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We model collective disk flow though a square array of obstacles as the flow direction is changed
relative to the symmetry directions of the array. At lower disk densities there is no clogging for
any driving direction, but as the disk density increases, the average disk velocity decreases and
develops a drive angle dependence. For certain driving angles, the flow is reduced or drops to
zero when the system forms a heterogeneous clogged state consisting of high density clogged
regions coexisting with empty regions. The clogged states are fragile and can be unclogged by
changing the driving angle. For large obstacle sizes, we find a uniform clogged state that is distinct
from the collective clogging regime. Within the clogged phases, depinning transitions can occur as
a function of increasing driving force, with intermittent motion appearing just above the depinning
threshold. The clogging is robust against the random removal or dilution of the obstacle sites, and
the disks are able to form system-spanning clogged clusters even under increasing dilution. If the
dilution becomes too large, however, the clogging behavior is lost.

There are a variety of systems that can be described as a loose
assembly of particles which exhibit jamming behaviors. At lower
densities, flow occurs easily in such systems, but at high densities
the system can act like a solid in which all flow ceases1–6. Jam-
ming has been extensively studied as a function of density1,3,
shear6, particle shape5,7–9, and friction effects10,11. Many of
these studies involved no quenched disorder so that the system
can be described as containing only particle-particle interactions.
It is also possible for the particle motion to be stopped by some
form of external constraints, such as flow through bottlenecks
or funnels12–17, motion through a mesh18–22, flow over a disor-
dered substrate23–25, or flow in porous media26–32. The particle
flow stops when the combination of the particle density and the
obstacle density is high enough. Open questions include identify-
ing when the cessation of flow in specific systems with quenched
disorder can be described as jamming, clogging, or depinning, as
well as how to distinguish between these phenomena.

There are several limiting cases for jamming and clogging be-
havior. For example, frictionless disks have a well defined jam-
ming density φJ in the absence of obstacles. If a small number of
obstacles are added, in the high density limit the system can still
be described as reaching a jamming point at a slightly lower den-
sity φ < φJ due to the diverging length scale lJ that emerges as the
jamming density in the clean system is approached1–4. Jamming,
which is associated with a uniform particle density throughout
the system, occurs once the average distance between obstacles
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lobs becomes smaller than the jamming length scale lobs < lJ . This
has been studied in several systems in the limit of high particle
density and low obstacle density.

Another limit is the clogging of a single particle, which can arise
for flow along the x direction through a square array of obstacles
when the obstacle radius becomes large enough that the particle
cannot fit in the space between adjacent obstacles. Between the
jamming and single particle clogging limits, a variety of other
types of collective clogging behaviors are possible in which groups
of particles come together to create a locally stuck region.

Several studies addressing the effects of a small number of
obstacles or weak quenched disorder on the jamming transi-
tion show that the jamming density decreases as obstacles are
added33–35, while other studies have focused on a crossover from
jamming to clogging behavior for particles moving through obsta-
cle arrays36–39. Péter et al.37 considered an assembly of monodis-
perse particles moving over a random obstacle array. For a small
number of obstacles, they found jamming behavior in which the
particle density is uniform in the motionless state. Once the obsta-
cle density exceeds a certain threshold, there is a crossover from
jamming to clogging behavior, with the clogging persisting down
to very low particle densities. The clogged state is highly hetero-
geneous and contains local patches in which the particle density
is close to the jamming density along with other patches in which
there are few or no particles. Additionally, the system requires
time in which to organize organize into a particular clogged con-
figuration, whereas the jammed states form very rapidly. Nguyen
et al.36 studied an assembly of bidisperse grains moving through
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a two-dimensional periodic obstacle array and also found a tran-
sition to a clogged state characterized by the formation of a high
density phase coexisting with a low density phase. In this case,
the susceptibility to the formation of a clogged state depended on
the direction of the flow relative to the substrate symmetry direc-
tions. For example, when the obstacles are small, the system does
not jam when driven along the x-direction, but for driving along
30◦, the system can reach a clogged or partially jammed state. In
experimental work, Stoop et al.38,39 studied the motion of col-
loidal disks through a random array of obstacles. They found
that the flow decreases over time due to the gradual formation of
clogged regions.

In this work we examine monodisperse disks moving through
a periodic array of obstacles under an external drive that varies
in direction from 0◦ to 90◦ from the x axis. For low disk densi-
ties, the disks flow for every direction of applied drive; however,
the net velocity drops at incommensurate angles and reaches a
maximum for drives along the easy flow directions of 0◦, 45◦ and
90◦. When the disk density is increased, we find that although
flow still occurs for driving near 0◦ and 90◦, the system begins
to clog at the intermediate angles by forming a phase separated
state containing regions of high and low disk density. The clogged
system is fragile in nature40, and we find a partial hysteresis ef-
fect in which the flow can resume if the driving angle is changed
after the clogged state forms. We map the locations of the clogged
states as a function of obstacle size, and show that there is a crit-
ical obstacle size above which even single disks become clogged
for driving along the incommensurate directions. We find that
a clogged state can undergo a depinning transition to a flowing
state if the driving force is increased. Just above the depinning
transition, the flow is intermittent and there is a coexistence of
clogged states and moving states; however, the moving disks do
not exchange neighbors, indicating that the depinning transition
is elastic41. These results show that clogging is associated with
changes in the packing that result from modifying either the mo-
bile disk density or the obstacle density, while depinning is asso-
ciated with changing the driving force for a system that is already
in a heterogeneous or uniform clogged state.

