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Active Brownian particles moving through disordered landscapes

Kristian S. Olsen,∗a Luiza Angheluta,a‡ and Eirik G. Flekkøya

Disordered media are ubiquitous in systems where self-propelled particles are present, ranging from
biological settings to synthetic systems, like in active microfluidic devices. Here we investigate
the behavior of active Brownian particles that have an internal energy depot and move through a
landscape with a quenched frictional disorder. We consider the cases of very fast internal relaxation
processes and the limit of strong disorder. Analytical calculations of the mean-square displacement
in the fast-relaxation approximation is shown to agree well with numerically integrated energy depot
dynamics and predict normal dispersion for bounded drag coefficient and anomalous dispersion for
power-law dependence of the drag on spatial coordinates. Furthermore, we show that in the strongly-
disordered limit the self-propulsion speed can, for practical purposes, be considered a fluctuating
quantity. Distributions of self-propulsion speeds are investigated numerically for different parameter
choices.

1 Introduction
Transport of active matter in complex media has become a field of
great importance and interest, not only because of its relevance
to realistic biological systems, but also due to the possible new
insights into non-equilibrium physics. In active matter systems a
steady input of energy on the scale of the particles leads to self-
propulsion, driving the system away from equilibrium1,2. Trans-
port processes of biological entities typically take place in confin-
ing or disordered environments, leading to non-trivial behaviors.
Examples include cell migration through the porous medium of
the extracellular matrix3, bacteria in soil4, cells utilizing their
environment to enhance transport5, and various forms of taxis,
like topotaxis6,7 and curvotaxis8, where cells direct their motion
depending on substrate topography and curvature respectively. In
such cases, it is insufficient to model the motion with an homoge-
neous active stochastic equation since the complex environment
must be coupled to the particle motion. One way to do this is
to also model the environment, for example as solid stationary
obstacles9, or even mobile or deformeable obstacles10. In a min-
imal approach à la homogenization theory, one can consider an
effective model for the behavior on large scales where the parti-
cles experience spatially dependent drag, possibly leading to non-
trivial dynamics. There are several instances imaginable where
this could happen. For example, motion between two parallel
plates with small local variations in the plate separation distance
would lead to a local effective friction. One could also imagine a
mean-field approach where one describes the dynamics of a single
particle by including the effect of interactions with other particles
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through a spatially dependent friction that reflects the configu-
ration of particles. Fig. (1) shows a third realization, where a
simple setup allows for optical control of the viscosity, and hence
drag, through a photorheological fluid11.

In stochastic particle-based models of active matter, it is com-
mon to assume that the particles are self-propelled with a con-
stant speed while the direction of motion changes stochastically,
for example continuously in the case of active Brownian particles
(ABPs) or discontinuously as in the case of run-and-tumble parti-
cles like e-coli12,13. However, this typically relies on an assump-
tion that the dissipation due to drag is balanced by the kinetic
energy production from the internal energy depot. In this paper
we aim to elucidate the behavior of active particles in heteroge-
neous frictional landscapes, when such a balance is not necessar-
ily achieved.

2 The depot model with heterogeneous friction
Different models of quenched spatial disorder have been consid-
ered in various ways, for example by random forces and poten-
tials14,15, inhomogenerous angular dynamics16 and fixed hard
obstacles9. However, not as much effort has been put into un-
derstanding soft spatial disorder like that of a complex frictional
landscape. While the effect of viscosity gradients on the determin-
istic trajectories of squirmers has been studied17, we here concern
ourselves with minimal modeling of the stochastic dynamics of
ABPs in the presence of various frictional landscapes.

To this end, we consider a version of the Schweitzer-Ebeling-
Tilch energy depot model with a spatially inhomogeneous fric-
tional force. This model for an ABP is classically expressed as the
following set of evolution equations describing the stochastic par-
ticle dynamics coupled with a deterministic balance equation for
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Fig. 1 Sketch of a setup where light can be used to control and design viscosity patterns in photorheological fluids. Such fluids typically have a
polymeric suspension where the degree of entanglement in the polymeric network can be altered with UV light. Such setups can be used to optically
control active or passive particles by strategically selecting appropriate optical filters, leading to a distribution of light intensities I(x,y). Small spherical
particles moving in such quasi-2D fluid environments experience a inhomogeneous Stokesian drag, as depicted in the rightmost figure.

