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Fluctuations can induce local nematic order and extensile
stress in monolayers of motile cells

Farzan Vafa,∗a Mark J. Bowick,b Boris I. Shraiman,ab and M. Cristina Marchetti∗a

Recent experiments in various cell types have shown that two-dimensional tissues often display local
nematic order, with evidence of extensile stresses manifest in the dynamics of topological defects.
Using a mesoscopic model where tissue flow is generated by fluctuating traction forces coupled to
the nematic order parameter, we show that the resulting tissue dynamics can spontaneously produce
local nematic order and an extensile internal stress. A key element of the model is the assumption
that in the presence of local nematic alignment, cells preferentially crawl along the nematic axis,
resulting in anisotropy of fluctuations. Our work shows that activity can drive either extensile or
contractile stresses in tissue, depending on the relative strength of the contractility of the cortical
cytoskeleton and tractions by cells on the extracellular matrix.

1 Introduction
Nematic order has been widely seen in biological active mat-
ter1–3, ranging from suspensions of cytoskeletal filaments and
associated motor proteins4–6 to cell sheets7–10, bacteria collec-
tives11–13 and developing organisms14. In all of these systems,
orientational order is interrupted by topological defects, singular
deformations of the order parameter field that cannot be removed
by a continuous transformation and provide a fingerprint of the
broken symmetry. In two-dimensional nematics, the lowest en-
ergy defects are +1/2 and −1/2 disclinations15. A key property
of active nematics is that the spontaneous flows induced by ac-
tivity render the +1/2 defects motile4,16–19. Importantly, the di-
rection of motion of the comet-like +1/2 defect is controlled by
the sign of active stresses: extensile active stresses, as generated
in cytoskeletal suspensions by cross-linking motor proteins or in
living cells through division, drive the defect to move towards the
head of the comet, while contractile stresses, as occurring for in-
stance in the acto-myosin cytoskeleton, drive the defect to move
towards the tail17. This behavior has been verified extensively
in simulations2. A surprising experimental finding is that in al-
most all realizations of two-dimensional active nematics, the mo-
tion of the +1/2 defect suggests that extensile activity dominates.
While in bacteria this has been clearly associated with cell divi-
sion20,21, the origin of the extensile activity observed in layers of
human bronchial epithelial cells10, in Madine-Darby canine kid-
ney (MDCK) cells8, in stem cells9, and in simulations22 on times
scales shorter than those associated with appreciable cell division
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has only recently been explored23.
The dynamics of cells crawling on a substrate is generally

driven by two types of active mechanisms: (i) internal active
forces generated within a cell by myosin-driven cellular contrac-
tility and transmitted throughout the tissue via supracellular actin
coordination, and (ii) traction forces between the tissue and the
substrate that drive cell motility. Internal forces due to cellular
contractility yield active stresses, but no net force, while tractions
provide an external forcing of the tissue. A naive expectation is
that contractile active stresses dominate the behavior of epithe-
lial tissue, while active tractions provide the main contribution to
cell dynamics in mesenchymal tissue. The relative role, though, of
these two types of active processes remains to be quantified. Here
we use a continuum model of an incompressible tissue on a sub-
strate to examine the interplay between these two types of activ-
ity. We show that fluctuating traction forces advected by flow can
generate both local nematic order and effective extensile stresses
in an otherwise isotropic tissue. Essentially, polar active migra-
tion drives local cell alignment captured by a nematic order pa-
rameter. A key assumption of our model is that cells will preferen-
tially move along the direction of local cell alignment, rather than
transverse to it. This is incorporated in the model by coupling the
noise that drives the fluctuating cell tractions to local nematic or-
der. By working perturbatively in the noise strength, we show that
the nonlinear advection of active tractions by cellular flow can be
recast in the form of a mean active force that has the structure of
an extensile stress and drives cell dynamics. Flow alignment gen-
erated by this active forcing in turn destabilizes the isotropic state,
suggesting the onset of a state with spatially modulated texture
and rotating director field. While the fact that extensile activity
can build local nematic order in what would be an isotropic state
in the passive limit has been highlighted before24–26, a new re-
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sult of our model is that the extensile stress observed in crawling
tissue may arise from fluctuating cellular tractions.

