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Microswimmers near corrugated, periodic surfaces

Christina Kurzthalera and Howard A. Stoneb

We explore hydrodynamic interactions between microswimmers and corrugated, or rough, surfaces, as
found often in biological systems and microfluidic devices. Using the Lorentz reciprocal theorem for
viscous flows we derive exact expressions for the roughness-induced velocities up to first order in the
surface-height fluctuations and provide solutions for the translational and angular velocities valid for
arbitrary surface shapes. We apply our theoretical predictions to elucidate the impact of a periodic,
wavy surface on the velocities of microswimmers modeled in terms of a superposition of Stokes
singularities. Our findings, valid in the framework of a far-field analysis, show that the roughness-
induced velocities vary non-monotonically with the wavelength of the surface. For wavelengths
comparable to the swimmer-surface distance a pusher can experience a repulsive contribution due to
the reflection of flow fields at the edge of a surface cavity, which decreases the overall attraction to
the wall.

Biological environments offer a plethora of different geometries
and confining surfaces, ranging from elastic and soft boundaries
to rough, structured topographies, which impact transport pro-
cesses in their nearby surroundings1–6. Interactions between par-
ticles and surfaces composed of different materials can be of,
amongst others, chemical7, electrical8,9, thermal10, steric11, or
hydrodynamic origin12,13. Unraveling the individual contribu-
tions is of utmost importance for our understanding of microbio-
logical phenomena and future progress in micro- and nanotech-
nological applications.

To optimize survival strategies many microorganisms, includ-
ing bacteria14,15, sperm16–18, protozoa19, and algae20, self-
propel by using cellular appendages, such as flagella and cilia.
In a similar spirit, due to their potential for inspiring novel
drug-delivery and bioremediation tools, artificial active agents
have been synthesized and rely on various concepts, including
self-phoresis21–23 and biomimetic propulsion mechanisms24,25.
These out-of-equilibrium systems display intricate interactions
with surfaces that differ significantly from those of their passive
counterparts. While it is well-known that by time-reversibility
of Stokes flow a sphere sedimenting near a vertical, plane wall
maintains a constant distance to it26,27, flow fields generated by
spherical microswimmers can induce attraction or reorientation
of their swimming direction28. These effects are determined by
the details of the propulsion mechanism, such as pusher-29 or
puller-type30 swimming strokes and surface-slip due to cilia30

or phoresis31, and the pitch angle at which the agents approach
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the surface28,32. Thus, fluid-mediated interactions in combina-
tion with steric effects have been shown to drive accumulation of
self-propelled agents near planar, smooth surfaces13,29,33–35.

In addition, hydrodynamic couplings with surfaces can strongly
modify the dynamical behavior of flagellated microorganisms,
such as Escherichia coli36,37, Vibrio cholerae38, and sperm16,18,39,
which display circular swimming patterns near a solid wall. Bac-
teria are also sensitive to the slip length of the boundary, which
can induce circular trajectories along the opposite sense of rota-
tion compared to a planar wall40, and a change of surface slip can
thereby randomize or direct the motion of nearby bacteria41,42.
Far-field predictions43, simulations of the squirmer model44, and
experiments with artificial microrods45 have shown that active
agents can get trapped or scattered by spherical obstacles depend-
ing on the geometric features of the obstacles and the propulsion
mechanism. A recent study on sperm motion in channels with
sharp corners and curved walls have related their detachment
from the channel surface at the corners to the orientation of the
flagellum beating pattern46.

At a larger scale, the presence of random heterogeneities, com-
parable in size to a bacterial body, distributed on smooth surfaces
amplify near-surface dynamics of E. coli cells47,48. For example,
obstacles can enhance bacterial transport at intermediate obsta-
cle densities by disrupting their circular motion48, whereas large
densities of surface heterogeneities decrease residence times of
bacteria at the surface due to less accessible space47. Moreover,
Brownian dynamics simulations predict that the dispersion of ac-
tive agents is further affected by the radius of the circular motion
compared to the obstacle size49.

Near-surface motion entails various unusual features at the mi-
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croscopic level, where details of particle-surface interactions are
important, and at the mesoscopic scale, where the dynamical be-
havior of these active agents is affected by noise intrinsic to bio-
logical systems. In the present study we focus on the microscopic
scale and elucidate the hydrodynamic couplings of microswim-
mers with nearby corrugated surfaces. We provide an analytical
framework to calculate velocities induced by the presence of a
surface with arbitrary shape up to first order in the surface-height
fluctuations. We then apply our theoretical predictions to study
far-field hydrodynamics of microswimmers modeled in terms of a
multipole expansion.

1 Model

We consider the hydrodynamic interactions of a microswimmer
with a nearby corrugated surface, Sw, see Fig. 1. The active agent
is suspended in an incompressible, low-Reynolds-number flow.
The quasi-steady fluid velocity u(r) and pressure fields p(r) are
described by the continuity and Stokes equations,

∇ ·u = 0 and µ∇
2u = ∇p, (1)

with associated stress field σσσ =−pI+µ
(
∇u+∇uT ) and fluid vis-

cosity µ.

S0

Sw

e

h

rS

y

x

z

n

ϵhH(x, y)

Sp

Fig. 1 Model set-up for the motion of a microswimmer with surface Sp
and swimming direction e. It is located at position rS = [xS,yS]

T and
distance h near a corrugated wall Sw with shape H(x,y). Furthermore,
εh denotes the amplitude of the surface-height fluctuations and S0 cor-
responds to the planar, reference surface at z = 0.

