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Wetting and wrapping of a floating droplet by a thin elastic filament

S Ganga Prasath,†a,b Joel Marthelot,c, Narayanan Menond and Rama Govindarajan,a

We study the wetting of a thin elastic filament floating on a fluid surface by a droplet of another,
immiscible fluid. This quasi-2D experimental system is the lower-dimensional counterpart of the
wetting and wrapping of a droplet by an elastic sheet. The simplicity of this system allows us to
study the phenomenology of partial wetting and wrapping of the droplet by measuring angles of
contact as a function of the elasticity of the filament, the applied tension and the curvature of the
droplet. We find that a purely geometric theory gives a good description of the mechanical equilibria
in the system. The estimates of applied tension and tension in the filament obey an elastic version
of the Young-Laplace-Dupré relation. However, curvatures close to the contact line are not captured
by the geometric theory, possibly because of 3D effects at the contact line. We also find that when
a highly-bendable filament completely wraps the droplet, there is continuity of curvature at the
droplet-filament interface, leading to seamless wrapping as observed in a 3D droplet.

1 Introduction
The wetting properties of a drop on a rigid substrate determines
the angle of contact with the solid, known as the Young angle
of contact. However if the substrate is a soft solid1–5 or an un-
stretchable but thin film6–8, it can deform under the capillary
action of the drop. In the former case, the liquid-vapour surface
tension induces large localised stretching close to the contact line
while in the latter, the film bends without stretching, resulting in
large bending close to the contact-line. Due to the deformation of
the substrate under the localized force of the contact line, differ-
ent contact angles may be perceived at length scales correspond-
ing to the size of the drop, or the scale of the elastic stretching
or bending deformation. At any given scale, the contact angle
may deviate from the Young contact angle ϑY

9,10, and the mag-
nitude of this contact often has to be obtained from a global en-
ergy minimization rather than a simple local force balance7,11.
The anomalous contact-angle behaviour has implications rang-
ing from bio-locomotion12,13, micropatterning surfaces14, cargo
transport15,16 to creating hydrophobic fabric17.

We study a two-dimensional version of the wetting experiment
(as shown in fig. 1(a)) at an air-water interface, where the thin
sheet is replaced by a slender elastic filament and is wet by a
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nearly flat oil drop floating on the water interface. The three-
dimensional problem of a droplet of liquid on top of a floating
thin sheet was initially studied because the capillary forces at
the contact-line generate a radial wrinkling pattern6,7. However,
from the viewpoint of studying the contact angle, the wrinkles
are a hindrance, as they impede the measurement of the contact
angle and the deformation of the sheet close to the contact line
where there is large localised bending. In addition, imaging con-
tact angle both above and below the substrate is more complex
in the case of a 3D drop on a 2D sheet, and requires flipping the
drop5, or using a 3D imaging technique8. The 2D system we
consider here does not have the complications of wrinkles. In the
regime of wetting geometry where droplet size approaches the
size of the sheet, if the sheet is highly bendable then it can wrap
around the droplet and enclose it entirely16,18. Wrapping in 2D
can occur with smooth, isometric bending, unlike in 3D, thus the
2D filament-droplet system allows us to study phenomenon of
wrapping of the droplet by the filament more easily than in the
3D system.