The organization of this paper is as follows. In Sec. 2, we in-
troduce the model. In Sec. 3, we evaluate the mean force from
fluctuating tractions and show that it yields effective extensile
stresses that generate local nematic order. We conclude in Sec. 4
with a brief discussion.

2 Model of Crawling Tissue

We describe the tissue at the continuum level as a contractile ac-
tive gel27 in terms of the cell density ρ, the flow velocity v and a
nematic order parameter Q = (2n̂n̂−1)S that captures cell shape
anisotropy and alignment of elongated cells, with S the magni-
tude of nematic order and n̂ the unit nematic director field that
identifies the direction of local order. The tissue is in contact with
a substrate and force balance requires that the force on a tissue
element due to the surrounding cells be balanced by the traction
force density t that the tissue exerts of the substrate, according to

∂ jσi j− ti = 0 , (1)

where σi j = −pδi j + 2ηSi j + σa
i j is the tissue stress tensor, with

p the pressure, η the tissue shear viscosity, Si j =
1
2 (∂iv j + ∂ jvi)

the rate of strain tensor, and σa
i j = αcQi j an active stress. The

traction force is written as t = Γv− f, where Γ is the effective fric-
tion with the substrate and f a fluctuating propulsive force den-
sity caused by transiently polarized cryptic lamellipodia activity
which underlies cell motility. This form for the traction t allows
for local misalignment of cell propulsion and tissue velocity due
to intracellular interactions, consistent with experimental find-
ings28,29. Assuming the tissue to be incompressible (∇∇∇ · v = 0,
hence ρ = constant), the dynamics is described by the following
equations

η∇
2v−∇∇∇p+αc∇∇∇ ·Q = Γv− f , (2)

DtQ = λS− 1
γ

[
δF(Q)

δQ

]ST
, (3)

(∂t +v ·∇∇∇) f =− f
τ
+ξξξ , (4)

where Dt = ∂t + v ·∇∇∇− [ΩΩΩ, ·] is the comoving and corotational
derivative, with Ωi j =

1
2 (∂iv j − ∂ jvi) the vorticity tensor, and the

superscript ST in Eq. (3) denotes the symmetric traceless part
of any tensor 1,2. Other couplings to flow gradient are gener-
ally allowed in Eq. (4) for fi, such as Ωi j f j and λSi j f j. These
terms, however, do not contribute to the noise-renormalized
mean propulsion force evaluated below and are therefore not in-
cluded in the equation.

The Stokes equation, Eq. (2), includes two types of active pro-
cesses. First, force dipoles due to the pulling action of myosins
and transmitted across the epithelial tissue by cell-cell interac-
tions mediated by E-cadherins result in an apolar contractile ac-
tive stresses αcQ1,27,30, with αc > 0 an activity parameter that in-
corporates the biochemical processes responsible for cellular con-
traction and controlled by myosin density and ATP concentration.

Second, the presence of the substrate allows for polar terms de-
scribed by the fluctuating propulsive force density f. This may
arise, for instance, from intermittent protrusions and retractions
of cryptic lamellipodia at a rate controlled by cell-substrate inter-
action mediated by focal adhesion complexes. We assume that
the traction force density f tends to align with the long axis of the
cell that controls the direction of local nematic order, but switches
direction on a time scale τ much shorter than the time scale τQ

controlling the reorientation of the local nematic texture. As a
result, there is no polar order of propulsive forces at the tissue
scale. This separation of time scales allows us to treat this source
of activity independently and examine how microscopic cell scale
fluctuations feed back on the tissue-scale active stress. Finally,
we have neglected in the Stokes equation elastic liquid crystalline
stresses. These terms are of higher order in the gradients than the
active stress and do not change the results described below.

The dynamics of the nematic order parameter is controlled
by flow alignment driven by coupling to vorticity and rate of
strain, with λ the flow alignment parameter, and relaxation
controlled by the de Gennes-Ginzburg-Landau free energy31,32,
F = 1

2
∫

x
{

a Tr[Q2]+K(∇∇∇ ·Q)2}, with K the nematic stiffness (in
the one-elastic constant approximation) and γ the rotational fric-
tion of the nematic. We assume that the tissue is isotropic (a > 0),
and hence neglect stabilizing terms of order O(Q4) in the free
energy, so that

− 1
γ

δF(Q)