We find that the clogged states are fairly robust to dilution of
the obstacle lattice as long as large scale system-spanning dense
clusters can still occur; however, when the dilution becomes ex-
tensive, the system flows instead of clogging.

Experimental systems in which our results could be tested in-
clude particle flow through periodic obstacle arrays42–47 or opti-
cal trap arrays48–52. Most previous works in such systems were
performed in the low density regime where particle-particle in-
teractions are weak. Clogging behavior is expected to occur for
high particle densities or in regimes where the diameter of the
obstacles is large.

Simulation

We model a two dimensional L× L system containing a square
array of obstacles with lattice spacing a and obstacle radius robs.
We fix L = 36 and a = 4.0. Within the system we place Nd mobile
disks with dynamics given by the following overdamped equation

of motion:
αdvi = Fdd

i +Fobs
i +FD

i . (1)

The velocity of disk i is vi = dri/dt, the disk position is ri, and
the damping constant αd is set to αd = 1.0. The disk-disk inter-
action force Fdd

i arises from a harmonic repulsive potential with
radius rd , which we fix to rd = 0.5. We set the strength of the har-
monic repulsion to k = 30, which is strong enough that there is
only weak overlap of the disks for the driving forces we consider
in most of the paper; however, when we study depinning, the
finite harmonic force allows small distortions of the disks to oc-
cur. The disk-obstacle force Fobs is also modeled with a repulsive
harmonic potential with the same strength k. The system density
is defined as the total area covered by the obstacles and mobile
disks, φ = Nobsπr2

obs/L2 +Ndπr2
d/L2, where Nobs is the number of

obstacles. The external drive FD =FD[cos(θ)x̂+sin(θ)ŷ] is initially
applied along the x-direction and gradually rotates from θ = 0◦ to
θ = 90◦ or higher. We measure the average velocity of all of the
mobile disks in the x-direction, 〈Vx〉 = N−1

d 〈∑
Nd
i=1 vi · x̂〉, where the

average is taken over a time of 25000 simulation time steps, and
in the y-direction, 〈Vy〉=N−1

d 〈∑
Nd
i=1 vi · ŷ〉, as well as the net velocity

〈V 〉=
√
〈Vx〉2 + 〈Vy〉2. We also plot the mobility M = 〈V 〉/(αd |FD|),

which has the value M = 1 for a disk that is flowing freely with-
out striking any other disks or obstacles. Similarly, we measure
Mx = 〈Vx〉/(αd |FD|) and My = 〈Vy〉/(αd |FD|). For low drives, the
system behavior is close to the hard disk limit, while for higher
drives the behavior is closer to what one would find for bubbles
or emulsions. Our parameters are dimensionless, but a reason-
able comparison to experiment can be made for the system used
by Stoop and Tierno38, where the particles are of radius 1.3 µm,
the obstacles are of radius 2 µm, the lattice periodicity is 4 to 5
µm, and the velocities are in the range of 0 to 10 µm/s.

We find that the dynamics can depend on the rate at which
the drive direction is changed, so we consider the limit where the
direction is changed slowly enough that such effects are absent,
which for our parameters is δθ = 0.000125 applied every 25000
simulation time steps. In previous work we examined lower disk
densities where the system is in the flowing state and exhibits a
series of directional locking effects where the disks preferentially
flow along specific symmetry directions of the obstacle lattice53.
Here we focus on large obstacle sizes and/or large disk densities
where clogging effects appear.

Directional Clogging and Memory Effect

We first consider a system with robs = 1.485 at FD = 0.0025. In
Fig. 1(a) we plot M versus θ at φ = 0.632 where there are Nobs = 81
obstacles and Nd = 330 mobile disks. If the disks were flowing
freely without contacting the obstacles or other disks, we would
obtain M = 1.0. Figure 1(a) shows that M is finite for all driv-
ing angles, indicating that the system is never in a clogged state;
however, local maxima in M appear at θ = 0◦, 45◦, and 90◦. At
these symmetry directions of the substrate array, the disks can
minimize the number of collisions that occur with the obstacles,
as studied previously53. Local maxima of mobility are expected
to be centered at angles θ = tan−1(p/q), where p and q are in-
tegers, and as the obstacle radius or the number of mobile disks
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Fig. 1 The value of the mobility M per particle vs driving direction θ for
mobile disks moving through a square obstacle array with robs = 1.485
at FD = 0.0025. (a) At a total system density of φ = 0.632, the disks are
always flowing but M has local maxima at θ = 0◦, 45◦ and 90◦. (b) At φ =