We obtain the entire range of phenomena, from the Young con-
tact geometry, to large deviations from apparent Young contact, to
wrapping by two methods. The first of these is to tune the compe-
tition between the liquid-vapour surface tension, and the bending
rigidity of the sheet over the scale of the drop. This competition
is captured in a dimensionless parameter called the bendability,
which is the ratio of the droplet-size, w to the capillary-bending
length, lec which is the length scale at which bending and cap-
illary forces are similar in magnitude. Most studies19–24 are in
the regime where the bendability is O(1) while our experiments
are in the high-bendability limit. We achieve this limit by using
thin filaments and large droplet sizes. This guarantees a separa-
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Fig. 1 (a) Schematic of the experimental setup where a droplet of Mineral oil (orange) is placed in the vicinity of a floating thin elastic filament at
the air-water interface of a water bath. One end of the filament is connected to a soft beam (green) whose end displacement is used to measure
the applied tension To. Tension in our experiments is controlled by inducing in-plane displacement of the free end of the filament. (b) Variables of
interest are shown on top of an image from experiments : ϑ ,φ - angle made by the droplet with the buckled filament; To - applied boundary tension
and TI - tension in the droplet-wet region, γ - effective surface tension of the 2-D droplet along ‘contact-line’ as detailed in the article; Rd ,Rb - radius
of curvature of the free interface of droplet and the radius of curvature of the filament wet by droplet. The scale bar in the image is 5mm.

tion in scales between droplet size and capillary-bending length,
and the behaviour in this limit is dramatically different from that
in the low bendability limit7,16,18. The second method we use
to traverse these phases is to smoothly modify the rigidity of the
filament by varying the tension imposed on the filament. As we
will show in this article, when the filament is under large tension,
it does not deform under the capillary force of the droplet, and
Young scenario is recovered; when it is slack, then large deforma-
tion and wrapping can occur.

In the absence of tension, the sheet can undergo a budding
transition explored in the context of lipid membranes25,26. When
a large droplet of liquid is in contact with a lipid membrane, the
bending energy of the membrane can be neglected and in this
limit the membrane can change its shape to wrap the droplet com-
pletely. This transition is driven by competition between mem-
brane tension and the wetting property of the droplet, analogous
to the wrapping transition of an elastic sheet11. On the other
hand when an elastic nanoparticle or a vesicle27,28 is covered
by a lipid membrane, deformations of the vesicle can now cost
energy. When the adhesion energy between the membrane and
vesicle as well as the surface tension of the exposed vesicle are
varied, they can exhibit three phases: no wrapping, partial wrap-
ping, full-wrapping. Interestingly, in the limit of vanishing bend-
ing stiffness of the vesicle, the theory of Yu et al.27,28 coincides
with the calculation of Brau et al.11 for a 2-D elastic filament
wrapping a macroscopic droplet. In addition, Brau et al.11 pro-
vide predictions for the effects of finite tension, which we explore
in this article. Schulman et al.5 have studied the wetting of a
sheet under tension by a droplet, and use an expression for local
force balance to obtain a relation between the wetting angles and
tensions in the wet and unwet parts of the sheet. These expres-
sions become identical to those of Brau et al.11 in the limit of very
thin substrates. As we will describe later, the filaments we use are
of sufficiently high-bendability to apply these expressions.

As shown in fig. 1(b), we measure the contact angles ϑ ,φ of
a partially wetted filament as a function of applied tension. We
show in this paper that the contact angles exhibit a universal be-

haviour in the thin-filament limit which were not measured in
earlier work on the equivalent 3-D systems6–8. In the limit of in-
finite bendability, our results match well with a recent theory11,
with the effective surface tension of the 2-D droplet being the
only fitting parameter. Under large magnitudes of applied ten-
sion, the theory predicts that though φ and (ϑY −ϑ)→ 0, the ratio
(ϑY −ϑ)/φ asymptotes to 1/2. We measure this ratio in our exper-
iments and observe the trend predicted by the theory to hold true.
We also find that the applied tension and the tension in the buck-
led zone obey a force balance relation remarkably similar to the
Young-Laplace relation. This relation is shown by Brau et al.11 to
arise out of global energy minimisation. In the theory of vanishing
bending stiffness, the region close to the contact-line is of infinite
curvature. However, in the experiments the filament has a fi-
nite magnitude of curvature denoted by 1/Reb, an elasto-bending
scale; we study the variation of Reb with To, the applied boundary
tension. The effects of finite bendability here produce deviations
from the high-bendability theory. In the wrapped regime when
the filament length is less than the perimeter of the droplet, we
find that the filament forms part of a circle around the drop, un-
like a 3D wrapping experiment16 where the optimal wrapping
assumes the shape of a parachute or a mylar balloon resembles
a parachute. The circular shape ensures that there is no jump in
curvature at the interface between filament end and droplet in-
terface; this leads to seamless wrapping as observed in the case
of ultra-thin sheets18. On the other hand, for low-bendability fil-
aments, the radius of curvature of the droplet-interface diverges
as the ends of the filament approach each other.