δQ
=− Q

τQ
+D∇

2Q , (5)

with τQ = γ/a the relaxation time of the nematic texture and D =

K/γ a diffusivity.
The fluctuating local propulsive force f (Eq. (4)) persists over

a time τ, and is then randomized by interactions with other cells
and short scale active processes embodied by a zero mean random
force ξξξ , with correlations

〈ξi(x, t)ξ j(x′, t ′)〉= ε
2
δ (t− t ′)δ (x−x′)[δi j +κ〈Qi j(x, t)〉] , (6)

with κ > 0 and ε2 the strength of the noise. The noise correlations
are chosen to depend on Q so as to capture the fact that local
alignment will result in different cell motility along and trans-
verse to the director. The positive sign of κ favors motion along
the director and penalizes displacements transverse to the direc-
tion of local order. We also assume that κS < 1 to ensure that the
variance of the noise is positive. Given τ � τQ, we then examine
the behavior of the tissue on times long compared to τ, but in the
presence of finite local nematic order. The separation of these two
time scales in epithelial tissue is evidenced by the observation of
negligible cell motility (corresponding to 〈f〉= 0) and appreciable
regions of local nematic order (corresponding to 〈Q〉 6= 0).

To impose incompressibility we take the divergence of Eq. (2)
to obtain ∇2 p = ∇∇∇ · (f+αc∇∇∇ ·Q). Eliminating the pressure, the
Stokes equation can then be formally written as

Γvi−η∇
2vi = Pi j

(
f j +αc∂lQ jl

)
, (7)

with Pi j =
(
δi j−∇−2∂i∂ j

)
being the incompressibility projection

operator.
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3 Noise induced extensile stress and nematic
order

To linear order, the only steady state solution of our noise-
averaged equation is 〈v〉= 〈f〉= 〈Q〉= 0. In this section we show,
however, that noisy traction forces renormalize the flow velocity,
inducing both nematic alignment and extensile active stresses.

Taking the Fourier transform in space and time, Eqs. (7) and
(4) can be written as

vi(k,ω) =
1

Γ+ηk2

(
δi j− k̂ik̂ j

)[
f j(k,ω)+αciklQ jl(k,ω)

]
, (8)

fi(k,ω) =
ξi(k,ω)

τ−1 + iω

−
ik j

τ−1 + iω

∫
ω ′

∫
q

v j(q,ω ′) fi(k−q,ω−ω
′) , (9)

where
∫

ω
=
∫ dω

2π
and

∫
q =

∫ dq
(2π)2 . Substituting Eq. (8) into

Eq. (9), and using the fact that due to the separation of time
scales we can treat f and the noise ξξξ as uncorrelated with Q, we
calculate the renormalization of the traction force to first order in
the noise amplitude, with the result

〈 fi(k,ω)〉=− ε2κ ln(`v/a)
4πη

ik j〈Qi j(k,ω)〉
(τ−1 + iω)(2τ−1 + iω)

, (10)

where we have used∫
q

δi j− q̂iq̂ j

Γ+ηq2 =
δi j

8πη
ln
(

1+
`2

v
a2

)
≈

δi j

4πη
ln
(
`v

a

)
, (11)

with `v =
√

η/Γ the viscous screening length and a a short scale
cutoff of the order of the cell size.

Since we are interested in time t � τ, with τ � τQ, we can
neglect ω in the denominator of Eq. (10). Taking the inverse
Fourier transform yields a mean force

〈f〉= α f ∇∇∇ · 〈Q〉 , (12)

where

α f =−
ε2κτ2

8πη
ln
(
`v

a

)
< 0 , (13)

is an extensile activity. Extensile stresses arise because persistent
cell tractions f along the direction of local nematic order tends to
elongate local regions of the tissue in that direction. This effect is
transient (only lasts a short time τ), but due to the nonlinearity
of the advection term in the f equation it leads to a nonzero value
of 〈f〉 that corresponds to extensile stresses.*.

We now return to Eqs. (7) and (3), average over noise, and
use Eq. (12) to eliminate the mean traction force. The linear
dynamics of fluctuations from the quiescent disordered state with

* This is seen by writing ∂t fi ∼ −(v ·∇∇∇) fi ∼ −( f j∇ j) fi, and so 〈 fi〉 ∼ −〈τ( f j∇ j) fi〉 ∼
−(...)∇ j〈Qi j〉.

