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Deep learning for characterizing the self-assembly of three-
dimensional colloidal systems

Jared O’Leary,a Runfang Mao,b Evan J. Pretti,b Joel A. Paulson,c Jeetain Mittal,∗b and Ali
Mesbah∗a

Creating a systematic framework to characterize the structural states of colloidal self-assembly sys-
tems is crucial for unraveling the fundamental understanding of these systems’ stochastic and non-
linear behavior. The most accurate characterization methods create high-dimensional neighborhood
graphs that may not provide useful information about structures unless these are well-defined ref-
erence crystalline structures. Dimensionality reduction methods are thus required to translate the
neighborhood graphs into a low-dimensional space that can be easily interpreted and used to charac-
terize non-reference structures. We investigate a framework for colloidal system state characteriza-
tion that employs deep learning methods to reduce the dimensionality of neighborhood graphs. The
framework next uses agglomerative hierarchical clustering techniques to partition the low-dimensional
space and assign physically meaningful classifications to the resulting partitions. We first demon-
strate the proposed colloidal self-assembly state characterization framework on a three-dimensional
in-silico system of 500 multi-flavored colloids that self-assemble under isothermal conditions. We
next investigate the generalizability of the characterization framework by applying the framework to
several independent self-assembly trajectories, including a three-dimensional in-silico system of 2052
colloidal particles that undergo evaporation-induced self-assembly.

1 Introduction
Colloidal self-assembly (SA) is the process by which particles
in solution spontaneously organize into an ordered structure1.
The spontaneous self-organization central to SA enables “bottom-
up” materials synthesis, which would allow for manufacturing
advanced, highly ordered crystalline structures with up to sub-
nanometer precision in an inherently parallelizable and cost-
effective manner. Thus, colloidal SA can create new avenues for
highly scalable, economical manufacturing of novel metamateri-
als with unique optical, electrical, or mechanical properties1–6.
Creating a systematic framework to characterize the states of col-
loidal SA systems is crucial for unraveling our fundamental un-
derstanding of the stochastic and nonlinear behavior of these sys-
tems.

The most common method to characterize the colloidal SA
system state is Steinhardt bond order parameters7,8, which use
spherical harmonic basis functions to evaluate the symmetry of
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a particle’s neighbors. However, Steinhardt bond order param-
eters are extremely sensitive to thermal fluctuations that smear
local bond order into broad overlapping distributions and inter-
fere with the ability to resolve the character of small domains.
Other commonly used methods include Common Neighbor Analy-
sis (CNA)9,10, Polyhedral Template Matching (PTM)11, and Bond
Angle Analysis (BAA)12. CNA and PTM evaluate the topology
of each particle’s nearest neighbors to generate neighborhood
graphs that describe a given particle’s local structure, while BAA
evaluates the symmetry of each particle’s nearest neighbors to
create neighborhood graphs. These methods, however, fail to
provide quantitative information about particles whose topolo-
gies or symmetries do not correspond to well-defined reference
crystalline structures13. The high-dimensional, discrete nature of
these neighborhood graphs prevents intuitive understanding of
how these graphs are related and dimensionality reduction meth-
ods are thus required to translate the neighborhood graphs into
a (continuous) low-dimensional space that can be easily inter-
preted and used to characterize non-reference structures.

The current state-of-the-art method for colloidal system state
characterization accomplishes dimensionality reduction by imple-
menting diffusion maps13–23. However, diffusion maps are com-
putationally expensive to implement. In fact, the most recent
implementations of diffusion maps require the choice of (arbi-
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trarily chosen) “landmark points” to reduce the size of the high-
dimensional space before dimensionality reduction takes place.
Diffusion maps further do not provide an explicit functional map-
ping between the high and low-dimensional spaces, thereby, lim-
iting physical interpretation of the low-dimensional space.

Several other researchers have implemented different varieties
of “machine learning” for dimensionality reduction and/or classi-
fication of colloidal structures. For example, refs. 24, 25 imple-
ment principal component analysis (PCA) to detect phase tran-
sitions in off-lattice systems. PCA, however, is not designed to
reduce the dimensionality of variables with highly nonlinear re-
lationships among one another26. On the other hand, ref. 27
uses a combination of Gaussian Mixture Models and shallow ar-
tificial neural networks to identify the overall crystal structures
of bulk self-assembled systems. However, this work does not ex-
plicitly employ machine learning techniques for dimensionality
reduction and instead investigates the learning techniques’ ability
to create and interpret large neighborhood graphs.

The overarching goal of this work is to develop a characteri-
zation framework for investigating the stochastic and nonlinear
dynamics of entire SA trajectories (as opposed to merely charac-
terizing individual lattices). We thus propose an alternative ap-
proach to dimensionality reduction based on a deep neural net-
work called an autoencoder28,29. Autoencoders are easy to im-
plement with available tools and cheap to evaluate. The compu-
tational efficiency allows autoencoders to simultaneously reduce
the dimensionality of the thousands of neighborhood graphs that
can appear during SA, an operation which would likely be in-
tractable for diffusion maps. The nonlinear activation functions
within deep neural networks also allow the autoencoder to ex-
plicitly account for the nonlinear relationships among the diverse
neighborhood graphs that may appear during SA. Autoencoders
further provide an explicit mapping between the low- and high-
dimensional spaces, elucidating which of the high-dimensional
inputs are the most “important” for the system under analysis.