0.68, there are extended regions where the system is in a clogged state.
The labels (a,b,c,d) indicate the values of θ at which the images in Fig. 2
were obtained. The arrows indicate the direction of the driving force,
which is in the positive x direction when θ = 0◦, the positive y direction for
θ = 90◦, and the negative x direction when θ = 180◦.

decreases, more of these mobility maxima appear in the M versus
θ curve53. In Fig. 1(a), the maximum value of M = 0.84 occurs for
θ = 90◦, where all the disks are flowing but the collisions cause
a reduction in the velocity compared to an obstacle-free system.
The minimum value of M = 0.5 falls near θ = 30◦ where there are
regions of the sample in which some disks are completely stuck
while in other regions of the sample the disks continue to move.

In Fig. 1(b), we plot M versus θ for the same system with a
larger number Nd = 409 of mobile disks, giving φ = 0.68. There
are now extended regions of M = 0.0 in which the system is in
a clogged state, such as for 30◦ < θ < 70◦ and 120◦ < θ < 167◦.
In other intervals of θ , the disks are still able to flow, such as for
driving along the 0◦ and 90◦ symmetry directions of the obstacle
array. The maximum value of M = 0.68 appears at θ = 0◦. There
is then a drop in mobility with a value of M = 0.15 at θ = 90◦,
followed by an increase of mobility back to M ≈ 0.53 for θ = 180◦.
The mobility has a similar value for driving in the positive or neg-
ative x direction but is considerably smaller for driving in the y
direction. This hysteresis or memory of the initial driving direc-
tion results from the fragility of the clogged states. When the
disks first form a clogged phase at θ = 30◦, they become locked to
a configuration that blocks flow for driving along or close to that
particular value of θ . When θ increases to 90◦, a portion of the
configuration remains clogged so the flow is reduced compared
to its original θ = 0◦ value. As θ increases to θ = 180◦, along
the negative x direction, the drive exerts reversed forces on the
configurations that formed to block the θ = 30◦ flow, destroying
these configurations and unclogging the system. When we con-
tinue to cycle the value of θ , we always find greater flow along

the ±x directions than along the ±y directions. If we instead ini-
tially drive the system with θ = 90◦ so that the flow is along the y
direction, we find the opposite effect in which the flow is always
higher along the ±y directions than along the ±x directions. This
indicates that the flow retains a memory of the initial driving di-
rection. For φ = 0.632 in Fig. 1(a), M exhibits little or no memory
effect since no clogging occurs, so the values of M at θ = 0◦ and
θ = 90◦ are nearly identical.

x(a)

y

x(b)

y

xc)

y

x(d)

y

Fig. 2 The obstacle locations (red circles) and mobile disks (blue circles)
for the system in Fig. 1(b) with robs = 1.485, FD = 0.0025, and φ = 0.68 at
(a) θ = 2◦ where the disks are flowing along the x direction, (b) θ = 35◦

where the system is in a clogged state, and (c) θ = 90◦ where there is a
combination of clogged and flowing disks. (d) The same for the system in
Fig. 1(a) with φ = 0.632 at θ = 35◦ where a clogged state does not occur.
The arrows indicate the direction of the driving force.

In Fig. 2(a) we show a snapshot of the disk and obstacle loca-
tions for the system in Fig. 1(b) at θ = 2◦ where the disks are flow-
ing along the x direction. Figure 2(b) illustrates the clogged con-
figuration at θ = 35◦ where all the disks are immobile and have
formed high density regions coexisting with regions that contain
no mobile disks. In Fig. 2(c) at θ = 90◦, clogged configurations
coexist with moving disks which are aligned with the y direction
and flowing in the driving direction near the center of the sample.
Figure 2(d) shows the obstacle and disk configurations at θ = 35◦

for the system in Fig. 1(a) where no clogged state appears and
the disk density remains uniform. If we consider different initial
random positions for the disks, we find the same general features;
however, the smaller spike features in Fig. 1(b) shift to different
locations since these are produced by the detailed positioning of
the disks.