2 Relevant variables

Four length scales govern the overall mechanics of the filament-
drop system. These are the diameter d of the filament, the droplet
radius w, the length of the filament L, the capillary-bending length
scale lec = (B/γ)1/3 with γ being the droplet-vapour surface ten-
sion, B the bending stiffness, given for a filament of circular cross-
section as: B = Eπd4/64, (E - Youngs’ modulus of filament mate-
rial). A fifth length scale arising out of stretching, lm = γ/E is irrel-
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Fig. 2 (a) Schematic of the soft beam attached to one end of the filament to measure tension in the filament with the relevant variables: ψ(s) -
angle between tangent and vertical; F̃ - non-dimensional force applied at beam’s end; σ - angle at which the force is applied; s - non-dimensional
arc-length; δx/l,δy/l - non-dimensional displacement along x,y-direction. Alongside is the image of the beam from the experiment superimposed
on the numerically-solved shape from eqn. 2. (b) Numerically computed displacement δy/l vs non-dimensional force, F̃ for three different σ values:
π/2,π/4,π/8. (c) Fluorescence intensity along two radial lines, indicating the height profile of the droplet from the side view, one close to the
contact-line of PDMS filament and one far from it (shown schematically in the inset). This indicates that the presence of the filament does not distort
the 3D height profile of the drop, except perhaps very close to the 4-phase contact region as shown in close-up top-view image (d) where we see 3-D
effects appear as the droplet becomes thin near the contact line, seen as a region of wet zone with large changes in interface curvature. The scale bar
in the image is 2.5mm.

evant in our experiments because lm = 0.03µm� d ≈ O(10µm).
Moreover we are interested in a high-bendability regime where
the size of droplet is much larger than the capillary-bending
length scale, w� lec. The non-dimensional quantity that indi-
cates this scale separation is the bendability: ε−1 = (w/lec)

2.

By varying these length-scales and the applied tension we can
explore the phases of the filament-drop phase diagram. The axes
of the diagram are three non-dimensional quantities constructed
from these variables:

T̃ = To/(γd), ε
−1 = (w/lec)

2, Φ = (L/w). (1)

Here To is the applied tension at the boundary, as seen in fig. 1(b);
T̃ is the non-dimensional applied tension; Φ the ratio of filament
length L to droplet radius w. In the partially wet regime we main-
tain the limit: ε−1� 1,Φ� 2π. In the second part of the article
we explore the other regime of ε−1� 1,Φ≤ 2π to understand the
wrapping mechanism.

3 Experimental set-up

Our experiment consists of a thin elastic filament floating at air-
water interface, placed in contact with a floating oil droplet as
shown in fig. 1(a). One end of the filament is attached to a trans-
lation stage and the other end to a beam made out of a soft elastic
material (Vinyl polysiloxane). We control the tension in the fila-
ment by moving the beam. As described in detail later, the float-
ing droplet is flattened by gravity and so behaves approximately
like a two-dimensional object. We define the contact angles ϑ and
φ in the plane of the air-water interface (see fig. 1(b)). The con-
tact angle of the droplet is a scale dependent quantity and here
we measure them at the scale of the size of the droplet. The ef-
fective surface tension of this 2-D droplet is the line tension of the
droplet at the air-water interface. In the partially-wrapped state
we vary the size of the droplet, diameter of the filament and the
applied boundary tension, while in the wrapping experiments, we

vary the droplet size for various filament diameters. These param-
eters help us explore different high-bendability morphologies of
the filament. We image the filament shape and measure the cur-
vature of the filament close to contact-line of the droplet. Near
full wrapping, we use fluorescence imaging to accurately capture
the shape of the filament. This allows us to calculate the radius
of curvature of the filament and that of the droplet as a function
of its bendability.