Biological microorganisms and artificial active agents display
a large variety of different swimming mechanisms that rely on,
e.g., non-reciprocal deformations of flagella, surface distortions
generated by cilia, or diffusiophoretic mechanisms. The fluid ve-
locity on the surface of these microswimmers can be decomposed
into a translational velocity U, flow induced by the body rotation
at angular velocity ΩΩΩ, and a disturbance velocity field, uS, which
can vary locally over the particle surface, Sp

50. In the laboratory
frame the boundary conditions of a microswimmer near a rough

wall are

u = uS +U+ r×ΩΩΩ on Sp, (2a)

u = 0 on Sw and S∞, (2b)

where S∞ denotes the bounding surface at infinity. The trans-
lational and angular velocities, U = U(rS(t),h(t)) and ΩΩΩ =

ΩΩΩ(rS(t),h(t)), depend on the instantaneous configuration of the
microswimmer relative to the underlying textured surface, rS =

[xS,yS]
T , and its distance to the wall h. In principle, the parti-

cle surface can change over time, Sp = Sp(t). Subsequently, we
suppress the time dependence.

Furthermore, the microswimmer experiences zero hydrody-
namic force and torque,

FH =
∫

Sp

n ·σσσ dS = 0 and LH =
∫

Sp

r× (n ·σσσ) dS = 0. (3)

In principle, the velocities of the microswimmer can be obtained
by solving the Stokes and continuity equations [Eq. (1)] with
boundary conditions [Eqs. (2a)-(2b)] and satisfying the force-
and torque-free conditions [Eq. (3)]. Here, we circumvent cal-
culating the full fluid flow by applying the Lorentz reciprocal the-
orem for viscous flows12,51. We provide analytical expressions for
the roughness-induced velocities up to first order in the surface-
height fluctuations by following a similar procedure as in Ref.52.

2 Roughness-induced velocities

We describe the corrugated surface in terms of a dimensionless
shape function H(x,y) and consider small height fluctuations com-
pared to the particle-surface distance h. The surface assumes the
form z = εhH(x,y), where we have introduced a small dimension-
less parameter, ε � 1. Thus, we can expand the velocity field
in ε:

u = u(0)+ εu(1)+O(ε2), (4)

where u(0) denotes the velocity field generated by a microswim-
mer near a plane, smooth surface and u(1) encodes the roughness-
induced velocity field. Consequently, also the translational and
rotational velocities of the microswimmer assume the forms,

U = U(0)+ εU(1)+O(ε2), (5a)

ΩΩΩ = ΩΩΩ
(0)+ εΩΩΩ

(1)+O(ε2). (5b)

Using the method of domain perturbations53, we expand the no-
slip boundary condition at the corrugated surface Sw in terms of
a Taylor expansion about z = 0,

u(x,y,εhH(x,y)) =

u(0)(x,y,0)+ εhH(x,y)
∂u(0)

∂ z

∣∣∣
z=0

+ εu(1)(x,y,0)+O(ε2).

(6)
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Collecting orders in ε, we obtain the boundary conditions for the
zeroth- and first-order problems,

u(0) = 0 and u(1) =−hH(x,y)
∂u(0)

∂ z

∣∣∣
z=0

on S0. (7)

The Taylor expansion of the boundary condition provides the re-
placement of the no-slip boundary condition at the corrugated
surface, Sw, by an effective slip velocity at the plane, smooth sur-
face S0. Therefore, the relevant boundaries of our problem consti-
tute the surface of the sphere Sp, the plane reference surface S0,
and the bounding surface at infinity S∞. The derived boundary
conditions allow us to fully describe the zeroth- and first-order
problems.

2.1 Zeroth-order problem: planar wall

The zeroth-order problem with flow field u(0) corresponds to a
microswimmer moving near a plane wall. It satisfies the Stokes
and continuity equations, ∇ ·σσσ (0) = 0 and ∇ ·u(0) = 0, respectively,
with boundary conditions

u(0) = uS +U(0)+ r×ΩΩΩ
(0) on Sp, (8a)

u(0) = 0 on S0 and S∞, (8b)

where uS is specified. Analytical progress has been made for the
paradigmatic squirmer model, which was introduced by Lighthill
to model the motion of nearly spherical, deformable microswim-
mers54. Exact solutions for the velocity field u(0) are avail-
able for a spherical squirmer of radius a near a planar wall in
terms of a bispherical coordinate representation valid for arbi-
trary particle-surface distances h/a55 and the lubrication approx-
imation, h/a . 156. In addition, the far-field flows generated by
self-propelled particles can be described in terms of a multipole
expansion in Stokes singularities13,35. We refer to Sec. 3 for fur-
ther details.

2.2 First-order problem: surface roughness

The first-order correction to the fluid flow due to the underlying
textured surface, u(1), obeys the Stokes and continuity equations,
∇ ·σσσ (1) = 0 and ∇ ·u(1) = 0, with boundary conditions:

u(1) = U(1)+ r×ΩΩΩ
(1) on Sp, (9a)

u(1) =−hH(x,y)
∂u(0)

∂ z

∣∣∣
z=0

on S0, (9b)

u(1) = 0 on S∞. (9c)

Here, the effective slip velocity at the planar surface, S0, involves
the surface shape H(x,y) and the zeroth-order flow field, u(0).

We develop an analytic theory for the translational and rota-
tional velocities of a microswimmer near a corrugated wall by
exploiting the Lorentz reciprocal theorem for viscous flows12,51.
The reciprocal theorem relates Stokes flows in a given domain
that obey different sets of boundary conditions. Therefore, we
introduce as an auxiliary problem the flow due to an externally

driven, translating and rotating particle of the same shape as the
swimmer near a plane wall. The corresponding velocity field û
satisfies the no-slip boundary conditions û = Û+ r× Ω̂ΩΩ on Sp and
û = 0 on S0 and S∞. The applied force, F̂, and torque, L̂, are
balanced by the hydrodynamic force, F̂H , and torque, L̂H , on the
particle. Then the reciprocal theorem relates our main problem
with velocity field u(1) and stress tensor σσσ (1) to the auxiliary prob-
lem with û, σ̂σσ by∫