As φ decreases, the clogging memory effect diminishes, as
shown in the plot of M versus θ in Fig. 3(a) for a sample with
φ = 0.656. There are two clogged windows, but in the moving
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Fig. 3 (a) M vs θ for the same system in Fig. 1 with robs = 1.485 and
FD = 0.0025 but at a lower φ = 0.656 showing two clogged regimes and a
reduction of the memory, as indicated by the fact that the mobility is nearly
the same for θ = 0◦ and θ = 90◦. (b) The individual mobility components
Mx (red) and My (blue) vs θ showing that the flow in the non-clogged re-
gions occurs preferentially along the x or y directions. The arrows indicate
the direction of the driving forces at θ = 0◦, 90◦ and 180◦.

regimes, the velocity is nearly equal in magnitude for both θ = 0◦

and θ = 90◦. In Fig. 3(b) we plot the corresponding velocity com-
ponents Mx and My versus θ . When θ < 30◦, the flow is predomi-
nantly along the x direction, but there is a small amount of motion
in the y direction produced by the disk rearrangements that occur
as the system enters the clogged state. Both velocity components
are zero in the clogged regime. For 70◦ < θ < 120◦, the flow is
almost exclusively along the y direction since the clogged state
formed for driving along the x direction, causing motion along
x to be suppressed. The x direction mobility becomes negative
near θ = 180◦ since the driving force is aligned in the negative x
direction, as indicated by the arrows.

The memory effect continues to diminish with decreasing φ as
shown in Fig. 4 where we plot 〈V 〉 versus φ at θ = 0◦ and θ = 90◦.
When the system retains a memory of the driving direction, the
net velocity for these two driving directions is different. When
φ < 0.63, clogging becomes impossible and the memory effect dis-
appears. The reduced velocity magnitude found at 90◦ is approx-
imately repeated when the drive reaches 270◦, but the velocity is
generally slightly smaller after each driving cycle. We have tested
this up to four driving cycles. It may be possible that if N driving
cycles were applied, the system would settle into a reversible state
similar to that found for the memory effects in ac driven systems
such as sheared dilute colloids and amorphous solids; however,
further exploration of this effect is deferred to a later work.

The ability of the system to clog at a fixed mobile disk radius
is determined by the driving direction θ , the total density φ , and
the obstacle radius robs. Additionally, as we show below, a clogged
system can be unclogged by increasing the magnitude of the force
to produce a depinning transition. The directional dependence of
the clogging arises from the changes in the effective distance aeff

0.62 0.64 0.66 0.68 0.7

φ
0

0.2

0.4

0.6

0.8

<
V

>

Fig. 4 〈V 〉 versus density φ for the system in Fig. 1 with robs = 1.485
and FD = 0.0025 at θ = 0◦ (orange circles) and θ = 90◦ (blue squares).
A memory effect in which the velocity at the two values of θ is different
appears when φ > 0.63.
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Fig. 5 Dynamical phase diagram as a function of θ versus φ for the sys-
tem in Fig. 1 with robs = 1.485 and FD = 0.0025 showing the heterogeneous
clogging regime (green) and the flowing regime (blue).

between obstacles along the path of the mobile disks. For θ = 0◦

and θ = 90◦, aeff reaches its maximum value of aeff = a, while at
incommensurate angles, aeff is reduced, permitting more frequent
collisions between the mobile disks and the obstacles. In Fig. 5 we
plot a dynamical phase diagram as a function of θ versus φ for the
system in Fig. 1 highlighting where the heterogeneous clogged
state appears. For φ < 0.63, the system never clogs, while as φ in-
creases above φ = 0.63, the width of the clogging phase increases.
For φ > 0.71 our initialization procedure cannot pack any more
disks into the system; however, we expect that for high disk den-
sities the width of the clogged state would continue to grow until
the system becomes jammed for all directions of motion which,
in the absence of obstacles, would occur close to φ = 0.9. The
formation of a jammed rather than a clogged state would also
be associated with the loss of the memory effect since the veloc-
ity would be zero for every direction of drive. The nature of the
change from clogging to jamming behavior is beyond the scope

4 | 1–10Journal Name, [year], [vol.],

Page 4 of 11Soft Matter



of the present study. The fragility that we observe in the clogged
phase is consistent with the ideas of fragility proposed for certain
types of soft matter systems under constraints, where special con-
figurations or force chains must form to block the flow in certain
directions40.

Clogging for Varied Obstacle Size
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Fig. 6 (a) Instantaneous velocity V versus time in simulation time steps
for the system in Fig. 1 with FD = 0.0025 and fixed driving angle θ = 31◦

for obstacle radius robs = 1.51 (dark orange), 1.5025 (light blue), 1.5 (dark
green), 1.495 (dark blue), 1.485 (light orange), 1.48 (light purple), and
1.475 (light green). (b) The time τ for the system to reach a clogged
state vs robs. The solid line is a fit to τ ∝ (robs− rc)

−1.25. The dashed line
separates the heterogeneous clogging state from the uniform clogged
state.