Making filaments

The thin filaments used in our experiments are made out of Poly-
dimethylsiloxane (PDMS) using a mixture of PDMS base, accel-
erator and cross-linker (Sylgard 184, Dow Corning) in the ratio
(10:2:1) at room temperature, and as the mixture begins to set,
we take a droplet of this mixture and pull it using a tweezer to cre-
ate a thin long thread which then sets. We measured the Young’s
modulus of the resulting material to be E = 1MPa. We make fila-
ments whose diameter d varies between 80µm−200µm and with
length, L = 1000d.

Measuring tension

The capillary forces originate from surface tensions that
are ∼ 10mN/m, and they act on filaments ∼ 100µm in diame-
ter, resulting in forces of O(µN) in magnitude; this demands a
sensitive force sensor. We clamp a long, soft beam at one end to
a translation stage and attach the filament at its other end. This
is shown schematically in fig. 1(a). The soft beam is made of
Vinyl polysiloxane (VPS) and has a diameter of 0.5mm, length of
l = 6cm and Young’s modulus of Es = 200kPa. When the transla-
tional stage is displaced the beam bends and we track the tip of
the soft beam at the end attached to the filament. The standard
small deflection approximation gives the dependence of force on
displacement as: F ≈ 3Bsδx/l3 where Bs is the bending stiffness
of soft beam, given by Bs = Esπt4/4, t - beam diameter, δx - hori-
zontal displacement, l - length of soft-beam as shown in fig. 2(a).
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Fig. 3 (a) Measured values of ϑ and φ from experiments for different bendability values of the drop-filament system. For the filament diameter 205µm,
we choose four different droplet sizes: 12.7mm,13.8mm,18.0mm,20.2mm shown using ◦. Similar angles ϑ and φ measured for a filament of diameter
77µm and three different droplet sizes : 10.6mm,14.2mm,16.6mm plotted as ♦. We see a clear collapse of all the data indicating a universal behaviour
of perceived contact angle in the high-bendability limit, with solid line being eqns. 3, 4 for ϑY = 115◦ (corresponding to the thick filament) and dashed
line for ϑY = 125◦. The point where ϑ ,φ intersect is where T̃ = 2T̃c, which in our experiments give Tc/d = 2.2mN/m, from γ = 7.6mN/m,ϑY = 115◦.
(b) Computed values of (ϑY −ϑ)/φ in experiments (symbols) compared to the theoretical predictions from eqns. 3, 4 which approach a value of 1/2
at large tensions. ◦ corresponds to the thicker and ♦ to the thinner of the filaments. (i)− (iv) show the experimental shapes of filament-drop system
as the tension in the filament is decreased. Scale bar in (i) is 5mm.

However, for the range of tension we are interested in, we re-
quire the solution to the full non-linear beam equation. Here, un-
like in the small displacement limit, the displacement in the ver-
tical direction of the beam, δy cannot be neglected and for large
tensions the displacement in this direction is sensitive to applied
tension as shown in fig. 2(b). Furthermore, the angle between
the end of the filament and the initial configuration changes as a
function of tension creating an angle σ . We measure σ , δx, δy for
each tension value in the experiments. We then find solutions to
the non-linear problem given by:

ψ
′′(s)+ F̃ cosσ sinψ(s)+ F̃ sinσ cosψ(s) =0, (2)

where ψ is the angle between the tangent to the beam and ver-
tical (see fig.2(a)), s the non-dimensional arc-length along beam
(non-dimensionalised using l) with s = 0 indicating the fixed end
and s = 1 is the end connected to the elastic filament. F̃ = Fl2/Bs

is the non-dimensional applied force. We solve this system numer-
ically using a shooting method29 under the boundary conditions:
ψ(0) = 0, and ψ ′(1) = 0. From the solution for different values of
F̃ for a given σ we look for the F̃ that corresponds to the mea-
sured δx/l and δy/l, which is the required quantity to compute
To. This procedure is executed for all displacements and we show
in fig. 2(a) that the computed shape (green line) matches well
with the experimentally observed shape (gray line).