We note that Boattini et al. previously applied autoencoders
based on shallow neural networks for dimensionality reduction
and subsequent classification of colloidal systems30. However,
their approach creates neighborhood graphs using a vector of only
8 Steinhardt order parameters. We instead create neighborhood
graphs via a well-established methodology based on Delaunay tri-
angulation and graphlet decomposition15,31–34. This methodol-
ogy is much less sensitive to thermal fluctuations and has also
been shown to quantify detailed colloidal lattice configurations
by Reinhart et al.. Our deep neural network-based autoencoders
further employ dropout regularization to prevent model overfit-
ting and achieve continuity in the low-dimensional space. We
finally note that Boattini et al. primarily focused on classifying in-
dividual lattices whereas the focus of this work is to study entire
SA trajectories.

We propose a three-step framework for colloidal system state
characterization (see Fig. 1). The first step establishes neighbor-
hood graphs with a precise methodology that has been shown to
be robust to thermal fluctuations and capable of describing com-
plex topologies15,31–34. The second step uses deep learning tech-
niques to reduce the dimensionality of the neighborhood graphs.

The third step employs agglomerative hierarchical clustering to
partition the low-dimensional space and assign physically mean-
ingful classifications to the resulting partitions.

We demonstrate the proposed three-step colloidal system state
classification framework on a three-dimensional in-silico system
of 500 DNA-functionalized multiflavored colloidal particles (i.e.,
silica colloids that are coated with blends of complementary sin-
gle strands of DNA)35–38 that self-assemble into a variety of FCC,
HCP, and BCC-like lattices. We also examine the generalizabil-
ity of the characterization framework by applying the framework
to several independent colloidal SA trajectories (i.e., trajectories
that were not used to train the autoencoder), including a sys-
tem consisting of 2052 in-silico colloidal particles that undergo
three-dimensional evaporation-induced SA23. We have placed
the entire dimensionality reduction framework in an easily acces-
sible GitHub format that is explicitly designed for people to use
and modify39. More in-depth descriptions of the “multi-flavored”
and "evaporation-induced” /textitin-silico self-assembly systems
can be found in Section 2.4.

2 Methods

2.1 Neighborhood Graph Construction

The first step in classifying the structure of a given colloidal parti-
cle is to generate a “neighbor list” that consists of a list of particles
that are considered topologically or symmetrically adjacent to the
particle of interest. This neighbor list is then used to construct
a neighborhood graph that quantifies the local structure of the
given particle. Two of the most common local structure classifica-
tion methods, Common Neighbor Analysis (CNA)9,10 and Stein-
hardt order parameters7,8, heavily rely on the concept of parti-
cles being “bonded” to establish neighbor lists. These methods
thus require a strict definition of a bond, where two particles are
considered bonded if they fall within a predefined cutoff radius.
However, such a cut-off radius is, by necessity, somewhat arbi-
trary. In addition, thermal vibrations, the coexistence of various
phases, and fluctuations in the local density will introduce noise
into the analysis and can even make finding a suitable cut-off ra-
dius impossible. This problem is partially mitigated by adaptive
CNA40, where the cutoff radius is determined by the average dis-
tance to a heuristically chosen number of particles. Despite the
use of averaging, radii for low-density and vapor phase particles
can be extremely large and inhibit classification accuracy. The
approach further assumes that a given particle’s neighborhood
is isotropic, which is often not the case for open lattices41. We
employ the methodology described in refs. 15, 31 to obtain the
neighbor list of topologically adjacent particles and subsequent
neighborhood graph. Because this method avoids the concept of
bonds between particles and instead uses a geometry-based, fixed
number of particles to establish the neighborhood, it is less sen-
sitive to thermal fluctuations, density gradients, and anisotropy
mentioned above.

2.2 Dimensionality Reduction

The high dimensionality of the neighborhood graphs and non-
uniformity in the distances among them indicate that dimension-
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Fig. 1 Colloidal self-assembly state characterization framework sum-
mary. The particle positions are recorded and translated into neighbor-
hood graphs. The dimensionality of the neighborhood graphs is next
reduced using deep learning techniques. Agglomerative hierarchical clus-
tering is finally used to partition the low-dimensional space and assign
discrete classifications to each particle.

ality reduction must be performed to produce a low-dimensional
manifold from which relationships among neighborhood graphs
can be more easily inferred. We reduce the dimensionality of
our neighborhood graphs using a deep neural network called an
autoencoder. An autoencoder is comprised of an encoder that
constructs a low-dimensional representation of its input (i.e., the
neighborhood graph in this case) and a decoder that reconstructs
the input from the low-dimensional representation28,29. The en-
coding process is often lossy, meaning that part of the informa-
tion is lost during the encoding process and cannot be recovered
during decoding. Dimensionality reduction is thus accomplished
by finding the encoder/decoder pair that keeps the maximum in-
formation when encoding and correspondingly has the minimum
reconstruction error (e.g., mean-squared error or MSE) when de-
coding. Note that only the encoder is used to reduce dimen-
sionality, while the decoder is used to find the encoder model
that creates the best low-dimensional representation of the input

data. As discussed in detail in the supplementary information (SI)
in Section S4, the “optimal” encoder/decoder scheme is found
through an iterative training process. Finally note that training
the autoencoder can be thought of as a “self-supervised" learn-
ing process, as training determines a (nonlinear) function that
maps the neural network’s inputs (i.e., the neighborhood graphs)
to themselves (i.e., neighborhood graphs that are reconstructed
from their low-dimensional representation).