In Fig. 6(a) we plot the instantaneous disk velocity V versus
time in simulation time steps for the system in Fig. 1(b) at a fixed
drive direction of θ = 31◦ with varied obstacle sizes of robs = 1.51,
1.5025, 1.5, 1.495, 1.485, 1.48, and 1.475. The time needed for the
system to reach a zero velocity clogged state increases with de-
creasing robs. We find two distinct clogging regimes as a function
of robs for this obstacle density. When robs > 1.502, the spacing
between adjacent obstacles is so small that even a single disk can
become trapped when attempting to move between the obsta-
cles. The obstacle lattice constant is a = 4.0 and the mobile disks
have radius rd = 0.5, so there is only exactly enough room for
the mobile disk to pass between the obstacles without touching
them when robs = 1.5. Since the disk-obstacle interaction is repre-
sented by a very stiff spring rather than a hard wall, disks can still
slip between the obstacles even when robs > 1.5. We define the
obstacle radius at which the a particle cannot move through the
lattice as rσ , which is a function of the obstacle lattice constant
and the radius of the mobile disk. In this example, rσ = 1.502. For
robs > rσ , the clogging occurs at the single disk level and is uni-
form in nature, while for 1.475 < robs < rσ , multiple mobile disks
must interact in order to form a clogged state, resulting in spatial
heterogeneity. For robs < 1.475, the system is in a flowing state.
In the heterogeneous clogging regime, the initial flowing state
persists for some time before a collision between mobile disks nu-
cleates a high density clogged region that can spread across the
sample, blocking the flow.

In Fig. 7 we illustrate some representative configurations for
the system in Fig. 6. Figure 7(a) shows a uniformly clogged state

x(a)

y

x(b)

y

x(c)

y

x(d)

y

Fig. 7 The obstacle locations (red circles) and mobile disks (blue circles)
for the system in Fig. 6 with FD = 0.0025 and θ = 31◦ where rσ , the radius
at which a single particle cannot move between two obstacles for this
obstacle lattice constant, is rσ = 1.502. (a) A uniform or homogeneous
clogged state at robs = 1.51. (b) A clogged state for robs = 1.5025 at the
crossover from uniform to heterogeneous clogging. (c) A heterogeneous
clogged state at robs = 1.5. (d) A flowing state at robs = 1.45.

at robs = 1.51, where the disks are all immobile but the density
is uniform. At robs = 1.5025 in Fig. 7(b), there is a transition to
heterogeneous clogging. In Fig. 7(c) we show a heterogeneous
clogged state at robs = 1.5, while at robs = 1.45 in Fig. 7(d), the
disks are flowing.

We measure the time τ required for the system to reach a
clogged state by fitting the curves in Fig. 6(a) to the form V (t) ∝

exp−t/τ +V0. In Fig. 6(b) we plot τ versus robs, showing a diver-
gence near a critical obstacle radius of rc = 1.4752. The solid line
is a fit to τ ∝ (robs− rc)

γ with γ = −1.25. When robs > 1.5025, τ

drops to a small value since no plastic rearrangements are re-
quired for the system to reach a uniform clogged state. The
dashed line indicates the transition from the heterogeneous to
the uniform clogging behavior. The range of the power law fit
is limited so the results should be regarded with some caution.
The power law divergence in τ near rc resembles the time diver-
gence found at reversible to irreversible transitions in periodically
sheared colloidal systems54,55, amorphous solids56, and super-
conducting vortices57. In previous numeral work on clogging in
two-dimensional random obstacle arrays37, a similar power law
time divergence with an exponent of γ = −1.29 appeared when
the system entered the clogged phase as the obstacle density was
varied. These exponents are close to the value expected for an ab-
sorbing phase transition, where the clogged state can be viewed
as the absorbed state since in this state all fluctuations are lost58.

When the obstacles are in a periodic array, the nature of the
clogged state depends on the driving direction. For θ = 0◦ or
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θ = 90◦, there is only a uniform clogged state for robs > 1.5025 but
there are no heterogeneous clogged states, so we find no power
law divergence in the clogging time for these driving directions.
At incommensurate angles, the system has a closer resemblance
to a random obstacle array, making it possible for a heteroge-
neous clogged state to appear that is associated with a power law
divergence in the time required for the clogged state to organize.
In this work we focus only on monodisperse mobile disks, but if
the mobile disk radii were bidisperse or multidisperse, the sys-
tem could exhibit heterogeneous clogging for x and y-direction
driving. In this case, the clogging transition would likely shift to
lower values of φ and robs.

0.5 0.55 0.6 0.65 0.7
φ

1.45

1.475

1.5

1.525

1.55

r o
b
s

Flowing

Uniform Clogging

Hetro Clogging

Fig. 8 Dynamical phase diagram as a function of robs vs φ for the system
in Fig. 6 with FD = 0.0025 and fixed driving angle θ = 31◦ showing the het-
erogeneous clogging regime (green), flowing regime (blue), and uniform
clogging regime (red).