the internal energy depot18,19:

ẋα = vα (1)

v̇α = −[γ(x,y)−d2ε(t)]vα +
√

2D(x,y)ξα(t) (2)

ε̇(t) = q−cε(t)−d2u2
ε(t) (3)

where α is the index of the spatial component and u = ∣v⃗∣ is the
self-propulsion speed (SPS). Here γ is the dissipative friction co-
efficient, and D is the noise amplitude, both being, in general,
spatially heterogeneous in realistic disordered environments. In
addition, particles can be accelerated at a rate dependent on their
net internal energy ε and their speed v, with a proportionality co-
efficient d2, here assumed a constant. In the passive limit d2 = 0,
we expect the Einstein relation to hold, leading to the spatial de-
pendence also in the diffusivity. The restoring energy rate q > 0 is
the rate at which the particle takes up energy from the environ-
ment and converts it into the internal energy depot ε, while c is
the dissipation rate of the internal energy due to some various in-
ternal processes, like metabolism in the case of animals. Finally,
ξα is the independent white noise, delta-correlated in time for
each spatial component.

Throughout this article we will take the internal dissipation rate
c = 0, which corresponds to the case where internal energy in only
converted into motion. Most of the results presented here can be
generalized to c ≠ 0. We will also assume that fuel or nutrients
are supplied homogeneously to the system, and we let q be a
constant.

Some intuition for the above equations can be gained by con-
sidering the deterministic limit (D = 0) and calculating the energy
dissipation rates. Let K = u2/2 be the kinetic energy (mass is set
to unity) and E = K + ε the total energy of the particle. Then we
have the equations

Ė = q− γ(x,y)u2 (4)

K̇ = d2εu2− γ(x,y)u2 (5)

The particle increases its total energy with a rate q, and losses
kinetic energy due to the environmental drag through the friction
coefficient γ(x,y). Furthermore, while kinetic energy is lost due to
dissipation there is also a positive contribution d2εu2 originating
in the conversion of internal energy into kinetic energy.

2.1 Homogeneous case

Deterministic dynamics (D = 0): Before we generalize to a
spatially-dependent friction coefficient, let us first consider what
is known for the homogeneous case where γ(x,y) = γ0 is a con-
stant12. In this case, the general Eqs. (2)-(3) reduce to an equa-
tion for the self-propulsion speed u(t) coupled to the internal en-
ergy depot ε(t), namely

u̇(t) =[−γ0+d2ε(t)]u(t) (6)

ε̇(t) =q−d2u2
ε(t) (7)

This dynamical system has a non-trivial fixed point in the (u,ε)-
phase space and given by u∗ =

√
q/γ0, ε∗ = γ0/d2. To determine

the stability of this fixed point, we linearize the dynamical sys-
tem around its fixed point, i.e. u = u∗ +δu, ε = ε∗ +δε, where the
perturbations satisfy the linear equations

d
dt

[δu
δε

] = A[δu
δε

] (8)

where A is the Jacobi matrix associated to the nonlinear flow field
and evaluated at the fixed point, and has components

Auu = 0 , Auε = d2
√

q/γ0 (9)

Aεu = −2
√

γ0q , Aεε = −d2q/γ0

(10)

The general solution of the linearized equations is given in terms
of exponential functions exp(−t/τ±) , where the relaxation time
scale τ± is the inverse of the eigenvalues of A. Using that
tr(A) = −d2q/γ0 and det(A) = 2d2q and that both are invariant un-
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Fig. 2 Deterministic phase space dynamics and projected self-propulsion speed dynamics for a frictional landscape given by Eq. (19). Figures A,B
show the case of a small wavenumber k = 1 (τI/τS ≈ 0.15), displaying a good agreement with the naive extension of the homogeneous result

√

q/γ(x⃗(t)).
Figures C,D show a case with k = 3 (τI/τS ≈ 0.45), and we see that the two curves no longer match. Particles are initialized at (x,y) = (0,0) with
(vx,vy) = (1/2,0). Other parameters used are γ0 = 10,L = 5,q = 2,d2 = 6.

der diagonalization, one finds

τ
−1± = d2q

2γ0

⎡⎢⎢⎢⎢⎢⎣
1±

¿
ÁÁÀ1−8

γ2
0

d2q

⎤⎥⎥⎥⎥⎥⎦
(11)

Hence we may think of τI = 2γ0
d2q as the characteristic time scale for

convergence to the stable fixed point.