Droplet and scale separation

We use mineral oil of density 0.86 g/mL for the droplets. The oil
is dyed with Sudan red G, a hydrophobic, water-insoluble dye.
This captures the shape of the droplet precisely as we image it
under uniform light. The oil droplet is a three-dimensional ob-
ject with three length-scales relevant at different regions of the
droplet. These are w - radius of droplet, d - diameter of filament,
lc - capillary length. The droplet size w is the largest of these
length-scales, d is relevant close to the region where the droplet
is in contact with filament and lc in the curved region approaching
air-water interface. For large droplets, gravity ensures a uniform
thickness ∼ lc and if we work with small-d filaments, then we are
in a scale separated regime given by: d� lc�w. Furthermore the
quantities of interest in our experiments ϑ and φ , are the macro-
scopic angles and not the microscopic wetting angle. We ensure
this separation by choosing w in the range 0.5cm− 2cm with the
capillary length of Mineral oil lc = 1.8mm and d = 80µm−200µm.
In fig. 2(c) we plot the droplet surface profile close to filament
contact line, and far from it, to show that the shape of the droplet
is not strongly perturbed in the thin direction by the presence of
the filament and thus the 2-D approximation is valid.∗

∗We do not explore here in detail the question of why the filament chooses to sit
at the three phase contact line instead of passing undeviated over or under the
drop. Possibly the bending energy lost in curving around the drop is more than
compensated by the oil-air and water-air interface protected by the filament.
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Visualising filament

In order to visualise the filaments in our wrapping experiments
we wet the filament in a solution of Nile Red in ethanol and allow
the ethanol to evaporate. We leave the droplet uncoloured and
shine a laser beam (WICKED LASER, 500mW at 500nm) on the
filament. The filament fluoresces in the red, and a filter is used
to eliminate the green illumination line. Though Nile Red is a
hydrophobic dye and diffuses into mineral oil at long timescale,
our experiments were performed before the dye diffuses into the
droplet.

Highlights of theory

We make comparisons to a theory of a 2-D drop-on-sheet problem
i.e., a drop modelled as a cylinder sitting on top of an inextensi-
ble rectangular sheet, in the infinite-bendability limit5,11. This
involves minimising the total surface energy of the system, with
contributions from liquid-vapour, liquid-solid, and solid-vapour
interfaces. The analysis reduces to a purely geometric question
with contact angle, ϑY and applied tension, T̃ being the relevant
parameters. Given these parameters, the complete shape of the
droplet and sheet is predicted, for a fixed area of droplet. The
expressions for the angles ϑ ,φ are given by11:

cosϑ =
(1+2T̃ cosϑY − cos2 ϑY )

2T̃
, (3)

cosφ =
(1− cosϑY /T̃ +(cos2 ϑY −1)/2T̃ 2)

1− cosϑY /T̃
. (4)

The critical tension is determined from the criterion for the valid-
ity of the above expressions i.e. 0 ≤ ϑ ,φ ≤ π from which we get
T̃c = cos2(ϑY /2). This is precisely the transition from a partially
wet state where only a part of the drop boundary is covered by
the sheet, to a wrapped state where the droplet boundary is com-
pletely encapsulated. Interestingly the tension at which ϑ = φ

occurs at T̃ = 2T̃c. We will use the critical tension, T̃c to measure
the unknown line tension γ in our experiments.