To train the autoencoder, we first collected particle position
data for 11 different isothermal trajectories of an in-silico three-
dimensional system of 500 multi-flavored colloidal particles35–38.
The inter-particle interactions in each trajectory were varied such
that a variety of vapor, low-density, defective, and FCC, HCP, and
BCC-like lattices appear during assembly. Neighborhood graphs
for each particle in each simulation frame were recorded ac-
cording to the Delaunay triangulation and graphlet decomposi-
tion methodology of Section 2.1 (527,500 total neighborhood
graphs). We then used only the unique neighborhood graphs
(4153 unique neighborhood graphs) to train the autoencoder.

One of the main advantages of autoencoders over diffusion
maps is that autoencoders provide an exact analytical mapping
from the high to low-dimensional spaces. This mapping allows
us to assess the relative importance of each entry in the neighbor-
hood graph via input perturbation and stepwise methods30,42–45.
Relative importance is measured by the variation in MSE caused
by perturbing samples in the training data set (see SI Section S5).

2.3 Classification and Interpretation of the Low-
Dimensional Space

The key challenge of colloidal SA state classification is then parti-
tioning this low-dimensional space into discrete regions to make
final decisions regarding structural identity. We use agglomera-
tive hierarchical clustering with a Ward’s minimum variance link-
age metric to partition the low-dimensional space46,47. Agglom-
erative hierarchical clustering via Ward’s linkage operates by ini-
tially placing each data point in its own cluster. In each iteration,
two clusters are combined into one by finding the pair of clusters
that leads to the minimum increase in total intra-cluster variance
after merging. This variance increase is a weighted squared dis-
tance between cluster centers and these iterations continue until
all data points are grouped into one cluster. The method creates
clusters of various shapes, sizes, intra-cluster variances, and mem-
bership populations. By iteratively minimizing the increase in to-
tal intra-cluster variance, the method can naturally discover both
clusters that are adjacent in the low-dimensional manifold with
small intra-cluster variances and clusters with high intra-cluster
variances that span larger, less-populated sections of the coordi-
nate space. Moreover, the clustering strategy makes no assump-
tions regarding the distribution of the low-dimensional space as
it only assesses similarities between pairs of objects.

Most importantly, agglomerative hierarchical clustering estab-
lishes a “cluster tree” that reveals the underlying hierarchical
structure of the data. The branches within this tree allow us to
extract informed descriptions of the discrete regions of the low-
dimensional space and choose a number of clusters that is appro-
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priate for our specific application. We next visualize the results
of the classification by assigning a unique color to each identified
class and using OVITO visualization software48 to create a color-
coordinated image of each simulation frame. A qualitative anal-
ysis of these simulation frames provides a general idea of what
each class physically represents.

2.4 Self-Assembly System Descriptions

In this work, two separate three-dimensional in-silico SA systems
are used to demonstrate the proposed characterization frame-
work. The first consists of a system of 500 multi-flavored colloids
that self-assemble under isothermal conditions. The second con-
sists of a system 2052 silica colloids that undergo evaporation-
induced self-assembly23. These systems are described in more
detail below.

2.4.1 Self-Assembly of Multi-Flavored Colloids

One way to promote the SA of colloidal particles is through func-
tionalization of their surfaces with DNA. DNA-functionalized par-
ticles (DFPs) interact with each other through complementary
Watson–Crick base-pairing interactions and have been used to as-
semble many superlattice structures35,49. As a means of achiev-
ing selective binding among DFPs, it has recently been suggested
that particles can be functionalized with a blend of two types of
DNA strands with complementary concentrations on each parti-
cle. These “multi-flavored” particles can exhibit a tunable attrac-
tion between the like particles while maintaining interactions be-
tween unlike pairs. This approach has been shown to induce the
crystallization of equally sized particles into BCC, HCP, and FCC
structures36,50,51.

In this work, the SA trajectories are obtained from binary col-
loidal mixtures that represent multi-flavored DNA functionalized
particles (DFPs) for which the attractive interactions betwween
A-type and B-type particles (i.e., EAA, EBB and EAB) can be ad-
justed independently. Figure S2.1 (in the SI) shows the schematic
representation of the multi-flavored DFPs and a pairwise interac-
tion model used in molecular dynamics (MD) simulations for ob-
taining these trajectories. The functional form of pair interaction
utilized in these simulations is of a Fermi-Jagla type, which has
previously been successfully used to study the self-assembly pro-
cess of DFPs both in two35,38 and three dimensions36. This SA
approach based on tuning EAA, EBB and EAB is used in this work to
induce the crystallization of equally sized DFPs into various BCC,
HCP, and FCC-like structures. The resulting trajectories are used
to train the characterization framework.

All SA trajectories are MD simulations that are performed us-
ing LAMMPs package under the NVT ensemble52. A Langevin
thermostat is applied with a time constant τ = 2σm1/2ε−1/2 with
a simulation time step ∆t/τ = 10−3. Periodic boundary condi-
tions are applied to the cubic simulation box with a number
density 0.02σ−3. 500 total particles are initially placed in a
three-dimensional box and equilibrated for 1× 106 time steps
at temperature T = 1εk−1

B to ensure all particles are in the gas
phase. The MD simulations are then performed isothermally
at pre-determined temperatures T m ∈ [0.125εk−1

B ,0.165εk−1
B ] that

are deemed suitable for crystallization based on values of EAA,

EBB and EAB. To allow a reasonable amount of crystals to form,
3×108 simulation steps are performed. The determination of suit-
able temperatures based on EAA/EAB and EBB/EAB and other sim-
ulation details are suggested in our previous papers35–37.