〈v〉= 〈Q〉= 0 is then governed by the equations

Γ〈vi〉−η∇
2〈vi〉= αPi j∂l〈Q jl〉 , (14)

∂t〈Qi j〉=
λ

2
(
∂i〈v j〉+∂ j〈vi〉

)
−
〈Qi j〉

τQ
+D∇

2〈Qi j〉 , (15)

where
α = αc +α f (16)

is the total activity, with sign controlled by the interplay of con-
tractile activity (αc > 0) from actomyosin contractility and exten-
sile activity (α f < 0) from fluctuating propulsive forces.

We next demonstrate that extensile stresses from fluctuating
tractions also build up local nematic order, justifying our choice
of an anisotropic noise correlator. Taking the spatial Fourier trans-
form of Eqs. (14) and (15) and eliminating the velocity in favor of
the alignment tensor, we obtain a closed equation for 〈Qi j(k, t)〉,
similar to24,25:

∂t〈Qi j〉=−
(

τ
−1
Q +Dk2

)
〈Qi j〉 ,

+
αλ

2(Γ+ηk2)

[
−kikl〈Q jl〉− k jkl〈Qil〉+2kik jΨ

‖
]
, (17)

where Ψ‖ = k̂ik̂ j〈Qi j〉. Upon contraction of Eq. (17) with k̂ik̂ j and
εisk̂sk̂ j, the longitudinal mode Ψ‖ and the transverse mode Ψ⊥ =

εisk̂sk̂ j〈Qi j〉 decouple, giving

∂tΨ
‖(k, t) =−

(
τ
−1
Q +Dk2

)
Ψ
‖(k, t) , (18)

∂tΨ
⊥(k, t) =−

[
τ
−1
Q +Dk2 +

αλk2/Γ

1+ `2
vk2

]
Ψ
⊥(k, t) . (19)

The decoupling of longitudinal and transverse modes follows
from isotropy. Clearly Ψ‖ is always stable. On the other hand, the
mode controlling the decay of Ψ⊥ can change sign if α < 0, corre-
sponding to the case where extensile activity exceeds contractile
activity. The homogeneous isotropic state becomes unstable for
α <−α∗, with

α
∗ =

ΓD
λ

(
1+
√

η

ΓDτQ

)2
. (20)

This linear instability discussed here for the case of rod-like
(λ > 0) extensile (α < 0) active entities also occurs for disc-like
(λ < 0) contractile (α > 0) systems, similar to the effect noted in
a different context in Ref.33. It is best discussed in terms of three
length scales that control the dynamics of our model of cellular
active nematics: (i) the viscous length `v, (ii) the nematic correla-
tion length ξ =

√
DτQ, and (iii) an active length `a =

√
|α|λτQ/Γ

that balances flows induced by active stresses against frictional
dissipation †. In terms of these length scales, the dispersion rela-

† The active length defined here is distinct from the one commonly used in the litera-
ture, `active =

√
K/|α|, which controls the dynamics of active nematics in the absence

of substrate friction 2,34.
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Fig. 1 Top: the dispersion relation of the growth rate Ω⊥ (Eq. (21))
as a function of the wavenumber k for three values of activity: α =

−0.5α∗,α =−α∗, and α =−1.5α∗. At the onset of instability for |α|=α∗,
only the mode k = k0 is unstable. Above the transition, the unstable
modes lie in a band k− < k < k+. Bottom: sketch of the nematic texture
corresponding to the unstable mode with k = k0x̂ for φ = 0. The length
of the segments, as well as the color, is proportional to the strength of
nematic order S. The angle between the director and the wavevector k
is ±π/4.

tion of the mode controlling the dynamics of Ψ⊥ is given by

Ω⊥ =−τ
−1
Q

[
1+ξ

2k2 + sgn(α)
`2

ak2

1+ `2
vk2

]
. (21)

This mode becomes unstable (Ω⊥ > 0) for extensile systems
(α < 0) of elongated particles (λ > 0) provided

`a > ξ + `v . (22)

The dispersion relation for a few values of parameters is shown
in Fig. 1. The wavevector of the fastest growing mode is k0 =

1
`v

(
`a
ξ
−1
)1/2

, and the instability occurs in a band of wavevectors

given by

k2
±(α) =

`2
a−ξ 2− `2

v ±
√
(`2

a−ξ 2− `2
v)