Stochastic dynamics: The full stochastic dynamics drastically
simplifies under the assumption that a stable fixed point has been
reached. Using vx = ucosφ and vy = usinφ , with constant speed u,
results in the following dynamics:

ẋα = uP̂α (12)

φ̇ =
√

2Dφ ξ(t) (13)

where P̂ = (cosφ ,sinφ) is the unit vector describing the particles
direction of motion, and ξ is a scalar Gaussian white noise. We
have also introduced Dφ = D/u2. This angular diffusivity sets the
characteristic timescale for changing orientation τφ = 1/Dφ .

The corresponding Fokker-Planck equation for the above equa-
tions take the form

∂tΨ(x,y,φ ,t)+u∂α [P̂α Ψ(x,y,φ ,t)] = Dφ ∂
2
φ Ψ(x,y,φ ,t) (14)

where the second term is the self-advection due to the propulsion
mechanism, and the term on the right-hand side is the angular
diffusive term originating in the noise in the direction of motion.
From the Fokker-Planck equation for the density Ψ one can derive
equations of motion for expectation values through

∂t⟨ f (x⃗, v⃗)⟩ = ∫ dx⃗dφ f (x⃗, v⃗)∂tΨ(x⃗,φ ,t) (15)

Using Eq. (14), one has the coupled equations

∂t⟨r2⟩ = 2⟨uP̂α xα ⟩ (16)

∂t⟨uP̂α xα ⟩ = u2−Dφ ⟨uP̂α xα ⟩ (17)

This set of equations may be solved analytically for the mean
square displacement, resulting in an effective late-time diffusion
coefficient

Deff ≡ lim
t→∞

1
2

∂t⟨r2⟩ = u2

Dφ

(18)

This implies a linear mean square displacement with ⟨r2⟩ = 2Defft.
This well-known result for ABPs is in part what we want to gen-
eralize to active particles in heterogeneous frictional landscapes.

2.2 Heterogeneous case

In disordered media, the energy depot model (Eqs. (2)-(3)) does
not simplify in a similar way to the homogeneous case. The
simplest example of an heterogeneous medium is a regular and
periodic landscape, such as those synthetically manufactured as
sketched in Fig.(1). We consider a periodic system of size L with
friction coefficient

γ(x,y)
γ0

= 1+ 1
2

cos(k
2πx

L
)cos(k

2πy
L

) (19)

where k is the wavenumber. The characteristic length scale of
this media is ` = L/k. Averaged over the media, the mean speed
of the particle is still

√
q/γ0, and hence a characteristic time scale

for motion through the medium can be set to τS = `
√

γ0/q. When
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Fig. 3 Mean-square displacements (dashed colored lines) obtained by
integrating the energy-depot equations Eq. (1) with γ ∼ rβ , compared
to the predicted scaling from the fast-relaxation model (solid black line).
Parameters used: d2 = 1,q = 1/2,kBT = 1,γ0 = 0.1. Ensemble averages are
taken over 2000 particles.

compared to the time scale for internal relaxation τI we have

τI

τS
= 2
`d2

√
γ0

q
(20)

When τI is very small compared to τS the particle is able to adapt
very quickly to the environment. In this limit one can expect
that the system reaches the stable fixed point of the homoge-
neous deterministic system before the environment has had time
to change considerably. We call this the fast relaxation approxi-
mation. In this regime the self-propulsion speed is well approx-
imated by its fixed-point value u(t) =

√
q/γ(x⃗(t)). This limit is

for example obtained if d2 is very large, meaning that the parti-
cle is able to quickly convert internal energy into kinetic motion.
τI is also small in the case where ` becomes large, or equiva-
lently the wavenumber of the medium in Eq.(19) becomes small.
Fig. (2) shows the phase space behavior for both small and larger
wavenumber, showing how the particles dynamics. In upcoming
sections we investigate the τI ≪ τS case separately, before consid-
ering a strongly disordered landscape where both short and long
wavelength frictional modes are present.