2.4.2 Evaporation-Induced Self-Assembly

One common high-throughput method for fabricating colloidal
crystals involves dispersing colloids in a volatile solvent followed
by evaporation of the solvent to deposit a crystalline solid onto a
substrate (i.e., “evaporation-induced self-assembly”)23. The au-
thors in ref. 23 performed massive-scale non-equilibrium MD sim-
ulations with an explicit-solvent model to study the evaporation-
induced assembly of colloidal crystals from solution onto a hori-
zontal substrate. Six snapshots from an MD simulation consisting
of 2052 (initially disperse) silica colloids were used in Section 3.3
to examine the generalizabilty of the characterization framework.
Note that this data was directly provided to us by the authors of
ref. 23.

3 Results and Discussion

3.1 Autoencoder Architecture

The key autoencoder architectural choices are the batch size, ac-
tivation function, regularization strategy, and network size. Justi-
fications for each of the former three choices are described in the
SI, while the latter choice is informed by implementation of the
elbow method30,53,54. The elbow method (which is widely used
throughout the self-supervised and unsupervised learning com-
munities30,53,54) plots some measure of neural network perfor-
mance (e.g., MSE) against some neural network hyper-parameter
(e.g., the number of nodes in a given neural network layer). The
method involves visually detecting a “slope change” where the
performance of the neural network begins to improve more slowly
with the change in the hyper-parameter. The beginning of this
slope change is called the “elbow”.

Here, several autoencoder models with different network sizes
are trained with the sample data (i.e., the 4153 unique neigh-
borhood graphs found from the 11 isothermal in-silico trajecto-
ries described in Section 2.2). The autoencoder MSE is plotted
against the number of nodes in the bottleneck layer (i.e., the size
the low-dimensional space found by the encoder) for candidate
models that only differ by the number of hidden layers and num-
ber of nodes per hidden layer (see Fig. S4.2 in the SI). Elbows in
this plot occur between 2 and 4 bottleneck nodes, indicating that
a bottleneck layer size of 3 nodes is likely sufficient to capture the
essential information from the neighborhood graphs. Moreover,
the corresponding size of the 3× 1 low-dimensional representa-
tion is convenient from a visualization standpoint. The autoen-
coders with 2 hidden layers and 500 and 1000 nodes per hidden
layer display nearly identical performance, with the latter model
showing a marginally lower MSE. Models with larger network
sizes do not display any performance improvements. As a result,
the chosen autoencoder model contains 2 hidden layers, 1000
nodes per hidden layer, and 3 bottleneck nodes (which creates a
low-dimensional space of dimension 3×1).

We implemented input perturbation (with 10% Gaussian white
noise) and stepwise relative importance analyses on the chosen
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autoencoder30,42–45 (see Fig. 2). The analysis shows that nearly
all neighborhood graph entries (with the exception of graph en-
tries 22 and 23) are equally important and indicates that no sin-
gle graph entry, or even small group of graph entries can be
used to quantify the colloidal SA system state. This validates
the need for implementing dimensionality reduction. The 22nd
and 23rd neighborhood graph entries do account for nearly 25%
of the MSE variation, however. This spike in variation is due to
the fact that the neighborhood graph construction methodology
can yield extremely large outlier values at solid-vapor interfaces
(see SI Section S3). Translating the neighborhood graphs into a
low-dimensional space significantly reduces the effects of these
outliers and does not inhibit local structure characterization and
classification (see Section 3.2).

Fig 2 further shows spikes in relative importance at neigh-
borhood graph entries 0-1 and 30-36. Entries 0-1 refer to two
and three-component linear orbits that are common in newly
formed, small crystallites. These spikes indicate that many of the
unique signatures used to train the autoencoder correspond to
very weakly crystalline particles on the precipice of crystalliza-
tion. Meanwhile, entries 30-36 refer to square and pentagonal-
like shapes that are common in (defective) FCC, HCP, and BCC
structures. Again, these spikes demonstrate the frequency of
FCC, HCP, and BCC-like structures in the training data. The
above points show that the relative importance analysis can not
only point out unexpected behavior in the characterization frame-
work (e.g., the erratic neighborhood graph values for particles at
solid/vapor interfaces) but also can demonstrate to which types
of data the autoencoder model is more sensitive (e.g., the very
weakly crystalline and FCC/BCC/HCP-like particles mentioned a
few lines above).

Fig. 2 Relative importance analysis. Input perturbation and improved
stepwise methods are used to assess the relative importance of the 73
entries within the neighborhood graph. Although neighborhood graph
entries 22 and 23 account for the largest percentage of MSE variation,
these results demonstrate that no single graph entry, or even relatively
minor groups of graph entries can be used to quantify the system state.
Moreover, the large MSE variation caused by nodes 22 and 23 is a func-
tion of certain outliers found at solid-vapor interfaces.

