest particles will eventually be too large to freely
rotate within the pores, even when the pores are as large as pos-
sible (dictated by the size of the notches on the host particles).
At this point, since the pores cannot become any larger, the max-
imum effective cohesive free energy between the hosts has been
achieved. Therefore, increasing the size of the guest particles
at this point only increases the entropic penalty of hindered ro-
tation, and therefore more pressure must be applied to the sys-
tem to balance the effective entropic pressure within the pores.
Here, the magnitude of the slope of the melting pressure curve
decreases and eventually the curve inverts, consistent with a de-
creasing cohesive free energy and stronger driving force for melt-
ing with increasing size of the guest particles. To support this
picture, Figure 3e shows the melting pressure curves plotted as a
function of the circumsphere radius rc of the guest particles, and
therefore compares systems with square and rectangular guest
particles with roughly equal effective sizes. This figure shows
that the melting pressure inversion occurs at approximately the
same effective size for both squares and rectangles, although the
squares melt at lower pressures than the rectangles. The melt-
ing pressure difference between squares and rectangles can be
attributed to the symmetry-based increase in orientational en-
tropy of squares compared to rectangles. To see this difference,
consider the free energy of an ideal (Einstein) solid, given by9

AEin/NkT =Atrans
Ein +Arot

Ein+Amom
Ein − lnNsym, where the first two terms

are the configurational contributions from translations and rota-
tions, the third term is the momentum contribution from trans-
lational motion, and the last term accounts for the symmetry of
the particles, where Nsym is twice the order of the rotation group
of the particle. The first three terms are equal for squares and
rectangles, so the difference lies in the symmetry term. Since
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Fig. 3 Equations of state (a–d) and melting pressures (e) for host–guest systems as a function of the size and aspect ratio of the guest particles.
The packing fraction φ denotes the steady state packing fraction from constant pressure simulations starting from the idealized structure with the ideal
stoichiometry xG = 1/3 and 2,400 total particles. The melting pressures were determined as the averge of the pressures where the equation of state
showed the largest change. For the equations of state, the guest size s/σ2 is the area that a single guest particle occupies relative to that of a single
host particle. The melting pressures are plotted as a function of the circumsphere radius of the guest particle rc to emphasize the alignment between
the two curves when plotted as a function of the effective size of the guest particles. Error bars, estimated as the standard deviation in the melting
pressure from 5 independent replicas of each system, are smaller than the symbols. The rectangular guests have an aspect ratio of 2:1, and the hosts
are characterized by a notch size of d = 0.1σ , l = 0.4σ .

squares have twice as many symmetries as rectangles, the free
energy difference between a crystal of squares compared to rect-
angles is given by ∆A/NkT = Arectangles/NkT − Arectangles/NkT =

ln(Nsquares
sym /Nrectangles

sym ) = ln2 ≈ 0.69. Hence, crystals with rectan-
gular guests have a larger free energy than crystals with square
guests, which results in the melting pressure differences observed
in Figure 3. The inversion in the melting pressure curves gives
rise to a reentrant phase behavior with respect to the guest parti-
cle size, which can be seen clearly in Figure 3 and is discussed in
the next section.

3.3 Leveraging reentrant behavior for reconfigurability

As illustrated in Figure 3, the nonmonotonic melting pressure as a
function of guest particle size indicates reentrant phase behavior.
This behavior allows the possibility for a reconfigurable material,
where an external stimulus could be used to stimulate a respon-
sive guest particle to change its size and thereby modulate the
structure in the system.

As a proof of concept of the reconfigurability allowed by the
reentrant phase behavior, we initialize a mixture of host and guest
particles at a stoichiometry of xG = 0.4 and perform HPMC sim-
ulations at a constant pressure of βPσ2 = 40 while changing the
size of the guest particles relative to that of the host particles;
an animation of this simulation is available in the ESI.† We begin
with a relative size ratio of 0.05, and linearly increase to 0.6 over
the course of 100 million MC steps; the guest particles are then
returned to their original size during the following 100 million
MC steps. During the “growth” phase of this procedure, we ob-
serve the formation of several clusters of the host–guest structure,

as illustrated in Figure 4c. This assembly is reflected in the order
parameter, which initially increases with the size of the guest par-
ticle, as shown in Figure 4a. However, once the guest particles
reach a certain size, the host–guest structure is no longer stable
and begins to melt, as predicted by the melting pressure trends
and as indicated by the decrease in the order parameter begin-
ning around 70 million MC steps. This transition occurs when the
relative size of the guest particle is approximately 0.45, which is
also the point where the melting pressure curve inverts for square
guests (Figure 3d). By the time the guest particles reach a rela-
tive size of 0.6, the hexamers have nearly completely melted and
the system is in the well-mixed fluid state depicted in Figure 4d.
Upon shrinking the guest particles from their maximum size, the
particles again assemble into clusters of the host–guest structure,
which eventually melt once the guest particles shrink below a cer-
tain size. Notably, the order parameter versus HPMC step curve
is roughly symmetric about the point where the guest particles
are at a maximum size, illustrating the equilibrium nature of this
reconfigurable transition. One may notice that the value of the
order parameter never reaches the maximum value obtained dur-
ing the constant-guest-size self-assembly simulations; this result
stems from the fact that we are changing the guest size on a finite
time scale. It is certainly possible to optimize the system param-
eters to maximize crystallization during reconfigurability; such
efforts are the focus of ongoing work.