Sp∪S0∪S∞

n ·σσσ (1) · û dS =
∫

Sp∪S0∪S∞

n · σ̂σσ ·u(1) dS, (10)

where the integrals are taken over all surfaces, i.e., Sp, S0, and S∞.
Here, we employ the notation that the normal vector n is directed
away from the corresponding surface into the surrounding fluid
(see Fig. 1). Since the main problem is force- and torque-free
[Eq. (3)] and given the boundary conditions on û, the left-hand
side of Eq. (10) vanishes. Utilizing the boundary conditions of
the main [Eqs. (9a)-(9c)] and auxiliary problems, the reciprocal
relation [Eq. (10)] simplifies to

F̂H ·U(1)+ L̂H ·ΩΩΩ(1) =
∫

S0

n · σ̂σσ ·
(

hH(x,y)
∂u(0)

∂ z

∣∣∣
z=0

)
dS. (11)

This relation is exact for small surface height fluctuations and
valid for arbitrary microswimmer and surface shapes. Thus, for
any known zeroth-order problem u(0) and appropriate auxiliary
problem û the first-order correction to the swimming velocities
due to the corrugated surface shape can be calculated by evaluat-
ing the expression derived from Eq. (11).

3 Far-field hydrodynamics of a microswimmer near
a wavy, periodic surface

We apply our theoretical predictions to elucidate roughness-
induced velocities of a spherical microswimmer with radius a lo-
cated at a distance h/a & 1 away from the surface. We model
the flow-field generated by the microswimmer in terms of a far-
field description35. The microswimmer is located at a position
r0 = [rS,h]T near a corrugated surface and its swimming direction,
e = eϕ0 cosϑ0+ez sinϑ0 with eϕ0 = ex cosϕ0+ey sinϕ0, is character-
ized by the pitch and polar angles, ϑ0 and ϕ0. The unit vector eϕ0

measures the swimming direction e in a plane parallel to the ref-
erence surface S0. The polar angle ϕ0 characterizes the swimmer’s
orientation in the x− y plane. The angle ϑ0 is measured from a
horizontal line parallel to the plane reference surface, S0, at the
height from the swimmer center (see Fig. 2). In particular, for
ϑ0 = 0 the swimmer is aligned parallel to S0 and for ϑ0 =±π/2 it
is aligned perpendicular away from or toward S0, respectively.

The flow field generated in an unbounded domain can be de-
composed in terms of a multipole expansion35,

u = uFD +uSD +uFQ +uRD +O(|r− r0|−4) (12)

where the terms correspond to contributions of a force dipole
(FD), uFD = αFDGFD(e,e), source dipole (SD), uSD = αSDGSD(e),
force quadrupole (FQ), uFQ = αFQGFQ(e,e,e), and rotlet dipole
(RD), uRD = αRDGRD(e,e). We follow the notation of Ref.35 and
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Fig. 2 Sketch of pusher- and puller-type microswimmers with swimming
direction e, pitch and polar angles, ϑ0 and ϕ0, near a wavy surface,
H(x,y) = cos(2πx/λ ), with characteristic wavelength λ . In particular, the
pitch angle measures the angle with respect to a horizontal line parallel
to the plane reference surface, S0, and the polar angle, ϕ0, measures the
orientation in the x−y plane. The blue arrows indicate the flow direction
for the corresponding force dipoles in an unbounded fluid. The local
coordinate system with radial distance r and polar angle ϕ is displayed
in the upper right corner.

introduce the corresponding singularity solutions GFD,SD,FQ,RD

and singularity strengths αFD,SD,FQ,RD below. The contributions
due to higher-order singularities can be derived from the stokeslet
solution at position r0 directed along e,

G(r,r0;e) = (e+(e · r̂)r̂)/r̂, (13)

with r̂ = |r− r0| and r̂ = (r− r0)/r̂. The flow field produced by a
stokeslet can then be written as u = αG(r,r0;e), where the singu-
larity strength α is related to the magnitude of the force F and the
viscosity µ via α = F/(8πµ). The flow field of a force dipole with
two point forces separated by a distance ` along the direction a
can be obtained as

uFD = α[G(r,r0 + `a/2;e)−G(r,r0− `a/2;e)] (14a)

' αFD(a ·∇0)G(r,r0;e), (14b)

where Eq. (14b) remains valid for small ` and we have intro-
duced the force dipole strength αFD = α`. The gradient ∇0 acts
on the singularity position r0. This allows us to introduce the
force dipole singularity solution

GFD(e,a)≡GFD(r,r0;e,a)=(a ·∇0)G(r,r0;e). (15)

In particular, the velocity field induced by a force dipole oriented
along e can be expressed as

uFD = αFD
(
GFD(eϕ0 ,eϕ0)cos2

ϑ0 +GFD(ez,ez)sin2
ϑ0+

GSS(eϕ0 ,ez)sin(2ϑ0)
)
, (16)

where GSS(a,b) = 1
2 (GFD(a,b)+GFD(b,a)) denotes the symmet-

ric part of the stokeslet, also referred to as a stresslet. Similar
relations hold for the other oriented higher-order singularities. In
particular, the force quadrupole singularity solution can be ob-
tained from the force dipole solution via

GFQ(e,a,b)≡GFQ(r0,r;e,a,b) = (b ·∇0)GFD(r0,r;e,a). (17)

The source dipole singularity solution can be expressed in terms
of the Stokeslet solution via

GSD(e)≡GSD(r,r0;e) =−1
2

∇
2
0G(r,r0;e). (18)

Finally, the singularity solution for the rotlet dipole is

GRD(e,c)≡GRD(r,r0;e,c) = (c ·∇0)GR(r,r0;e), (19)

which depends on the singularity solution of a rotlet GR(r,r0;e) =
[GFD(b,a)−GFD(a,b)]/2 with unit vectors a and b obeying a×
b = e. We note that the leading-order flow field, in the absence
of a wall, is generated by the force dipole and decays as r̂−2. The
next higher-order-singularities (SD, FQ, and RD) decay as r̂−3.