In Fig. 8 we plot a dynamical phase diagram as a function of
robs versus φ for the system in Figs. 6 and 7 where the drive is
applied at θ = 31◦. For robs > 1.503, the system forms a uni-
form clogged state that is independent of φ , and the clogged state
forms immediately with no diverging time scale. When φ > 0.6
and 1.475 < robs < 1.5032, we find heterogeneous clogging with a
power law time divergence for the formation of the clogged state.
Similar phase diagrams can be constructed for other driving an-
gles. For example, at θ = 0◦ the heterogeneous clogged phase is
absent for the same range of system parameters shown in Fig. 8.

In our studies we have not considered the effect of temperature
or other perturbations such as activity59,60. Such perturbations
are likely to wash out the clogged state due to its fragile nature;
however, there could still be some remnant of nonlinear behavior
or intermittent dynamics in regions where heterogeneous clog-
ging would occur in the absence of the perturbations.

Depinning of the Clogged Phase
Since the disk-disk interactions in our system have a harmonic
form, the clogged phase should exhibit a drive dependence or
a critical driving force above which it should unclog or depin.
This type of depinning or unclogging effect is applicable to sys-
tems such as bubbles, emulsions, soft colloids, or magnetic bub-
bles. On the other hand, in granular matter or other systems with

hard core particle-particle interactions where the particles cannot
deform easily, such depinning would likely occur only for much
higher drives and would be difficult to access experimentally.
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Fig. 9 (a) The average velocity 〈Vx〉 vs FD for the system in Fig. 1 with a
drive angle of θ = 33.8◦ and a fixed number of disks and obstacles giving
φ = 0.68 at robs = 1.475 for varied obstacle size robs = 1.525 (orange), 1.51
(dark blue), 1.5 (green), 1.49 (light blue), and 1.475 (orange red). (b)
The depinning threshold FC vs robs for the system in (a). Colors indicate
the flowing regime (blue), heterogeneous clogging regime (green), and
uniform clogging regime (red).
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Fig. 10 The scaling of the velocity-force curve from Fig. 9(a) plotted
as 〈Vx〉 vs FD −Fc in the uniform clogged phase at robs = 1.525, where
FC = 0.07. Here φ = 0.68 and θ = 33.8◦. The leftmost solid line is a power
law fit with β = 0.44, while at higher drives, there is a crossover to a linear
behavior with β = 0.97, as indicated by the rightmost solid line.

In the previous sections, we considered a drive force of FD =

0.0025 which is well below the depinning threshold. We now
sweep the value of FD to explore the depinning behavior. In
Fig. 9(a) we plot 〈Vx〉 versus FD for the system in Fig. 1 at a fixed
number of obstacles and a fixed mobile disk number correspond-
ing to a density of φ = 0.675 when robs = 1.475 at robs = 1.525, 1.51,
1.5, 1.49, and 1.475. In Fig. 9(b) we plot the depinning threshold
Fc versus obstacle size. The depinning threshold becomes finite
for robs > 1.475, and increases with increasing robs.

At robs = 1.525, the velocity-force curve has an upward concav-
ity and can be fit to the form V = (FD−Fc)

β with β = 0.44, as
shown in the left side of Fig. 10. In general, systems that ex-
hibit elastic depinning have a depinning exponent of β < 1.041.
When the clogged state undergoes depinning, the disks maintain
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their same neighbors and there is no plastic flow. The resulting
elastic depinning process arises because the obstacles are large
enough that the moving disks do not have any space to pass one
another, forcing the disks to flow in 1D channels without exchang-
ing neighbors. At higher drives, the velocity crosses over to a lin-
ear form with V ∝ FD, as shown in the right side of Fig. 10 which
illustrates a fit with β = 0.97. We generally find that depinning in
the uniform clogging phase is elastic, and that the disk density re-
mains uniform in both the pinned and flowing states. Depinning
in the heterogeneous clogged phase is more consistent with a dis-
continuous jump, which could be indicative of a first order type
of transition. Here the pinned state is phase separated but the
flowing state has a uniform disk density. This result is consistent
with work which shows that the depinning of two-dimensional
phase separated systems has a first order character when either
the pinned state is phase separated and the flowing state is uni-
form or the pinned state is uniform and the flowing state is phase
separated61,62.

Fluctuations
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Fig. 11 (a) Instantaneous velocity V vs time in simulation time steps
for the system in Fig. 9(a) with φ = 0.68, θ = 33.8◦, and robs = 1.51 at
FD/FC = 1.0034 (red) and FD/FC = 1.67 (blue). (b) The corresponding
velocity distributions P(V ).

We next address the nature of the fluctuations of the flow above
the declogging force Fc. Generally we observe highly intermittent
flow immediately above the declogging or depinning transition,
where regions which are temporarily clogged coexist with moving
or flowing regions, while at higher drives all of the disks are flow-
ing. In Fig. 11(a) we plot the instantaneous velocity V versus time
for the system in Fig. 9(a) with robs = 1.51 in the uniform clogged
phase for FD/FC = 1.0034, just above the depinning threshold, as
well as for a higher drive of FD/FC = 1.67. There are pronounced
fluctuations in V just above the depinning threshold, while at
the higher drive the velocity variations are reduced. The fluctua-
tions near the depinning threshold are non-Gaussian, as shown in
Fig. 11(b) where we plot P(V ) for the samples in Fig. 11(a). For
FD/FC = 1.0034, P(V ) has an enhanced tail at lower drives, pro-
ducing a skewed distribution, while for FD/FC = 1.67, P(V ) has a
more symmetrical Gaussian shape. We observe similar trends for
the other values of robs.