2−4ξ 2`2
v

2ξ 2`2
v

, (23)

with k±(|α|= α∗) = k0.
The instability of the disordered state indicates that in extensile

systems of elongated units, active flows build up local nematic or-
der, as previously demonstrated for compressible nematics24,25.
Note that a finite viscosity is required to stabilize the system at
short scales. The instability corresponds to growth of Ψ⊥, and the
associated nematic texture is obtained as solution of k̂ik̂i〈Q̃i j〉= 0.
The component of the texture corresponding to wavevector k is
then given by

Qi j(x) = Acos(k ·x+φ)(εi`k̂`k̂ j + ε j`k̂`k̂i) , (24)

where we have explicitly included the Fourier factor cos(k · x+
φ). This can be written in terms of a unit nematic director field
n̂ as Q = (2n̂n̂− 1)S, where n̂ is the eigenvector of the largest
eigenvalue of the matrix texture given in Eq. (24),

n̂i =
1√
2
[δi j− sgn[cos(k ·x+φ)]εij]k̂j . (25)

This satisfies cos(k̂ · n̂) = 1/
√

2 and so n̂ is at an angle ±π/4 to
k. A sketch of n̂ for the mode k = k0x̂ with amplitude modu-
lated by A|cos(k0x+ φ)| is shown in Fig. 1. It corresponds to a
modulated chevron texture of periodicity 2π/k0, with alternating
nematic domains tilted at 90◦ to each other, separated by thin
isotropic bands. The structure is analogous to that obtained in
certain passive nematic liquid crystals under shear35,36 and in
lamellar phases of diblock copolymers37.

4 Discussion
Using a mesoscopic model for a tissue layer, we have shown that
fluctuations in the traction forces exerted by cells on the substrate
can build up local nematic order in the tissue and lead to extensile
active stresses that compete with those arising from actomyosin
contractility. The sign of the net activity, α = αc +α f , with αc > 0
controlled by contractile actomyosin forces and α f < 0 (given
in Eq. (13)) determined by the interplay of single-cell motility
and global tissue flow, is determined by the larger of these two
contributions. The tissue dynamics may exhibit overall contrac-
tile or extensile behavior depending on the relative magnitude
of these two contributions to the active stress. In confluent tis-
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sues with strong extracellular actin fibers capable of transmitting
stresses across cells, we expect a dominance of actomyosin con-
tractility. In mesenchymal tissue, in contrast, local tractions may
dominate and mediate the build-up of local nematic order, with
associated extensile dynamics of topological defects. Other mech-
anisms not directly considered here may also enable force trans-
mission across the tissue. In particular, passive cell-cell adhesion
provides intercellular couplings which enable one cell to pull an-
other. Some of these effects are encoded in the tissue shear viscos-
ity η . Finally, although here we have assumed incompressibility,
which results in cells pushing on each other, finite compressibility
may arise in epithelial cells due, for instance, to deformation of
the nucleus or from apical surface tension. The role of the result-
ing density fluctuations remains to be explored.

Our work highlights the key role of noise arising from subcel-
lular active processes in mesoscopic models of tissue, something
that has been little explored, and opens up several future direc-
tions. First, experiments in epithelia8, stem cells9, and M. xan-
thus13 have observed cell accumulation near the core of the +1/2
defect and cell depletion near the core of the −1/2 defect. A valu-
able extension of our work would be to examine these effects by
allowing for density variations and finite tissue compressibility.
Second, in many situations, cells are also capable of coordinating
their motion, leading to emergent or persistent migration. Well-
known examples are the collective directed migrations of follicu-
lar cells in the Drosophila egg-chamber38,39 and of epithelial cells
in wound healing40,41. In cancer progression metastatic cells can
additionally regulate their dynamical state and switch between
collective and single-cell migration42. The emergence of collec-
tive motility has been modeled in the literature by assuming local
alignment of traction forces of neighboring cells or alignment of
cell tractions with the local tissue flow. At the continuum level,
these types of interactions yield an instability associated with a
change in the sign of the traction damping rate τ−1 plus a satu-
rating cubic term, as can be derived from mesoscopic Vicsek-type
models43–45. It would be interesting to explore whether effec-
tive alignment and collective migration can emerge from noisy
tractions by, say, including in the traction dynamics a coupling to
velocity with “memory” of recent flows. This is, however, left for
future work.
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