The associated singularity strengths, αFD,αSD,αFQ,αRD, de-
pend on the details of the swimming mechanisms. In particu-
lar, the dipole strength αFD has dimensions of [velocity×length2]
whereas the higher-order singularity strengths have dimensions
of [velocity×length3]. The force dipole strength allows dis-
tinguishing between particles that produce extensile flow fields
(pushers, αFD > 0) and contractile flow fields (pullers, αFD < 0).
The far-field hydrodynamics induced by the finite size of the
swimming object can be described in terms of the source dipole.
Typically, the sign of the source dipole strength for ciliated mi-
croswimmers is positive αSD > 0, whereas for flagellated organ-
isms it is negative αSD < 0, which indicates repulsion from a wall
for a swimmer with orientation away from the wall and an at-
traction for a swimmer with orientation towards the wall. The
flow fields generated by a swimming body with fore-aft symme-
try can be modeled by a force quadrupole; in particular, αFQ > 0
corresponds to swimmers with long flagella compared to the body
size and vice versa for αFQ < 0. The rotlet dipole can be used to
describe, e.g., the flow field produced by the rotation of the flag-
ellum and the cell body, which can induce clockwise (αRD > 0)
or counter-clockwise (αRD < 0) swimming motion along surfaces.
For more details we refer to Ref.35.

3.1 Smooth, planar wall

The velocity field induced by a spherical microswimmer located at
r0 near a smooth, planar wall can be decomposed into the velocity
field generated in an unbounded domain, u, and the disturbance
velocity field, u∗, due to the nearby wall using the image method
adapted from electrostatics35,57,

u(0) = u+u∗. (20)

The wall-induced velocity field u∗ depends on the position of the
image singularity, r∗0 = r0−2hez. Its complete dependence on the
fundamental solutions of Stokes flow has been provided earlier35.

Faxen’s law predicts the translational and angular velocities of
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the microswimmer at position r0 induced by the wall58,

U∗ = u∗(r0)+O(a2
∇

2u∗|r0), (21)

ΩΩΩ
∗ =

1
2

∇×u∗(r0)+O(a2
∇

2(∇×u∗)|r0). (22)

Then the translational and rotational velocities of the microswim-
mer near a plane wall evaluate to U(0) =Ufree+U∗ and ΩΩΩ

(0) =ΩΩΩ
∗,

where we have introduced the translational velocity of a mi-
croswimmer in an unbounded domain Ufree = Ue and U∗,ΩΩΩ∗ in-
clude contributions from the swimmer-wall interactions. In par-
ticular, for a force dipole these evaluate to13,35

U∗FD=
3αFD

16h2 (1−3cos(2ϑ0))ez+
3αFD

8h2 sin(2ϑ0)eϕ0 , (23a)

ΩΩΩ
∗
FD=

3αFD

16h3 sin(2ϑ0)e⊥ϕ0
, (23b)

with e⊥ϕ0
= ez × eϕ0 . The wall-induced velocities for the higher-

order singularities are provided in Appendix A.1.

3.2 Roughness-induced velocities

To obtain the contribution due to the wall roughness, U(1) and
ΩΩΩ

(1) (see Eq. (9a)), we apply the reciprocal relation [Eq. (11)].
We use as auxiliary problems the cases of a point force and point
torque parallel to the x− y plane and z-directions, respectively.
Furthermore, we introduce a local, cylindrical coordinate system
(r,ϕ,z) where r =

√
(x− xS)2 +(y− yS)2 denotes the distance mea-

sured from the particle position in the x− y−plane relative to a
point on the surface and ϕ is the polar angle (see inset of Fig. 2).
The gradient of the flow field induced by the microswimmer at
the wall then assumes the form

∂u(0)

∂ z

∣∣∣
z=0

=
∂u(0)r

∂ z

∣∣∣
z=0

er +
∂u(0)ϕ

∂ z

∣∣∣
z=0

eϕ , (24)

with unit vectors er = ex cosϕ + ey sinϕ and eϕ = −ex sinϕ +

ey cosϕ. The derivative of the z−component at the no-slip surface

vanishes by continuity,
[
∂u(0)z /∂ z

]
z=0

= 0. Further, we rescale the

coordinates by the particle-surface distance, z = hZ and r = hR,
the velocities by u(0) = αFDU(0)/h2 and the stresses by

σ̂σσ
i =

F̂ i

h2 Σ̂ΣΣ
U,i

and σ̂σσ
i =

L̂i

h3 Σ̂ΣΣ
Ω,i

, (25)

respectively. Here, F̂i = F̂ iei and L̂i = L̂iei denote the point force
and torque along the i−direction (i = x,y,z), which are balanced
by the hydrodynamic force and torque: F̂i =−F̂i

H and L̂i =−L̂i
H .

Then, the components of the first-order translational and rota-
tional velocities are obtained by evaluating the surface integrals,

U (1)
i =−αFD

h2

∫
∞

0

∫ 2π

0
n · Σ̂ΣΣU,i·

(
H(rS;R,ϕ)

∂U(0)

∂Z

∣∣∣
Z=0

)
R dϕ dR,

(26a)

Ω
(1)
i =−αFD

h3

∫
∞

0

∫ 2π

0
n · Σ̂ΣΣΩ,i·

(
H(rS;R,ϕ)

∂U(0)

∂Z

∣∣∣
Z=0

)
R dϕ dR.

(26b)

By exploiting the symmetries of the stresses these equations sim-
plify to

U (1)
i =−αFD

h2

∫
∞

0

∫ 2π

0
H(rS;R,ϕ)×

[
Σ̂

U,i
ZR

∂U (0)
R

∂Z

]
Z=0

R dϕ dR,

(27a)

Ω
(1)
i =−αFD

h3

∫
∞

0

∫ 2π

0
H(rS;R,ϕ)×

[
Σ̂

Ω,i
ZR

∂U (0)
R

∂Z
+ Σ̂

Ω,i
Zϕ

∂U (0)
ϕ

∂Z

]
Z=0

R dϕ dR.