Differences in the noise fluctuations can also be detected by
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Fig. 12 The power spectra S(ω) vs ω for the system in Fig. 11(a) with
φ = 0.68, θ = 33.8◦, and robs = 1.51 at FD/FC = 1.0034 (red) and FD/FC =

1.67 (blue). The dashed line is a power law fit of the FD/FC = 1.0034 curve
to α = −1.5, while the FD/FC = 1.67 curve exhibits white noise at lower
frequencies with α = 0.

computing the power spectrum of the velocity time series, S(ω) =

|
∫

exp(−2πiω)V (t)dt|2. In Fig. 12 we plot S(ω) for the system in
Fig. 11(a). To construct this plot, we average together several
time series. For FD/FC = 1.0034, the fluctuations have a 1/ f α or
broad band noise character with α =−1.5, while for FD/FC = 1.67,
we find a white noise signature with α = 0. There are peaks in
S(ω) at higher ω produced by the periodic signal from the disks
encountering the obstacle lattice. The lower frequency 1/ f α noise
is associated with long time large scale changes in the disk config-
urations. Even under very strong fluctuations, the velocity above
the depinning transition never drops to zero because this would
cause the system to be permanently captured in a clogged state.
In contrast, other systems with constant flux or some periodic per-
turbation would show intermittent flow that would be expected
to have 1/ f α noise characteristics. Studies of clogging in bot-
tlenecks have also found intermittent dynamics including power
law distributions of bursts63,64. The exponent α = 1.5 is close to
the value found in many other systems of driven particles mov-
ing over quenched disorder in two dimensions that exhibit strong
fluctuations near depinning41,65,66. Another commonly observed
feature is the reduction of the noise at higher drives well above
the depinning threshold, as shown in Fig. 12.

Clogging in Diluted Arrays
In the absence of obstacles, the disks would flow for any finite
drive. Thus we study random dilution of the obstacle array in
order to observe the transition from a clogged state to a flowing
phase. We select a fraction Pd of obstacles to remove at random
from the system in Fig. 9 with an undiluted value of φ = 0.68,
θ = 33.8◦, and FD = 0.0029, well below the depinning threshold
of the undiluted sample. In Fig. 13 we plot M versus the dilu-
tion fraction Pd for robs = 1.525, robs = 1.485, and robs = 1.475.
For each point we average over 10 realizations, and the strongest
sample-to-sample fluctuations occur near a dilution of Pd = 0.5.
The robs = 1.475 has no depinning threshold even when Pd = 0,
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the square array in the system from Fig. 9 with an undiluted value of
φ = 0.68, θ = 33.8◦ and FD = 0.003 at robs = 1.525 (red circles), 1.485 (blue
squares), and 1.475 (green triangles).

and as Pd increases, there is a gradual increase in M which reaches
a saturation value of M = 1.0 near Fd = 1.0. In the robs = 1.525
sample, the depinning threshold for Pd = 0 is FC = 0.07. As Pd

increases, the system remains clogged up to Pd = 0.52, and then
there is a gradual increase in M as the dilution fraction becomes
larger. In general, we find that when the Pd = 0 depinning thresh-
old is finite, the dilution needs to be greater than Pd = 0.44 in
order to unclog the system, as shown for the robs = 1.485 sample.
This indicates that the transition from a clogged to a flowing state
is probably related to a percolation transition.

As the dilution is increased, the time required for the system
to organize to a steady state increases but shows pronounced
fluctuations if different initializations of the mobile disk locations
are used. When robs = 1.525, the Pd = 0 sample forms a uniform
clogged state; however, as the dilution increases up to Pd = 0.5,
the clogged state becomes increasingly heterogeneous. This is
illustrated in Fig. 14. At Pd = 0.25 in Fig. 14(a), the system is spa-
tially heterogeneous but is still clogged. The clogged state that
appears at Pd = 0.494 just before the transition to a moving phase
is shown in Fig. 14(b). For 0.52 < Pd < 0.62, clogged regions co-
exist with moving regions, resulting in plastic flow as indicated
in Fig. 14(c) at Pd = 0.56. At high dilution, the system forms a
moving phase that is distinguished from the moving states found
in undiluted arrays by its pronounced spatial heterogeneity, as
shown in Fig. 14(d) for a sample with Pd = 0.86. We observe
similar dynamics in the diluted systems whenever the depinning
threshold is finite. In Fig. 15(a) we plot a barely clogged con-
figuration at robs = 1.485 and a dilution of Pd = 0.37, showing a
heterogeneous spanning clogged state, while in Fig. 15(b) we il-
lustrate the moving state at robs = 1.475 and Pd = 0.49, where a
few regions are locally clogged but the system remains in a flow-
ing state. At low dilution, the clogged clusters are separated, but
as the dilution increases, the clusters become larger until they
nearly span the system for dilutions of Pd = 0.5. The time re-
quired for the system to reach a clogged state also increases with
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y
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y