4 Results

Contact angle and critical wrapping tension

In fig. 3(a) we plot ϑ ,φ as functions of T̃ , scaled by the critical ten-
sion for wrapping, T̃c. We show data for filaments of two different
diameters, 77µm and 205µm. The data were taken by varying the
tension while holding the drop size fixed. The drop size was then
varied in the range 10.6mm−20.2mm. These two filament diam-
eters and the different droplet sizes helped us span bendability
values between ε−1 = 80− 1920. In order to compute the bend-
ability ε−1 = (w/lec)

2 of the droplet-filament system, we need the
line-tension of the oil droplet. To obtain γ, we note in fig. 3(a)
that as the magnitude of tension increases there is a crossover in
magnitude between φ and ϑ . From the infinite bendability the-
ory we expect this cross-over to happen at T̃/T̃c = 2 (see eqns. 3
& 4). In order to match this cross-over point in experiments, γ is
the only fitting parameter. We find that all the data collapse with
the analytical expression in fig. 3(a) for γ = 7.6mN/m. To extract
ϑY we measure the contact angle for T̃ � T̃c. For this surface ten-

Fig. 4 (a) Non-dimensional applied tension T̃o, (b) tension in the portion
of the filament wet by the droplet T̃I , and (c) the difference between
these tension values, (T̃o− T̃I) evaluated by using angles ϑ ,φ measured
from experiments (using eqn. 5) as functions of the applied tension,
T̃ measured using soft-beam displacement. ◦ correspond to filament
diameter 205µm and ♦ to diameter 77µm for different droplet sizes. The
solid and dashed lines respectively indicate theoretical predictions from
eqn. 6.

sion γ, we find Tc/d = 2.2mN/m when ϑY = 115◦ for the thicker
filament and Tc/d = 1.6mN/m when ϑY = 125◦ for the thinner fil-
ament. Now for T̃ � cos2(ϑY /2) we can expand the eqs. 3, 4 to
get

φ ≈ 2sinϑY

T̃
, ϑY −ϑ ≈ sinϑY

T̃
. (5)

From this it is easy to see that for applied tension, T̃ � 1, the
asymptotic value of the function (ϑY −ϑ)/φ → 1/2. Using the
measured values of ϑ ,φ and ϑY in our experiments, we compute
(ϑY −ϑ)/φ as shown in fig. 3(b). The trend predicted by the ana-
lytical expression is captured, though the data are noisier at large
tensions due to finite precision in the measurement of φ when its
magnitude approaches zero. In the model of Brau et. al.11 the
normalized internal stresses are related to geometric variables ϑ

and φ alone through the expressions

T̃I =
sinϑ

sinφ
, T̃o =

sin(ϑ +φ)

sinφ
. (6)

These expressions are derived by using the relation that the
tension in the buckled zone is given by TI/(dRb) = γ/Rd where
Rb,Rd are the radius of buckled zone of sheet and the radius of
the droplet interface. Now the ratio T̃I = TI/(dγ) = Rb/Rd can be
written in terms of ϑ ,φ . The expression for T̃o on the other hand is
derived by minimising the total energy of the system as detailed
in the previous section. In fig. 4(a) we compare the boundary
tension T̃o computed from ϑ ,φ and eqn. 6 and the direct mea-
surement of tension using the deflection of the soft beam-T̃ . We
next compare in fig. 4(b) experimental data for T̃I , the stress in
the buckled zone obtained from the measured contact angles, to
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the analytical expression for T̃I for two different ϑY = 115◦,125◦

corresponding to the thick and thin filament. The jump in the
magnitude of tension at the contact line is proportional to the
equilibrium contact-angle ϑY and is given by:

(T̃o− T̃I) = cosϑY , (7)

which is the equivalent of the Young-Laplace-Dupré relation for
elastic filaments or sheets. In fig. 4(c) we compare the difference
(T̃o− T̃I) as a function of applied tension T̃ and see that it remains
constant, close to the value cosϑY , predicted by theory. There is a
reasonable match between experiments and the above expression
6 with the biggest deviations at small tensions.