(27b)

These expressions are valid for arbitrary surface shapes H(x,y)
and depend on the position rS and distance h of the microswim-
mer relative to the underlying surface.

3.3 Periodic surface shape

We consider the roughness-induced velocities of Stokes singular-
ities near a periodic, wavy surface, H(x,y) = cos(2πx/λ ), where
λ denotes the characteristic wavelength. The calculations of the
velocities can be mostly performed analytically up to the radial
integral, which we then evaluate numerically. As example, we
present the case of a force dipole in the Appendix A.2.

Since roughness-induced velocities depend locally on the
particle-surface configuration, we selected two cases to illustrate
the role of the characteristic wavelength of the surface on the
translational and rotational velocities. In particular, varying the
wavelength λ effectively changes the slope of the surface located
below the microswimmer as well as the width of the valley that
modifies the hydrodynamic flows. Figures 3 and 4 show the
results for a microswimmer directed perpendicular to the sur-
face grooves (ϕ0 = 0) at an angle ϑ0 = −π/8 towards the peri-
odic surface for varying λ/h and for different swimmer positions
r0 = [xS,yS,h]T . In particular, we fix the swimmer-surface distance
h/a = 2, set yS = 0, and consider xS/λ = 0 and xS/λ = 0.25.

For wavelengths much smaller than the particle distance from
the wall, 0.1 . λ/h . 1, roughness-induced velocities approach
zero. In this case, the surface area closest to the agent contains
several surface bumps that smear out roughness-induced flows
and therefore the microswimmer experiences the average wall
contribution only. This behavior could change for the case where
the surface tips are longer than the wavelength λ . εh. Then the
tips may dominate the overall surface contribution. This, how-
ever, is not captured by our domain perturbation method and fur-
ther analysis about its validity for small λ is required.

For large wavelengths, λ/h� 1, and for a microswimmer lo-
cated on top of a hill or a valley (i.e., xS/λ = 0,0.5) the surface
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Fig. 3 Roughness-induced velocities of a force dipole (FD), source dipole (SD), force quadrupole (FQ), and rotlet dipole (RD) near a wavy surface of
shape H(x,y) = cos(2πx/λ ). The components of the first-order velocities, U(1) (a-c) and ΩΩΩ

(1) (d-f), are shown with respect to the wavelength λ/h for
a microswimmer located at a distance h/a = 2, at position xS/λ = 0, and with pitch angle ϑ0 =−π/8 and ϕ0 = 0. The velocities are normalized by the
velocities induced by a wall shifted closer to the particle by εh, Uε = dU U∗ and ΩΩΩ

ε = dΩΩΩΩ
∗. Here, dU = 2 (dU = 3) and dΩ = 3 (dΩ = 4) for the force

dipole (all other higher-order singularities).
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Fig. 4 Roughness-induced velocities of a force dipole (FD), source dipole (SD), force quadrupole (FQ), and rotlet dipole (RD) near a wavy surface
of shape H(x,y) = cos(2πx/λ ). The components of the velocities, U(1) (a-c) and ΩΩΩ

(1) (d-f), are shown with respect to the wavelength λ/h for a
microswimmer located at a distance h/a = 2, at position xS/λ = 0.25, and with pitch angle ϑ0 =−π/8 and ϕ0 = 0. Here, dU = 2 (dU = 3) and dΩ = 3
(dΩ = 4) for the force dipole (higher-order singularities) and α = αFD,αSD,αFQ,αRD, respectively.
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essentially appears closer to or further away from the swimmer,
h→ h(1∓ ε), whereas the surface shape does not impact the ve-
locities since its slope becomes negligible. An expansion in ε indi-
cates that the velocities for a force dipole generated by the pres-
ence of a planar wall are proportional to

U∗ ∝
αFD

h2(1∓ ε)2 =
αFD

h2 (1±2ε)+O(ε2) (28)

and similarly for higher-order singularities, U∗ ∝ α(1± 3ε)/h3 +

O(ε2). Thus, the roughness-induced velocities at xS/λ = 0,0.5
approach Uε =±dU U∗, where dU = 2 for a force dipole and dU = 3
for higher-order singularities (SD, FQ, RD). The angular velocities
tend towards ΩΩΩ

ε = ±dΩΩΩΩ
∗, with dΩ = 3 for a force dipole and

dΩ = 4 for the higher-order singularities. We observe that the
roughness-induced velocities approach those induced by a shifted
planar wall at λ/h & 10 [Fig. 3].

Moreover, the roughness-induced velocities of a particle lo-
cated at xS/λ = 0.25 (and xS/λ = 0.75 (not shown)) vanish for
large wavelengths, λ/h � 1, as the underlying surface shape,
z = εhH(x,y), approaches the reference surface, S0 (see Fig. 4).
The translational and angular velocities induced by a wavy sur-
face, U(1) and ΩΩΩ

(1), display non-trivial behavior at wavelengths
1 . λ/h . 10, where the hydrodynamic couplings of the self-
propelled particle and the boundary depend on details of the sur-
face topography.

In particular, the contribution due to roughness can be hydro-
dynamically attractive or repulsive depending on the wavelength
of the surface. A pusher-type microswimmer (at xS/λ = 0,0.25)
experiences a repulsive contribution from the surface, U (1)

z > 0, at
wavelengths λ/h∼ 1, which indicates that the extensile flow-field
becomes reflected from the underlying cavity and thereby pushes
the swimmer away from the surface. At larger wavelengths the
pusher becomes even more attracted to the surface, U (1)

z < Uε
z ,

since the cavity provides enough extra space for the incoming
fluid flow (see Figs. 3(c) and 4(c)).