Fig. 14 The obstacle locations (red circles) and mobile disks (blue
circles) for the system in Fig. 13 with an undiluted value of φ = 0.68,
FD = 0.0025 and θ = 31◦ at robs = 1.525 under different pinning dilutions Pd .
(a) The clogged phase at Pd = 0.25. (b) The clogged phase at Pd = 0.494.
(c) The moving phase at Pd = 0.56 where green lines indicate the tra-
jectories of the mobile disks. (d) The heterogeneous moving phase at
Pd = 0.86.

increasing dilution.

The initial conditions in the diluted system are random and are
close to what would be expected in a thermalized system. The
results should depend strongly the initial conditions. For exam-
ple, if the disks were initialized by driving them into the sample,
the system could already be in a clogged or heterogeneous state
by the end of the initialization process. Additionally, when disks
are removed to create the dilution, it is possible for rare configu-
rations to appear that could cause the system to clog very rapidly
or never to clog at all. This is particularly true near the dilution
of Pd = 0.5, where the system is close to the transition between
always clogging and always flowing. It would be interesting to
temporarily reverse the direction of driving and then restore the
drive to its original direction in order to test whether the system
has some memory or whether ac driving permits it to reach a
much more strongly clogged state. Such memory effects or cyclic
driving will be the subject of another work.

Experimentally, our system could be realized in a setup similar
to the geometry used by Stoop et al. with a periodic obstacle ar-
ray. Samples with different obstacle sizes could be tested while
the substrate is rotated with respect to the drive. Although there
are many different facets that we have explored in this work,
some key features that could be the focus of an experimental
study include the memory effect, the critical obstacle size for clog-
ging to occur, and the directional dependence.
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Fig. 15 The obstacle locations (red circles) and mobile disks (blue
circles) for the system in Fig. 13 with an undiluted value of φ = 0.68,
FD = 0.0025, and θ = 31◦. (a) At robs = 1.485 and Pd = 0.37 in a barely
clogged state, the disk arrangement is heterogeneous. (b) A flowing state
at robs = 1.475 and Pd = 0.494.

Conclusions
We have examined the clogging dynamics for a monodisperse as-
sembly of disks moving through a periodic obstacle array. We find
that the susceptibility for the system to clog under fixed disk den-
sity and obstacle radius depends on the direction of drive relative
to the symmetry of the obstacle lattice. The system clogs at incom-
mensurate driving angles or for angles in the range 30◦ < θ < 70◦;
however, the range of parameters over which clogging occurs in-
creases with increasing system density and obstacle size. The sys-
tems is least susceptible to clogging for drives centered around
θ = 0◦ and θ = 90◦. Under a changing drive angle the system ex-
hibits a memory effect in which the formation of a clogged state
for one driving direction results in a reduced flow rate when the
drive is rotated into the perpendicular direction. The memory ef-
fect is lost as the disk density or obstacle radius decreases. We
observe two distinct types of clogging states: heterogeneous or
phase separated clogging in which groups of disks must gradu-
ally arrange themselves into a clogged configuration, and a uni-
form clogged state in which the spacing between adjacent obsta-
cles is small enough that individual disks can be trapped imme-
diately. Since we represent the disk-disk interactions with a stiff
harmonic potential, a clogged state can be unclogged by increas-
ing the driving force and inducing a depinning transition. The
disk configurations are generally uniform in the unpinned phase.
For drives just above the unclogging transition, the velocity ex-
hibits non-Gaussian fluctuations with a 1/ f α noise characteristic,
where α ≈ 1.5. At higher drives, the velocity distribution becomes
Gaussian and the fluctuations have a white noise signature. We
also show that a clogged to unclogged transition can be produced
when the obstacle lattice is diluted through the random removal
of a fraction of obstacles. The disk arrangement becomes increas-
ingly heterogeneous for increasing dilution, and a transition to
an unclogged state occurs for dilution fractions close to 0.5, indi-
cating that the transition has a percolation character. Our results
should be relevant for clogging dynamics in soft colloidal systems,
emulsions, and bubbles. Similar clogging effects could also oc-
cur for magnetic bubbles, skyrmions, or superconducting vortices
moving though periodic pinning or obstacle arrays.
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Disks flowing through a square obstacle array clog for incommensurate driving angles, forming either 
uniform or heterogeneous clogged states.
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