While this in situ structural transition triggered by a change
in particle properties is easily performed in simulation, a similar
transition can be realized in experimental systems. Recent exper-
imental work studying colloidal particles in a polymer solution
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Fig. 4 Reconfigurable host–guest assembly with an in situ varying guest particle size. The relative size of the guest particle s/σ2 is varied throughout
the simulation, starting very small, growing, and shrinking back to the original size. (a): the guest size is represented by the dashed orange (lighter) line,
and the order parameter χ is depicted by the solid blue (darker) line. The solid line represents the rolling average of the order parameter over a window
of 10 simulation snapshots, and the lighter shading represents the instantaneous values. (b–f): snapshots of the systems during reconfigurability
simulations, with the size of the guest particle shown in the lower left of each snapshot. Snapshots taken from the following HPMC steps: (b): 0.2 ·108,
(c): 0.7 ·108, (d): 1.0 ·108, (e): 1.4 ·108, and (f): 2.0 ·108. The highlighted host particles in (b–f) are those identified as being a part of the open hexamer
motif, as defined in Section 2, and the host and guest particles are drawn to scale. The order parameter χ quantifying the amount of host–guest
structure in the system shows that the structure assembles when the guest particle is within a range of specific sizes relative to the host, illustrating the
possibility of using this type of system as a reconfigurable material. The host particles in this simulation are characterized by a notch size of d = 0.1σ

and l = 0.4σ , the guest particles are characterized by a constant aspect ratio of 1:1, and the stoichiometry is fixed at xG = 0.4.
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containing thermosensitive microgel particles showed material
reconfigurability based on the thermoresponsive properties of the
particles.50 Taking it one step further, it is possible to change not
only particle size, but particle shape on-the-fly in experiment.51

Considering the melting pressure differences between systems
with square versus rectangular guest particles, there is the possi-
bility for a shape-change–induced structural transformation with
a shape-changing guest particle. We emphasize that by virtue of
the volume-exclusion interactions between particles, the behav-
ior in this system is driven solely by entropy; therefore, we expect
the same behavior to be observed in similar experimental systems
in conditions where enthalpic interactions have been effectively
removed. This scenario can be realized, e.g., by modifying the
solvent and/or environmental conditions.52,53

The reconfigurability discussed here is only possible because of
the two-component nature of our systems, where the relative sizes
of the particles can be varied. In contrast, particle size changes
in a single-component system only change the packing fraction.
Shape-induced transitions have also been described previously,
e.g., between cubic phases in colloidal polyhedra.54 Here, we
have shown that the relative shape and size of particles in a bi-
nary mixture can have a large influence on the phase behavior
and therefore provide useful variables to act as the controller in a
reconfigurable colloidal material.

4 Conclusions
We have demonstrated the self-assembly of an open host–guest
structure in a binary, hard anisotropic particle system. The non-
convex nature of the host particles and relative size of the guest
particles result in a system where the entropy of a host–guest
structure that comprises a porous network of host particles filled
with guest particles is greater than that of any disordered phase.
This system represents one of the first self-assembled binary struc-
tures with long-range order in an athermal system of anisotropic
particles.

While particle shape is now well understood to play an im-
portant role in determining the crystal structure of nanoparticle
superlattices, the current study is the first to show how parti-
cle shape alone can be used to target an open structure. While
the results presented herein represent a simplified picture of the
complex interactions that occur between colloidal particles, they
nonetheless offer useful information for the experimentalist. We
show that nonconvex triangular particles can form an interlock-
ing, open structure when mixed with a guest that can fit within
its pores, and that the effective attraction between the nonconvex
particles is driven by an entropic force originating with the guest
particles. The notched triangles studied in this work are experi-
mentally accessible, e.g., through nanolithographic techniques.55

We also note that in this athermal system, the concavity of the
particle is essential to the stability of the structure, as it directs
the effective attractions between the host particles. We speculate
that this effective interaction could be replaced with explicit at-
tractive patches on a convex host particle, a topic for future work.

We showed that the guest particles are necessary for the as-
sembly, and that the size ratio of the host and guest particles is
a sensitive parameter for the stability of the structure. We used

this sensitivity to highlight the possibility for a reconfigurable sys-
tem; by controlling the size and/or shape of the guest particles,
for example, similar to what has been shown for polymer hydro-
gel systems,50 there is the possibility to control the morphology
of the system. Such reconfigurability allows this type of material
to be used as an actuator in a nanoscale machine.

The fact that there is a shape-induced driving force towards
this structure means that its assembly is driven by entropy; there-
fore, specific, directional enthalpic interactions compatible with
the hexamer motif may be added to lower the free energy of the
structure even further, and make its assembly more robust. This is
in contrast to scenarios where the enthalpically- and entropically-
favored products differ, and care must be taken to balance the
competition between the two. These results therefore provide a
new strategy towards the self-assembly of open colloidal lattices.
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