Close to the contact-line

The angles and tensions measured in the previous section were
compared with an infinite-bendability theoretical model. In this
section, we explore quantities that reflect more obviously the fi-
nite bendability of the filaments. In the infinite-bendability pre-
diction, the filament is buckled into a circle of radius Rb where it
is in contact with the droplet, and straight elsewhere with a sharp
cusp connecting the straight region and the wetted region. How-
ever, finite bendability introduces finite curvature, 1/Reb, in this
transition zone close to the contact line.

We measure 1/Reb as a function of applied tension, T̃ for three
different droplet sizes (w = 6.2mm,7.6mm,9.4mm) as shown in
fig. 5(c). To image the filament shape near the droplet, we dye
the filament (and not the droplet as in the previous section) with
Sudan Red G and illuminate with a uniform white light source.
After extracting the filament shape, we do a B-Spline curve fit to
the filament shape and calculate the signed curvature as a func-
tion of filament arc length as shown in fig. 5(b). The three shapes
in fig. 5(a) correspond to three different tensions in decreasing
magnitude for a fixed droplet size of w = 6.2mm. We identify the
maximum value of curvature max(κ(s)) with 1/Reb and the min-
imum value, min(κ(s)) with 1/Rb. We find that both curvatures
decrease with increasing outer tension To as shown in fig. 5(c,d).

The curvature 1/Rb of the buckled part of the filament may be
estimated in terms of the 2D Laplace pressure of the free surface
of the droplet. We can relate Rb as a function of T̃o using the
expression for area as

πw2/R2
b =

sin2
φ(ϑ − sin(2θ)/2)+ sin2

ϑ(φ − sin(2φ)/2)
sin2

ϑ
, (8)

where ϑ ,φ are related to tension under eq. 3, 4. The length-
scale Reb close to the contact line can be estimated from balanc-
ing bending forces and tension in the filament. In an idealized
2D situation, the tension jumps across the contact line resulting
in a change in curvature from ε−1/2T̃−1/2

I in the region wet by the

droplet to ε−1/2T̃−1/2
o outside. The experimental data for w/Reb

in fig. 5(c) do not clearly show the T̃−1/2
I trend (dashed line),

and are perhaps closer to T̃−1
o (solid line). There are three major

differences between the experiment and the model: one is that
the filament bendability ranges from 74-190, whereas the model
assumes large bendability; this leads to poor scale-separation be-
tween Reb and Rb. A second respect in which the experiment

Fig. 5 (a) Three different filament shapes extracted from experi-
ments as the applied tension To is decreased for a fixed droplet size
of w = 6.2mm and filament diameter d = 120µm. (b) Corresponding
signed curvature, κ(s) of shapes in (a) computed as a function of
non-dimensional arc length s (scaled using filament length) after fit-
ting Bezier spline to the extracted shapes. 1/Reb,1/Rb correspond to
maximum and minimum of κ(s). (c) The non-dimensional curvature of
transition-zone close to the contact-line between filament and droplet,
w/Reb and (d) the non-dimensional curvature of the droplet wet part
of filament, w/Rb as a function of non-dimensional boundary tension
T̃o for a filament of diameter d = 120µm for three different droplet
sizes w = 6.2mm(4),7.6mm(◦),9.4mm(�) and several values of To, non-
dimensionalised using an estimate of γ = 5mN/m. The corresponding
bendability values are ε−1 = 49,72,125. The solid line in (c) corresponds
to T̃−1

o and the dashed line is T̃−1/2
o while the solid line in (d) corresponds

to the complete expression for T̃o using eq. 8 for ε = 0.

is non-ideal is that the meniscus near the contact line is fully
3-dimensional, as shown in fig. 2(d). Lastly the theoretical es-
timates also assume fixed area of the droplet while in the ex-
periments a fixed volume of droplet is maintained as the tension
is varied. In this process the projected area does vary, however
there is only 5% change in area over the range of tensions in the
experiment.