The inverse effect occurs for a puller with αFD < 0, where a
surface cavity of length λ/h∼ 1 contributes attractive rather than
repulsive interactions. Higher-order singularities (SD and FQ)
also induce an inverse behavior of U (1)

z at wavelengths λ/h ∼ 1
compared to the contribution of a planar wall.

Particle velocities along the x−direction of pushers (FD) above
a surface of wavelength λ/h ∼ 1 are enhanced on top of a hill,
U (1)

x > 0, whereas at xS/λ = 0.25 they are decreased, U (1)
x < 0 (see

Figs. 3(a) and 4(a)). However, for larger wavelengths λ/h ∼ 10
the velocity contribution due to the roughness becomes positive
U (1)

x > 0 at xS/λ = 0.25, which indicates an enhancement due to
a large underlying surface cavity.

Due to the symmetry of the surface along the y−direction, a
force dipole, source dipole, and force quadrupole do not con-
tribute to the roughness-induced velocities, U (1)

y . However, a rot-
let dipole, which induces clockwise circular motion for αRD > 0,
displays non-vanishing velocities at 1 . λ/h . 10 (see Figs. 3(b)
and 4(b)). In particular, these are negative at xS/λ = 0 and pos-
itive at xS/λ = 0.25, where the interaction with the surface in-
duces motion opposite to the direction of rotation. Similarly,

at these wavelengths the roughness-induced angular velocity be-
comes positive, Ω

(1)
z > 0, and thereby reduces the clockwise ro-

tation (see Figs. 3(f) and 4(f)). The rotlet dipole also generates
rotation around ex (see Figs. 3(d) and 4(d)).

Near a planar wall, a pusher with pitch angle ϑ0 =−π/8 tends
to align parallel to the surface and thus Ω∗y < 0 (see Eq. (22)).

The angular velocities Ω
(1)
y induced by a wavy wall indicate a sim-

ilar effect that is determined by the slope of the underlying sur-
face (see Fig. 4(e)). In particular, at xS/λ = 0.25 the roughness-
induced velocities contribute with Ω

(1)
y > 0 and thereby indicate

alignment parallel with the (steeper) surface slope.

Whether a puller (αFD < 0) rotates towards or away from the
surface crucially depends on the pitch angle. In particular, near
a planar wall it rotates away for ϑ0 > 0 and towards the surface
for ϑ0 < 0 (see Eq. (22)). However, at xS/λ = 0.25 we find that
for a puller with pitch angle ϑ0 = −π/8 the first-order contribu-
tion due to the wavy surface is negative Ω

(1)
y < 0 and hence con-

tributes to a rotation away from the surface. This effect due to
the wavy surface decreases the overall rotation towards the sur-
face (as Ω∗y > 0).

Finally, we provide results for fixed wavelengths λ as a function
of the position xS. We consider the components U (1)

z and Ω
(1)
y for

a swimmer modeled as a force dipole with pitch angle ϑ0 =−π/8
and distance h/a= 2, see Fig. 5. We observe that for a wavelength
comparable to the distance from the surface, λ/h = 1, the rough-
ness causes a pusher to be attracted to cavities and repelled from
hills [Fig. 5(a)]. This, however, changes for larger wavelengths
(λ/h = 10), where close to hills the hydrodynamic attraction be-
comes enhanced, while it becomes decreased near cavities. The
rotational velocities indicate to promote rotation of a pusher so
that its swimming direction aligns parallel to the surface slope: it
rotates away from the wall at xS/λ ∼ 0.5, while it rotates towards
the wall for larger and smaller xS [Fig. 5(b)]. These results re-
main largely unaffected by changing λ . The opposite holds for
pullers.
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Fig. 5 Components of roughness-induced velocities of a microswimmer,
(a) U (1)

z and (b) Ω
(1)
y , as a function of the particle position xS for different

wavelengths λ . The swimmer is modeled as force dipole (FD) located at
h/a = 2 with ϑ0 =−π/8 and ϕ0 = 0. The gray shaded areas indicate the
underlying surface height: dark areas correspond to hills and light areas
to cavities.
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3.4 E. coli near a wavy surface

To investigate the effect of surface roughness on the velocities of
particular microswimmers, the contributions due to the individ-
ual Stokes singularities can be added up using experimentally-
measured singularity strengths. For example, the singularity
strength of a force dipole field produced by an E. coli bacterium,
which swims at speed U = 22 µm·s−1, has been measured exper-
imentally30. In this study, the dipole force and the dipole length
yielded, respectively, F ' 0.42 pN and ` ' 1.9 µm. A theoretical
study59 has corroborated these findings using simulations of flag-
ellated bacteria. In addition, it provided the torque of the rotlet
dipole, M ' 80kBT with Boltzmann constant kB and temperature
T , which is generated by the rotation of the flagellum and the
counter-rotation of the cell body. Assuming the same length `

for the rotlet dipole and using the viscosity of water, provides an
estimate for the force dipole and rotlet dipole strengths: αFD =

F`/(8πµ) ' 32 µm3·s−1 and αRD = M`/(8πµ) ' 25 µm4·s−1. We
use these as inputs to study the translational and angular veloc-
ities of an E. coli bacterium with orientation ϑ0 = 0 near a wavy
surface with different wavelengths λ and roughness ε, see Fig. 6.

Fig. 6 Velocities, U = U(0) + εU(1) and ΩΩΩ = ΩΩΩ
(0) + εΩΩΩ

(1), of an E. coli
bacterium located at a distance h = 4 µm with orientation ϑ0 = 0 near
a periodic surface. Red and blue indicate the wavelengths λ/h = 1 and
λ/h = 10, respectively. Different opacities indicate different roughnesses
(ε = 0.1,0.2,0.3): from ε = 0.1 (dark) to ε = 0.3 (light). Further, U =

22 µm·s−1 is its swim speed in an unconfined environment and black lines
denote the velocities, U(0) and ΩΩΩ

(0), near a planar wall. The gray shaded
areas indicate the underlying surface height: dark areas correspond to
hills and light areas to cavities.