3.2 Partitioning the low-dimensional space
We used the chosen encoder model to translate the entire train-
ing data set (4153 unique neighborhood graphs) into a three-

Fig. 3 Analysis to determine number of clusters. Agglomerative hi-
erarchical clustering (using Ward’s linkage) is used to cluster the low-
dimensional representations of the 4153 unique neighborhood graphs
taken from the 11 isothermal colloidal self-assembly trajectories that were
used to train the autoencoder (see Section 2.2). The number of unique
neighborhood graphs corresponding to FCC, BCC, and HCP structures
is plotted against the number of clusters in each branch of the resulting
cluster tree. At 12 total clusters, the low-dimensional representations of
FCC, HCP, and BCC neighborhood graphs are separated into different
clusters.

dimensional low-dimensional space. We then implemented ag-
glomerative hierarchical clustering (with Ward’s linkage) on the
low-dimensional data. Although the strategy produces a cluster
tree that shows the hierarchical structure of all 1 to 4153 possible
cluster distributions, the process of choosing the “best” number of
clusters is somewhat subjective46,47. In fact, a key advantage of
agglomerative hierarchical clustering is that the strategy allows
us to choose the number of clusters for classification for specific
application-based needs.

This work focuses on the SA of FCC, HCP, and BCC-like struc-
tures from a system of 500 multi-flavored colloidal particles35–38

(see section 2.2). The topologies of theoretically perfect FCC,
HCP, and BCC lattices are known. We used this information
to calculate neighborhood graphs and the corresponding low-
dimensional points of these three theoretically perfect lattices.
However, “perfect” or at least “not meaningfully defective” FCC,
HCP, or BCC lattices may have neighborhood graphs that cor-
respond to a number of different low-dimensional points. As a
result, any cluster that contains one of these three theoretically
perfect lattice points can be analogously labeled.

Fig. 3 shows the number of low-dimensional points (that repre-
sent neighborhood graphs) corresponding to FCC, BCC, and HCP
structures plotted against the number of total clusters in each
branch of the cluster tree. At the branch corresponding to 12
total clusters, the FCC, HCP, and BCC perfect lattice points are
first separated into different clusters. The number of points as-
signed to each of the three lattice types decreases with the total
number of clusters as the points that are further from the theo-
retically perfect lattices are placed into other clusters. The choice
in the number of clusters is thus a balance between the desired
classification precision (i.e., the strictness of the definition of an
FCC, HCP, or BCC lattice) and the analytical burden of interpret-
ing potentially hundreds of clusters. In this work, we chose the
minimum number of clusters required to separate the theoreti-
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Fig. 4 Agglomerative hierarchical clustering summary. Agglomerative hierarchical clustering (using Ward’s linkage) was used to cluster the low-
dimensional representations of 4153 unique neighborhood graphs (from the 11 isothermal colloidal self-assembly trajectories that were used to train
the autoencoder described in Section 2.2) into 12 clusters. These clusters are labeled C1-C12. (a) The low-dimensional representation of each unique
neighborhood graph is plotted and colored according to its labeled cluster. Points corresponding to bulk FCC, HCP, and BCC lattices exist within
clusters C9, C8, and C12, respectively. (b) The Ward’s distance between each cluster is plotted against each cluster’s placement within the cluster
tree.

cally perfect FCC, BCC, and HCP lattices (i.e., 12 total clusters).
Our subsequent visual analyses of SA simulation trajectories show
this choice to be reasonable (see Section 3.3).

Fig. 4a shows the the colored low-dimensional representations
of all 4153 unique neighborhood graphs. We assigned a distinct
color to each of the 12 clusters. The FCC, HCP, and BCC clusters
correspond to clusters C9 (green), C8 (brown), and C12 (pur-
ple), respectively, while vapor particles correspond to cluster C1
(red). Note that vapor particles tend to display very small neigh-
borhood graph entries and thus contain predictable neighborhood
graphs/low-dimensional coordinates. Particles at solid-vapor in-
terfaces exist in clusters C3 and C5. The neighborhood graphs
of these particles tend to contain extremely high neighborhood
graph entries (particularly at entries 22 and 23). Although it is
not immediately clear to which types of structures the remaining
clusters correspond, their close proximity to one another and dis-
tance from the vapor states suggest that they are likely surface or
defective crystalline structures.

The structure of the cluster tree (Fig. 4b) provides important
insights regarding the physical characteristics of the remaining
clusters. First, clusters C1, C3, and C5 fall under the same branch
while the remaining clusters (which include the FCC, HCP, and
BCC clusters) fall under a second branch. This suggests that
the first level of the cluster tree likely separates “crystalline” and
“vapor/near-vapor” particles. Clusters C4, C6, C9 (FCC), C10,
and C12 (BCC) all fall under the second level middle branch, sug-
gesting that C4, C6, and C10 correspond to some types of surface
or defective FCC/BCC structures. The fact that C4 belongs to the
same parent branch as C9 and C12 indicates that C4 is likely more
topologically similar to C9 and C12 than it is to C6 and C10. The
right second level branch contains clusters C2, C7, C8 (HCP), and
C11. The distances separating the C7, C8 (HCP), and C11 leaves
are very small, also indicating that C7 and C11 could correspond
to slightly defective HCP structures while C2 could correspond to
either highly defective or surface HCP particles.