3 Fast-relaxation approximation
We now consider the full stochastic dynamics associated with the
fast relaxation approximation introduced above. The simple over-
damped stochastic dynamics of Eq. (12) has been used with much
success to model active Brownian particles in both trivial and non-
trivial environments, like media with obstacles or scatterers. In
the fast relaxation approximation, it makes sense to consider the
Langevin description

ẋα = u(x,y)P̂α (21)

φ̇ =
√

2Dφ ξ(t) (22)

where u(x,y) =
√

q/γ(x,y). Here we do not consider rotational
drag or the effect of viscosity gradients on the length scale of the
particle diameter, which may introduce additional torques which
could be important for larger diameter particles.

Fig. 4 Self-propulsion speed distribution obtained through averaging over
random initial conditions in a quenched disordered landscape. Parameters
used are q = 2,γ0 = 0.2,d2 = 6 with disorder strength amplitude a shown
in the figure. Solid lines show Gaussian best fits. Note that the average
value is close to

√

q/γ0. Figure E shows the standard deviations as a
function of disorder strength, displaying a linear relation.

The Langevin description in Eq.(21) has the Fokker-Planck
equation

∂tΨ+∂α [u(x⃗)P̂α(φ)Ψ] = Dφ ∂
2
φ Ψ (23)

A set of equations analogous to those in Eq. (16) can be obtained
under the assumption of a slowly varying frictional landscape:

∂t⟨r2⟩ = 2⟨u(x⃗)P̂α xα ⟩ (24)

∂t⟨u(x⃗)P̂α xα ⟩ = ⟨u2(x⃗)⟩−Dφ ⟨u(x⃗)P̂α xα ⟩ (25)

In the case of homogeneous speed u the quadratic term above
raises no problems, but here it may have a non-trivial temporal
behavior. Multiplying Eq. (25) with eDφ t and using the inverse
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product rule one finds

∂t (⟨u(x⃗)P̂α xα ⟩eDφ t) = ⟨u2(x⃗)⟩eDφ t (26)

Integration results in

⟨u(x⃗)P̂α xα ⟩ = e−t/τφ ∫
t

0
ds⟨u2(x⃗(s))⟩es/τφ (27)

If the implicit time dependence of the u2 factor is much slower
than exponential we can extract the late-time behavior as

⟨u(x⃗)P̂α xα ⟩ ∼ ⟨u2(x⃗)⟩e−t/τφ ∫
t
dses/τφ (28)

This results in ⟨u(x⃗)P̂α xα ⟩ = τφ ⟨u2(x⃗)⟩, which in turn implies for
the mean square displacement that

∂t⟨r2⟩ = 2τφ ⟨ q
γ(x⃗)⟩ (29)

Clearly the homogeneous result is re-obtained in the case of a
constant SPS, while now there may be non-trivial temporal de-
pendencies coming from ⟨u2(x⃗)⟩.

Various cases could now be considered. For example, in the
case where the friction is a bounded function γmin ≤ γ(x⃗) ≤ γmax

one can obtain bounds for the effective diffusivity rather trivially
by inserting the bounds into the above equation. The unbounded
case, however, is more interesting.

Consider a power-law medium γ = γ0rβ . This case has
been much studied in the passive case, and has been used to
model transport on fractals and other complex geometric struc-
tures20–22. Under the moment closure approximation ⟨r−β ⟩ =
K⟨r2⟩−β/2, where K is some combinatorial factor that depends on
the details of the closure scheme, one can integrate the equation
for the mean square displacement, resulting in

⟨r2⟩ ∼ t
2

2+β (30)

This is exactly the same anomalous diffusion behavior that is
found for passive Brownian particles in similar viscosity land-
scapes23. At this point one should note that the prediction from
this fast-relaxation model is not immediately clear from looking
the full energy depot model in Eq. (2-3). The generalized fric-
tion term γ(x⃗)−d2ε(t) may have a wide range of behaviors, since
while the spatial friction grows in an unbounded way the internal
energy storage also has no bounds in this model, and the particle
will keep taking up energy leading to a diverging ε(t) as well.

Fig. (3) shows the mean square displacement for an active par-
ticle with internal energy depot moving in a power-law medium
γ(x,y) ∼ rβ with β = 1/2,1,3/2,2. The fast-relaxation calculations
predict a diffusion exponent of 2/(2+β), which in the figure are
shown in solid lines.