As our theory is linear in the surface roughness, increasing ε

increases the contribution due to the corrugated surface shape.
However, as discussed earlier, different wavelengths can change
qualitatively the contributions of the surface shape. This becomes
manifest most prominently in Uz and Ωz [ Fig. 6(e),(f)]. In par-
ticular, for λ/h = 10 the bacterium is attracted by hills more than
valleys and the clockwise swimming motion becomes enhanced at
hills compared to valleys. A surface roughness of ε = 0.3 in fact in-
dicates a counter-clockwise rotation on top of a valley opposed to
the clockwise rotation near a planar wall. For a bacterium moving
near the wavy surface this could lead to overall clockwise swim-
ming motion with oscillations. This behavior changes for a sur-
face with a smaller wavelength λ/h = 1. The roughness-induced
contributions to Ωz and Uy originate from the rotlet dipole flow.

We further observe that the microswimmer with ϑ0 = 0, which
remains aligned parallel to the planar wall (Ωy = 0), tends to align
with the slope of the corrugated surface. More specifically, it ro-
tates towards the surface (Ωy > 0) for 0 < xs/λ < 0.5 and away
from it for 0.5 < xs/λ < 1. Also, the velocities parallel, Ux, and
transverse to the wall, Uy, become enhanced on top of inclined
downhills while they decrease near upwards slopes for λ/h = 10.
For λ/h= 1 this behavior becomes more pronounced for the trans-
verse velocity, Uy, but reverses and becomes much smaller for Ux.
The surface shape induces rotation around the long axis of the
swimming bacterium, ex, which depends on the surface slope.

Finally, we note that the contributions of the surface shape
resulting from hydrodynamic coupling remain of the order of
10−4 − 10−2 of the swim speed in an unconfined environment.
However, our analysis is limited to small surface roughness and
valid in a far-field description only and, thus, the effects are ex-
pected to become more pronounced in the near-field limit. The
results also depend on the orientation of the swimmer. While we
have limited the discussion here to a swimmer aligned parallel to
the surface, the results for an E. coli bacterium with orientation
ϑ0 =−π/8 are shown in the appendix A.3 [Fig. 8].

4 Summary and conclusion
We have presented analytical expressions for the roughness-
induced velocities of microswimmers near textured surfaces char-
acterized by arbitrary shapes up to first order in the surface am-
plitude. We have applied our theoretical predictions to study the
effect of a wavy surface on the velocities of microswimmers mod-
eled in terms of a multipole expansion, where we have accounted
for flow fields of a force dipole, source dipole, force quadrupole,
and rotlet dipole. Our results show that surface cavities, which
are comparable in size with the particle distance from the wall,
can produce repulsive contributions to the velocities of a pusher
as the extensile flow fields are reflected at the edge of the cavity.
Furthermore, the clockwise circular swimming motion of, e.g., E.
coli, bacteria near a wall37 is affected by the wavy surface shape,
which can contribute to a counter-clockwise sense of rotation or
enhance the clockwise rotation depending on the surface wave-
length and its location with respect to surface hills or valleys (see
Fig. 7 for a visualization of our conclusions).

Our findings, valid in the framework of a far-field analysis,
h/a� 1, suggest that surface cavities can possibly decrease accu-
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Fig. 7 Visualization of our qualitative conclusions (with results from
Fig. 4) for an E. coli bacterium modeled as a superposition of a force
dipole and rotlet dipole. Arrows merely indicate the sign of the velocities
near a planar wall, U(0) and ΩΩΩ

(0), and roughness-induced contributions,
U(1) and ΩΩΩ

(1). Here, CCW and CW denote counter-clockwise and clock-
wise rotation, respectively.

mulation of pusher-type microswimmers or enhance surface ac-
cumulation of pullers. Since the swimming direction is also af-
fected by the underlying surface, our theory indicates that hydro-
dynamic interactions can indeed contribute to a randomization of
deterministic circular swimming motion of bacteria nearby planar
walls, as has been observed experimentally48. Yet, details of these
possible behaviors remain to be elucidated by accounting for the
near-wall lubrication flows.

The attachment of different types of swimming and non-
swimming cells near corrugated channels in shear flow has been
investigated experimentally. These experiments have shown pre-
ferred leeward attachment of E. coli at curved elements of the sur-
face, while passive cells prefer attachment at the windward side
closer to the surface peaks60. In the future it will be interesting
to study how external flows affect our findings and thereby pro-
vide insights into the microscopic dynamics of the experimental
observations. The surface effect should become most pronounced
in the close vicinity to the surface, where details of the flows close
to the microswimmer body become important. As the flow fields
generated by a squirming sphere near a planar wall have been
elaborated analytically55, our theory can readily be applied to
elucidate squirming motion near textured walls and to study the
effect of surface heterogeneities on the dynamical behavior. In
particular, a superposition of periodic modes can be used to repre-
sent (random) rough surface shapes52,53, which could shed light
on microswimmer motion near realistic biological surfaces.
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A Appendix: Multipole expansion

A.1 Translational and rotational velocities induced by a pla-
nar wall

The velocities induced by the presence of a smooth, planar wall35

are presented here for the source dipole,

U∗SD =−αSD

4h3 cosϑ0eϕ0 −
αSD

h3 sinϑ0ez, (29a)

ΩΩΩ
∗
SD =−3αSD

8h4 cosϑ0e⊥ϕ0
, (29b)

the force quadrupole,

U∗FQ =
αFQ

32h3 cosϑ0(−13+27cos(2ϑ0))eϕ0+

αFQ

16h3 (sinϑ0 +9sin(3ϑ0))ez,

(30a)