The low-dimensional space appears to have achieved continu-

ity (i.e., similar structures have similar low-dimensional coordi-
nates). For example, clusters C1, C3, and C5 all correspond to
either vapor particles or vapor particles at solid-vapor interfaces.
Although these clusters contain both extremely small and large
neighborhood graph entries, the clusters have low intra-cluster
variances and are adjacent in the low-dimensional space. Our di-
mensionality reduction thus effectively handles the massive out-
liers the neighborhood graph construction methodology occasion-
ally produces at solid-vapor interfaces. The FCC, HCP, and BCC
clusters are close to one another, yet far apart from the vapor clus-
ters. Meanwhile the remaining clusters (which likely correspond
to defective and surface particles) are not only close to one an-
other but also take up a large percentage of the low-dimensional
space to reflect their large topological range.

We note that some of the boundaries among clusters appear
exceedingly complex, suggesting that some of the data points are
misclassified. The boundary complexity is a function of both the
(unavoidable) noise in the neighborhood graph construction and
the choice of a small number of clusters. We could potentially
address this problem by increasing the number of clusters. How-
ever, the objective of the characterization framework is to eluci-
date understanding of SA processes as a whole and not to per-
fectly characterize each individual particle (otherwise one would
avoid dimensionality reduction altogether). Overall, the colloidal
SA state characterization framework appears to effectively reduce
the dimensionality of neighborhood graphs and sensibly partition
the low-dimensional space.

3.3 Visualization and classification

We first demonstrate the characterization framework by using
OVITO to visualize 4 different lattices found from 4 of the 11
different isothermal colloidal SA trajectories used to train the au-
toencoder (see Fig. 5). The particles in each lattice are colored
according to their classifications in Fig. 4. Each of the 4 lattices
is shown in full (labeled “Full Lattice”) and with its top layer re-
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Fig. 5 Four classified colloidal self-assembly lattices. The figure shows 4 lattices from the final time steps of 4 of the 11 isothermal colloidal self-
assembly trajectories used to train the autoencoder (see Section 2.2). Each particle in each lattice is colored according to its classification in Fig. 4.
The term “full lattice” indicates that every particle in the snapshot is shown while the term “bulk lattice” indicates that the top layer of particles has
been removed. The structure in (a) is primarily BCC, the structures in (b) and (c) are mixed FCC and HCP, and the structure in (d) contains FCC,
HCP, and BCC particles.

moved (labeled “Bulk Lattice”).

We used the OVITO visualizations to assign brief, physically
meaningful descriptions to each cluster (see Table 1 for a sum-
mary of these descriptions). The bulk particles in 5a (purple) al-
most all belong to cluster C12 and correspond to BCC structures.
The surface particles primarily belong to clusters C6 (light blue)
and C10 (dark blue), with scattered particles belonging to clus-
ters C4 (yellow) and and C2 (light green). The C6 (light blue)
particles clearly correspond to surface BCC (100)-(111) particles.
The C10 (dark blue) particles only exist at the interface between
two surface planes and likely correspond to BCC surface stacking
faults.

Meanwhile, the bulk particles in Fig. 5b-7c are primarily from
clusters C9 (Green, FCC) and C8 (Brown, HCP). Another bulk
particle classification is C11 (beige), which primarily appears on
FCC/HCP interfaces. The cluster’s placement in the same parent
branch as cluster C8 (Brown, HCP) indicates that C11 is likely
a defective HCP structure. Structures 5b-c show many surface
particles belonging to clusters C4 (yellow) and C2 (light green).
Note that Fig. 5b appears to show C4 (yellow) particles in the
bulk, however, these are actually surface particles on an adjacent
plane. Based on their placement in the cluster tree and proxim-
ity to FCC particles in the Fig. 5b-c, cluster C4 corresponds to
FCC (100)-(111) surface particles. The C2 (light green) and C7
(black) particles are less commonly observed throughout the SA
trajectory data but often appear as defective surface particles on
lattices containing HCP and FCC particles. The C2 (light green)
particles even occasionally appear as stacking faults (see Fig. 6)a,
while the C7 (black) particles tend to appear as weakly-bound
particles. Despite C2’s placement within the cluster branch corre-
sponding to HCP particles, C2 particles often appear above FCC
bulk particles. This suggests that C2 refers to defective FCC sur-
face particles that show some HCP-like characteristics. Each of the

above classifications remain consistent in Fig. 5d, which shows a
polymorphic FCC, HCP, and BCC lattice.

Table 1 Cluster structural classifications. Each cluster identification
(C1-C12) is matched with a brief physical description.

Cluster Label Structure Description
C1 Vapor
C2 Defective FCC surface particle
C3 Vapor at Solid-Vapor Interface
C4 Surface FCC
C5 Vapor at Solid-Vapor Interface
C6 Surface BCC
C7 Weakly bound HCP-like particle
C8 HCP
C9 FCC
C10 BCC Stacking Fault
C11 Defective Bulk HCP
C12 BCC

It is important to note that rigorous, direct comparisons
to other dimensionality reduction-based characterization frame-
works are not necessarily appropriate in this work. For ex-
ample, the most recent implementations of diffusion maps re-
quire the choice of “landmark points” to reduce the size of the
high-dimensional space before dimensionality reduction takes
place. As a result, diffusion maps cannot reduce the same high-
dimensional space that the autoencoders can and thus cannot be
applied (in the same way) to the self-assembly trajectories dis-
cussed above. This is because analysis of these trajectories would
require computing distance matrices between thousands of neigh-
borhood graphs – and diffusion maps can become intractable for
such large analyses. We further could have directly applied the
approach of Boattini et al. to the 11 SA trajectories used to train
the characterization framework. However, the elbow plot analy-
sis (Fig. S4.2 in the SI) demonstrates that the single hidden layer
autoencoder architecture employed by Boattini et al. does not
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(a) Example colloidal self-assembly trajectory with polymoprhic lattice.

