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Magttice: A Lattice Model for Hard-Magnetic Soft Ma-
terials

Huilin Ye,a Ying Lia,b, and Teng Zhangc,d∗

Magnetic actuation has emerged as a powerful and versatile mechanism for diverse applications,
ranging from soft robotics, biomedical devices to functional metamaterials. This highly interdis-
ciplinary research calls for an easy to use and efficient modeling/simulation platform that can be
leveraged by researchers with different backgrounds. Here we present a lattice model for hard-
magnetic soft materials by partitioning the elastic deformation energy into lattice stretching and
volumetric change, so-called ‘Magttice’. The magnetic actuation is realized through prescribed
nodal forces in Magttice. We further implement the model into the framework of Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) for highly efficient parallel simulations.
The Magttice is first validated by examining the deformation of ferromagnetic beam structure, and
then applied to various smart structures, such as origami plate and magnetic robot. After inves-
tigating the static deformation and dynamic motion of a soft robot, the swimming of the magnetic
robot in water, like jellyfish’s locomotion, is further studied by coupling the Magttice and Lattice
Boltzmann method (LBM). These examples indicate that the proposed Magttice model can enable
more efficient mechanical modeling and simulation for the rational design of magnetically driven
smart structures.

1 Introduction
Hard-magnetic soft materials, usually made by embedding hard
magnetic neodymium-iron-boron (NdFeB) microparticles into
soft matrix-like silicone elastomer, have attracted great atten-
tions due to their various remarkable features such as re-
sponse to remote external stimuli, fast actuation, excellent
flexibility, and stretchability1–7. Promising applications in-
clude soft robotics8–14, machines and actuators15–20, microflu-
idics21–25, biomedical devices10,13,14,26–30 (e.g., endovascular
neurosurgery10 and smart catheters29), and multifunctional ar-
chitected materials and meta-structures8,25,31–37, just to name a
few. The rapid developments of the field also call for efficient
and accurate modeling and simulation platforms to rationalize
the design, because these smart structures usually undergo very
large and nonlinear deformation in complicated working environ-
ments, e.g., confined, enclosed spaces, combined liquid and solid
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terrain and brain’s narrow and winding vasculature9,14,20,38. For
example, Hu et al.9 made untethered small-scale robots that can
perform various complicated locomotion, such as walking, jump-
ing, rolling, and swimming by designing a harmonic magnetiza-
tion profile in a magneto-elastic, rectangular sheet. Those loco-
motion modes require a sophisticated control scheme to maneu-
ver the robot as highly nonlinear deformation and multiphysics
couplings are inevitable. An efficient and accurate modeling plat-
form can provide a solid foundation for identifying the optimum
control scheme and reduce the experimental trial-and-error.

Among various numerical techniques32–39, finite element
methods (FEM) are widely used to simulate the nonlinear and
active deformation of ferromagnetic materials32,39. For example,
Zhao et al.32 derived a finite element simulation scheme for the
hard-magnetic soft materials and implemented it into the FEM
software ABAQUS through a user-defined element (UEL). This
robust and powerful platform has greatly promoted the compu-
tational contributions to the design of magnetic smart structures.
However, it is still difficult to include the multiphysics interactions
into the framework of UEL in ABAQUS, ’ fluid-structure interac-
tions. Besides, the commercial software’s parallel simulation ca-
pabilities are also constrained by the setup of the computational
environments. The availability of the research licenses another
kind of numerical technique for simulating elastic solids that
are efficient and easy to integrate with other methods for mul-
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tiphysics problems40–48. For example, lattice spring gel models
have been applied to study the fluid-driven motion of microcap-
sules on compliant surfaces44,49. Recently, the authors derived
irregular lattice models directly from FEM framework46, and fur-
ther coupled the lattice model with Lattice Boltzmann method
(LBM) for complicated fluid-structure interactions (e.g., the plat-
form of OpenFSI50). Although the simplicity and powerfulness of
the lattice model make it very promising, there is still a lack of a
rigorous derivation to include the magnetic forces.

In this work, we present a modeling and simulation platform
of hard-magnetic soft materials that combines the advantages of
the recently developed FEM schemes and lattice models, named
‘Magttice’. We show that the magnetic actuation can be incorpo-
rated into the existing lattice model as nodal forces, which can be
pre-computed if the external magnetic field is uniform. We imple-
ment the Magttice model into the open-source molecular dynam-
ics package, LAMMPS, and leverage its highly parallelized simu-
lation capability and the versatile simulation techniques for mul-
tiphysics problems, such as fluid-structure interactions, by cou-
pling the Magttice model with the LBM. We then apply the Magt-
tice model to investigate the folded deformation of an origami
plate, nonlinear deformation, and swimming of small-scale robots
made by a magnetic strip. These examples indicate that the pro-
posed Magttice model can enable more efficient mechanical mod-
eling and simulation for the rational design of magnetically driven
smart structures.