ΩΩΩ
∗
FQ =

3αFQ

32h4 (cosϑ0 +3cos(3ϑ0))e⊥ϕ0
, (30b)

and the rotlet dipole, U∗RD = 0 and

ΩΩΩ
∗
RD =

9αRD

32h4 sin(2ϑ0)eϕ0 −
3αRD

64h4 (−1+3cos(2ϑ0))ez. (31)

A.2 Calculation of roughness-induced velocities
Here, we explicitly show the calculation of the roughness-induced
velocities of a swimmer modeled as force dipole with velocity field
u(0) = uFD +u∗FD near a planar wall. The dimensionless compo-
nents for the velocity gradient at the no-slip wall (Z=0) are[

∂U (0)
R

∂Z

]
Z=0

=
3

(1+R2)7/2

(
2R(4R2−1)cos(2(ϕ−ϕ0))cos2

ϑ0+

R(2R2−3)(3cos(2ϑ0)−1)+ (32a)

2(1−8R2 +R4)cos(ϕ−ϕ0)sin(2ϑ0)
)
,

[
∂U (0)

ϕ

∂Z

]
Z=0

=
12cosϑ0 sin(ϕ−ϕ0)(Rcos(ϕ−ϕ0)cosϑ0− sinϑ0)

(1+R2)5/2
.

(32b)

To evaluate the roughness-induced velocities we require the
stresses of the auxiliary problem. The stresses of a stokeslet,
which is located at the singularity position r0 and directed along
ex, ey, or ez, at the no-slip wall (Z = 0) are:

[
Σ̂

U,x
ZR

]
Z=0

=
3R2 cosϕ

2π(1+R2)5/2
, (33a)

[
Σ̂

U,y
ZR

]
Z=0

=
3R2 sinϕ

2π(1+R2)5/2
, (33b)

[
Σ̂

U,z
ZR

]
Z=0

=− 3R
2π(1+R2)5/2

. (33c)

Similarly, the stresses induced by rotlets evaluate to[
Σ̂

Ω,x
ZR

]
Z=0

=−3(R2−1)sinϕ

4π(1+R2)5/2
,
[
Σ̂

Ω,x
Zϕ

]
Z=0

=
3cosϕ

4π(1+R2)5/2
, (34a)

[
Σ̂

Ω,y
ZR

]
Z=0

=
3(R2−1)cosϕ

4π(1+R2)5/2
,
[
Σ̂

Ω,y
Zϕ

]
Z=0

=
3sinϕ

4π(1+R2)5/2
, (34b)

[
Σ̂

Ω,z
ZR

]
Z=0

= 0,
[
Σ̂

Ω,z
Zϕ

]
Z=0

=
3R

4π(1+R2)5/2
. (34c)
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Fig. 8 Velocities, U = U(0) + εU(1) and ΩΩΩ = ΩΩΩ
(0) + εΩΩΩ

(1), of an E. coli
bacterium located at a distance h= 4 µm with orientation ϑ0 =−π/8 near
a periodic surface. Red and blue indicate the wavelengths λ/h = 1 and
λ/h = 10, respectively. Different opacities indicate different roughnesses
(ε = 0.1,0.2,0.3): from ε = 0.1 (dark) to ε = 0.3 (light). Further, U =

22 µm·s−1 is its swim speed in an unconfined environment and black lines
denote the velocities, U(0) and ΩΩΩ

(0), near a planar wall. The gray shaded
areas indicate the underlying surface height: dark areas correspond to
hills and light areas to cavities.

We note that the presence of the wall leads to the generation of
hydrodynamic torques and, thus, rotation of the forced point par-
ticle, which we have neglected here as they do not contribute to
leading order in h. Using the expressions [Eqs. (32a)-(34c)] as
input for Eqs. (27a)-(27b) provides the roughness-induced veloc-
ities of a microswimmer modeled as a force dipole. As an ex-
ample, we calculate the roughness-induced translational velocity
along the z−direction:

U (1)
z =−αFD

h2

∫
∞

0

9R2(
R2 +1

)6×

[
2R
(

4R2−1
)

J2

(
2πhR

λ

)
cos(2ϕ0)cos2

ϑ0 cos
(

2πxS

λ

)
+

2
(

R4−8R2 +1
)

J1

(
2πhR

λ

)
cosϕ0 sin(2ϑ0)sin

(
2πxS

λ

)
−

R
(

2R2−3
)

J0

(
2πhR

λ

)
(3cos(2ϑ0)−1)cos

(
2πxS

λ

)]
dR,

(35)

where Jn(·) denotes the Bessel function of order n and the final
radial integral is performed numerically. Also, we present the
y−component of the roughness-induced rotational velocity:

Ω
(1)
y =

αFD

h3

∫
∞

0

9

2π
(
R2 +1

)6

[
2RJ2

(
2hπR

λ

)
×

(
π

(
R6−9R4 +9R2−1

)
cosϕ0 sin(2ϑ0)cos

(
2πxS

λ

)
+

2
λ

h
R2
(

3−2R2
)

cos(2ϕ0)cos2
ϑ0 sin

(
2πxS

λ

))
+

J1

(
2πhR

λ

)(
πR2

(
R2−1

)
sin
(

2πxS

λ

)
×

(
2
(

4R2−1
)

cos(2ϕ0)cos2
ϑ0 +

(
2R2−3

)
(3cos(2ϑ0)−1)

)
−

λ

h

(
R6−9R4 +8R2−2

)
cosϕ0 sin(2ϑ0)cos

(
2πxS

λ

))]
dR.

(36)

To calculate the roughness-induced velocities of higher-order
singularities (SD, FQ, and RD) the velocity gradient [Eqs. (32a)-
(32b)] has to be amplified (see Ref.35). Additional details on the
calculations can be provided upon request.

A.3 E. coli near a wavy surface with orientation ϑ0 =−π/8
Figure 8 shows the results of an E. coli bacterium with swimming
direction ϑ0 = −π/8. The motility parameters are discussed in
Sec. 3.4.
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