4 Disordered frictional media

So far we have studied the fast-relaxation limit where the par-
ticles respond instantly to the surrounding medium. We now
consider the opposite extreme, where a rapidly changing random
medium causes the particle to change its dynamics before it has

time to relax internally. We consider the deterministic dynamics
again, as we did previously for a single wavelength viscosity, and
focus on the randomness originating in a random medium rather
than thermal noise.

Fig. 5 A) Dependence of distributions on friction parameter γ0.B) Mean
value follows the curve

√

q/γ0 =
√

q/⟨γ⟩. Parameters used: q = 2,d2 =

6,a = 0.5.

To model a strongly disordered landscape, we consider a pe-
riodic system of length L and write the friction coefficient as a
random Fourier series in the form

γ(x,y)
γ0

=1+aF(x,y), (31)

F(x,y) =∑
m

[am cos( kmx
L

)+bm sin( kmx
L

)] (32)

×[cm cos( k′my
L

)+dm sin( k′my
L

)]

where {am,bm,cm,dm} are Gaussian random variables with zero
mean and unit variance and {km,k′m} and integer uniform random
variables. The dimensionless parameter a ∈ (0,1) is the disorder
strength.

In simulations, particles are initialized with random initial di-
rection of motion with (x,y) = (0,0). The energy depot equa-
tions Eq. (2-3) are integrated for 2000 particles and their
self-propulsion speeds are sampled. In practice, the random
wavenumbers together with L and the number of terms in the
sum in Eq. (31) should be chosen as to avoid a sparse sampling
of wavenumbers. Unless otherwise stated we use as a representa-
tive case km,k′m ∈ (0,50) with L = 5 and 70 random terms. Results
do not vary significantly with other representative choices of pa-
rameters.

In the disordered case where several random Fourier modes are
present, the self-propulsion speed fluctuates. First, we consider
the limit of weak disorder strength, where both a and the friction
strength γ0 are reasonably small. Fig. (4) shows the distribution
of self-propulsion speeds obtained by running ensemble averages
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over different particle initial conditions of the same quenched dis-
ordered media generated by Eq. (31). The resulting normal dis-
tributions have a standard deviation that grows linearly with the
disorder strength a, as shown in Fig. (4 E). Fig. (5) shows the de-
pendence of the mean self-propulsion speed with friction strength
γ0, showing a clear 1/√γ0 dependence.

In the limit of strong friction (γ0 ≫ 1), the mean approaches
zero and the Gaussian shape disappears and the probability distri-
bution function becomes skewed. Fig. (6) shows self-propulsion
speed distributions in this regime. The distributions in this regime
can for certain parameter choices (eg. Fig. (6 B)) appear to have
exponential tails, while for other choices (eg. Fig. (6 C)) the tail
is neither exponential nor power-law.

Fig. 6 In the limit of strong frictional forces, the distribution becomes
skew (A) before becoming monotonic (B, C). Insets show a single particle
phase-space trajectory. Parameters indicated in figure.

5 Discussion
To summarize, we considered the dynamics of non-interacting
active particles with internal energy depot and submersed in
quenched disordered landscapes. We show that in the fast-
relaxation approximation an equation of motion for the mean
square displacement can be derived, from which temporal scaling
can be extracted. For a power-law medium, the predicted anoma-
lous diffusion exponent agrees well with numerical findings and
is similar to that of passive Brownian motion.

In the case of a disordered landscape, the internal energy
and self-propulsion speed displays irregular behavior where the
phase-space trajectories are seemingly random. Distributions of
self-propulsion speeds are studied numerically in the case of de-
terministic dynamics, so to extract only the distribution resulting
from the landscape. In the regime of a small disorder strength

the simulations show that the self-propulsion speed distribution
is Gaussian with a standard deviation that increases linearly with
disorder strength. For stronger disorder the distribution becomes
more skew, such that, in the limit of very strong friction, the dis-
tributions become monotonically decreasing.

In future studies, several natural extensions could be investi-
gated. Collective effects are not included, and both steric and
alignment interactions could display anomalous behaviors when
compared to motion in homogeneous environments. Realistic en-
vironments will typically have both frictional disorder, or alter-
natively hard obstacles, in addition to spatially inhomogeneously
distributed nutrients. Such systems could be treated similarly as
here, while in these cases chemotaxis is likely play an important
role.
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