(b) Example colloidal self-assembly trajectory with phase transition.

Fig. 6 Example colloidal self-assembly trajectories. Each figure shows the time evolution of the number of particles classified as FCC (cluster C9,
green), HCP (cluster C8, brown), and BCC (cluster C12, purple) for a separate in-silico colloidal self-assembly trajectory. Note that Frame # refers
to the (chronologically ordered) recorded simulation frame. The time evolution plots are accompanied by snapshots of certain chosen simulation
frames within these trajectories. In each case, the dimensionality of the neighborhood graphs is reduced with the encoder trained using 11 isothermal
trajectories of a system of 500 multi-flavored colloidal particles (see Section 2.2). Each particle in each snapshot is classified according to the proximity
of its low-dimensional representation to points in Fig. 4a. (a) The figure shows the time evolution of an isothermal trajectory of the self-assembly
of 500 multi-flavored colloids that creates the lattice in Fig. 5d. The trajectory shows that a polymorphic lattice containing FCC, HCP, and BCC
particles forms from a primarily BCC structure merging with a structure that contains FCC and HCP particles (b) The figure shows the time evolution
of an isothermal trajectory of the self-assembly of 1000 multi-flavored colloids. The trajectory shows that the system initially self-assembles into a
BCC structure before undergoing a phase transition into an FCC structure.

encode as much information in the low-dimensional space as the
proposed multiple hidden layer approach. Moreover, their use of
Steinhardt bond order parameters to create neighborhood graphs
(which are much more prone to thermal fluctuations and den-
sity gradients than the proposed Delaunay triangulation-based
method) indicates that the method of Boattini et al. would lead
to less general classification. In fact, Boattini et al. classify each
particle within a lattice as either FCC, HCP, or “fluid”. Meanwhile,

our approach classifies each particle in one of 12 different cate-
gories, which include BCC, FCC, HCP, fluid (which we label as
“vapor”), and several surface and defective states.

We next used the characterization framework to analyze the
time evolution of a colloidal SA trajectory, as opposed to singular
SA system states. Fig. 6a shows the time evolution of the colloidal
SA trajectory that leads to the lattice in Fig. 5d. Here, the num-
ber of total particles classified as FCC (cluster C9, green), HCP
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Fig. 7 Evaporation-induced colloidal self-assembly. The figure shows 3 snapshots of the in-silico evaporation-induced self-assembly of 2052 colloidal
particles that are classified using two different schemes. Note that the data used to create these snapshots was borrowed from ref. 23 and that 6 total
snapshots were provided. (a) The dimensionality of the neighborhoood graphs is reduced with an encoder trained using 11 isothermal trajectories of
an in-silico system of 500 multi-flavored colloidal particles (see Section 2.2) Each particle in each snapshot is classified according to the proximity of
its low-dimensional representation to points in Fig. 4a (b) The entire characterization framework is performed on the six provided snapshots of the
evaporation-induced colloidal self-assembly data. Each unique neighborhood graph is used to train a second autoencoder. The newly-formed encoder
is used to reduce the dimensionality of the neighborhood graphs and agglomerative hierarchical clustering (via Ward’s linkage) is used to partition the
low-dimensional space. In both (a) and (b), FCC particles are green, HCP particles are brown, BCC particles are purple, and surface FCC particles
are yellow. The teal particles in (b) correspond to defective FCC structures that were not found by the classification scheme in (a). Overall, the two
characterization procedures yielded nearly identical results.

(cluster C8, brown), and BCC (cluster C12, purple) is plotted
against the simulation frame index. Snapshots of four key sim-
ulation frames whose particles are classified according to their
positions in Fig. 4 are also provided. Frame #1 shows several
small nuclei beginning to form. Clearly, many particles are still
in the vapor phase, as clusters C1 (red) and C3 (blue) are highly
prevalent. The bottom right crystallite is forming a BCC struc-
ture as evidenced by the C6 (light blue), C10 (dark blue), and
C12 (purple) colored particles. Meanwhile the top right cluster
primarily contains FCC/HCP particles due to its plethora of C4
(yellow), C8 (HCP), and C9 (FCC) particles. However, this crys-
tallite also contains some BCC-like particles such as C12 (purple)
and C6 (light blue). By Frame #2, the two remaining clusters
are almost entirely BCC (top left) and almost entirely FCC/HCP
(bottom right). The crystals’ continued nucleation uncovers a few
interesting trends.

First, we see that the polymorphic lattice is formed by a primar-
ily BCC structure merging with a primarily FCC/HCP structure.
This indicates that the assembly conditions are likely favorable to
both BCC and HCP/FCC structures. Comparing Frames #2 and
#8 shows the merging of the BCC and HCP/FCC structures as part
of the growth process. Frame #2 also shows that the FCC/HCP
structure is initially covered with surface particles from cluster
C6 (light blue), which represent BCC surface particles. However,
these light blue particles nearly only exist as FCC particles by the
end of the trajectory. This could suggest that FCC particles take
on a structure similar to that of surface BCC before finding their
final state (e.g. Frame #20 and Fig. 5d). In fact, the idea that
the interfaces of FCC crystallites retain BCC-like ordering during

nucleation is frequently explored55–57. We used the characteri-
zation framework to carry out similar analyses for the remaining
SA trajectories used to train the autoencoder, but did not include
them for brevity.