Wrapping process

In order to emulate the process of complete wrapping of the
droplet, we adopt the following procedure. A freely floating fil-
ament is brought into contact with a floating droplet such that
Φ < 2π and the droplet size is reduced until the ends of the fil-
ament come close to touching. We extract the shape of the fil-
ament from fluorescence images such as in fig. 6(a). This pro-
cedure is followed for three different filament diameters, d =

80µm,90µm,170µm. The parameters Rd and Rb, the radius of
curvature of the droplet-water interface and radius of curvature
of the buckled zone describe the geometry of the droplet-filament
system. In the high-bendability limit, as we shall see, these are
enough to describe the system’s entire shape.
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First, we observe that the thinnest filament has a constant cur-
vature along the length as shown in fig. 6(a). This radius of cur-
vature matches that of the droplet interface radius of curvature,
Rd plotted in fig. 6(c) corresponding to open triangles (4), where
the solid line indicates Rd = Rb. As the droplet size decreases the
buckling radius decreases as does the droplet interface radius.
However the thickest filament corresponding to open circles (◦)
shows a deviation from the straight line hinting that the interface
becomes flatter before the ends come in contact. This divergence
is a low-bendability effect which does not exist for the thinnest
filament as seen in fig. 6(b).

Second, in the high-bendability limit the shape of the filament
is part of a circle which is in contrast with the behaviour of an ax-
isymmetric sheet seen in Paulsen et al.16 where the solution is not
part of a sphere but resembles that of parachute. This difference
comes about from geometric constraints of area being preserved
in inextensible sheets where it is the length that is preserved in
filaments. From the force-balance equation we have:

B
[

κ̈(s)+
κ3(s)

2

]
−Toκ(s) =− γ

w
(9)

where κ(s) is the curvature along the filament. Now in the high-
bendability limit the dominant balance comes from tension in fila-
ment and droplet surface tension, γ. However since To≈ γ this im-
plies κ ≈ w−1. The partially wrapped circular droplet now obeys
the Young-Laplace relation over free interface of the droplet and
the elastic Young-Laplace relation in eq. 7 over the filament. We
see that w determines the entire shape of the filament-droplet sys-
tem, independent of any physical parameters in the system, just
as in the unwrapping scenario. The seamless wrappings of drops
within sheets seen in Kumar et al.18 must be a consequence of
the continuity of curvature at the sheet-droplet boundary, as we
observe in the case of filaments. This is in stark contrast with
the capillary origami19, where the wrapped state of the origami
presents openings with pointed ends because ε−1 ∼ O(1).

5 Conclusion

The two dimensional experimental system developed here to
study capillary bending and wrapping illuminates some features
of its three dimensional counterpart. We have shown that contact
angles and critical wrapping tension of the filament can be de-
scribed by an infinite bendability theoretical model5,11 and have
also characterized the finite bendability effect close to the contact
line. The tension inside the wetted region and the applied tension
obey the predicted elastic version of the Young-Laplace-Dupré re-
lation. However, some features of the experimental system, such
as the 3D geometry of the drop near the contact line, affect the
comparison with the purely 2D model. In our experiments, the
line tension of the droplet at the air water interface was a fitting
parameter and the physical mechanism behind this effective sur-
face tension need further probing. The 2-D system also provides
a venue to further explore different phases in the phase-diagram
of Brau et al.11 such as the partially wrapped and the completely
wrapped phase.

Fig. 6 (a,b) Fluorescence images showing shape of filament encapsulating
the droplet for a filament of diameter d = 90µm,170µm and a droplet of
size w = 7.5mm,2.3mm with droplet-interface shown as dashed-line. The
scale bar is 3.7mm. (c) Radius of curvature of the buckled zone in the
filament, Rb vs the radius of curvature of free interface of the droplet, Rd
in mm. Solid line indicates Rb = Rd . We consider three different filament
diameters d = 80µm(4),90µm(�),170µm(◦).
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