We applied the characterization framework to an independent
test data set that consists of 1000 in-silico multi-flavored colloids
undergoing SA in isothermal conditions. We first calculated the
neighborhood graphs of each particle and used the chosen en-
coder from Section 3.1 to reduce the dimensionality of the neigh-
borhood graphs. Note that we did not retrain the autoencoder,
and instead used the encoder with the same weights and biases
as determined in Section 3.1. We next identified the points in Fig.
4a that were closest to those corresponding to the independent
data set and classified the particles accordingly. For example,
if the low-dimensional representation of a neighborhood graph
from the independent data set is [15.17,3.50,18.23]> and the clos-
est point in Fig. 4a is classified as C2, then the particle from the
independent data set adopts this class. Fig. 6b shows the time
evolution of the total number of particles classified as FCC, HCP,
and BCC throughout this trajectory and the classification of 4 ex-
ample snapshots of simulation frames.

The characterization reveals how a primarily disperse colloidal
system state initially forms a cluster that almost entirely consists
of BCC particles (e.g., purple bulk particles corresponding to clus-
ter C12 and light blue and dark blue surface particles correspond-
ing to clusters C6 and C10 respectively). A sudden, drastic phase
transition occurs at Frame #18 as the system state transitions
from a BCC structure to an almost entirely FCC structure. Over
time, the remaining BCC particles transition slowly to FCC parti-
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cles. By the Frame #99, the system state is an entirely FCC struc-
ture. The fact that the characterization framework can identify
a BCC/FCC phase transition in an independent data set demon-
strates the framework’s generalizability.

We finally applied the characterization framework to another
independent data set from ref. 23 that consists of 6 snapshots of
2052 in-silico colloids undergoing evaporation-induced SA (see
Fig. 7). We first characterized these particles using the same
methodology that was used to characterize the previous indepen-
dent data set (i.e., the isothermal SA of 1000 multiflavored col-
loids). Fig. 7a shows the classification results for the final three
snapshots.

We next re-performed the entire characterization framework
on the evaporation-induced colloidal SA data alone. We collected
all unique neighborhood graphs from the 6 provided snapshots
(4462 total unique neighborhood graphs). We performed el-
bow analysis and re-trained the autoencoder on the 4462 unique
neighborhood graphs. We reduced the dimensionality of the
neighborhood graphs using the newly formed encoder and imple-
mented agglomerative hierarchical clustering using Ward’s link-
age to partition the low-dimensional space. We chose the mini-
mum number of clusters required to separate theoretically perfect
FCC, HCP, and BCC lattices into separate clusters (11 total clus-
ters).

We then assigned distinct colors to each of the separate clusters
and visualized the lattices using OVITO (see Fig. 7b). Note that
we assigned identical colors to important classes in both Figs. 7a-
b. For example, green is FCC, brown is HCP, purple is BCC, and
surface FCC is yellow in Figs. 7a-b. The evaporation-induced col-
loidal SA data set shows significantly fewer disperse and weakly
crystalline states and more defective crystalline states than the
multi-flavored colloidal SA data set does. The evaporation-
induced low-dimensional space is thus biased towards such crys-
talline structures. As a result, the classifications in Figs. 7a-b
show some important differences. For example, Fig. 7b shows
teal particles that clearly correspond to defective FCC particles,
yet such a class was not recovered from clustering the multi-
flavored data. With the exception of these small numbers of par-
ticles, however, Figs. 7a-b do show almost identical colloidal SA
state classifications. These results not only validate the gener-
alizability of the characterization framework (as nearly identical
results were seen by training the autoencoder on different sys-
tems with vastly different particle numbers) but also highlights
how larger, more diverse training data sets can further improve
the characterization framework.

4 Conclusions and Future Work
We first demonstrated the proposed colloidal self-assembly state
characterization framework on an in-silico system of 500 multi-
flavored colloids that self-assemble under isothermal conditions.
The framework not only characterized the target FCC, BCC, and
HCP structures but also “discovered” several relevant defective
and surface structures that allowed for greater understanding of
example colloidal self-assembly trajectories. We then analyzed
the generalizability of the framework by applying the frame-
work to two independent systems, one that consists of 1000

in-silico multi-flavored colloidal particles and self-assembles un-
der isothermal conditions and another that consists of 2052 in-
silico colloidal particles and undergoes evaporation-induced self-
assembly. Despite successful characterization of the independent
data sets, the framework can be sensitive to the nature of the data
on which the autoencoder is trained (e.g., number of crystalline
vs. weakly crystalline states).

We will focus future work on using the low-dimensional,
physically-informative descriptions of colloidal SA system states
provided by the encoder to create data driven models that pre-
dict the time evolution of the SA trajectories. We will supple-
ment these data driven models by using the proposed dimension-
ality reduction framework to estimate free energy landscapes and
identify kinetic traps within those landscapes. We will finally in-
vestigate combining predictions from the data driven model with
information from the free energy landscapes to identify condi-
tions under which SA is most likely to avoid kinetic traps and
form desired structures.
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