2 Computational Model and Benchmark
For hard-magnetic soft materials under moderate deformation
(i.e., strain less than 30%), Zhao et al.32 have shown that the
strain energy density (U) can be expressed as the summation of
elastic energy (i.e., the neo-Hookean model) and magnetic energy

U =
G
2
(I1−3)+

K
2
(lnJ)2−G lnJ− 1

µ0
FB̃r ·Bapplied, (1)

where G is the shear modulus, K is the bulk modulus, I1 =

λ 2
1 + λ 2

2 + λ 2
3 for plane strain deformation is the first invariant

of the right Cauchy-Green deformation tensor, λi, i = 1,2,3 is the
principal stretches and J is the determinant of the deformation
gradient tensor F, µ0 is the vacuum permeability, B̃r and Bapplied

denote the residual and applied magnetic flux densities, respec-
tively. Note that B̃r is defined in the reference configuration. The
strain energy density in Eq. (1) is derived for ideal hard-magnetic
soft materials32, whose magnetic flux density is linearly related
to the applied magnetic field. For more general cases, higher-
order terms of the magnetic flux density should be included in the
strain energy density function39,51,52. For large deformation, the
soft matrix will exhibit strain hardening (i.e., 30% for PDMS53))
and thus requires modifying the elastic strain energy density in
Eq. (1). Since many applications utilize large geometry nonlinear
deformation with small stretching or compression, we focus on
the neo-Hookean model. It should also be noted that viscoelas-
ticity is not included in the current model and has been shown to
play an important role in the deformation of magnetic soft ma-
terials54,55. All these nonlinearities in mechanical deformation
and magnetic interactions are important and interesting research

topics, which will be studied in our future work.

The lattice model is derived based on energy equivalence
through comparing with the finite element model. In the frame-
work of FEM, the deformation gradient tensor F in an irregular
element can be calculated56:

Fij =
∂xi

∂X j
= xa

i
∂Na

∂X j
, (2)

where Na(X1,X2,X3) is the shape function for a hexahedron ele-
ment, a = 1,2, ...8, and i, j,k = 1,2,3. The energy associated with
I1 can be written as:

V0UI1 =
∫ 1

2
µ

s(xa
i xb

i
∂Na

∂X j

∂Nb

∂X j
−3)dV0. (3)

By rearranging the summations in Eq. (3), the energy can be
obtained in the lattice model (28 lattice springs in a general case
Fig. 1(a)) with the form46

UI1 =
G
2
(I1−3) =

1
2

V−1
0

8

∑
b=2,b>a

7

∑
a=1

kabr2
ab−G, (4)

where rab = xa− xb. Comparing above two energy expressions,
we can easily calculate kab = −

∫
G ∂Na

∂X j

∂Nb

∂X j
dV0, j = 1,2,3,a =

1,2, ...7,b = 2,3, ..8. The volumetric energy is calculated with an
averaged volumetric strain (Fig. 1),

UJ =
1
2

K(ln(V/V0))
2−G ln(V/V0), (5)

where V and V0 represent the lattice’s volumes at the deformed
and undeformed (reference) configurations, respectively. The
spring constants kab can be computed following the same pro-
cedure of calculating stiffness matrix in FEM. In short, the lattice
model leverages FEM techniques to rewrite the strain energy in-
side a hexahedron element as a summation of energies associated
with lattice stretching and volumetric changes. Note that the bulk
modulus K is usually not directly reported in the literature, and
here we just set as K = 20G to mimic the nearly incompressible
condition of polymers and soft materials57,58.

For the magnetic energy density, it can also be pre-computed as

Umagnetic =V−1
0 (− fm)a

i xa
i , (6)

where ( fm)a
i = 1

µ0
B̃r

jB
applied
i

∫
∂Na

∂X j
dV0, i, j = 1,2,3,a = 1,2, ...8 can

be considered as general nodal forces associated with the mag-
netic actuation (Fig. 1(a)). It is noted that Eq. (6) is valid only
for spatially uniform external magnetic field because additional
forces should be considered due to the gradient of the field59.
For a given external magnetic field that is characterized by the
applied magnetic flux density Bapplied, it is interesting to note
that fm is a dead force under large deformation whose direction
does not change along with the deformation. Therefore, the mag-
netic forces can be easily incorporated into the same framework
through added nodal forces in the job script of LAMMPS simula-
tions. This enables us to directly simulate active deformations due
to magnetic forces in OpenFSI50, which is based on LAMMPS and
already has lattice models for pure mechanics structures. For tem-
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Fig. 1 Computational model and Benchmark of the proposed Magttice model. (a) Illustration of the proposed Magttice model for ferromagnetic mate-
rials. (b) Diminished magnetic forces for the interior part of a beam with uniformly residual and external magnetic fields. (c) Deformed configurations
of a representative beam (length L = 17.5 mm, width W = 5 mm, height H = 1 mm) at different external magnetic fields. The dimensionless variable
γ = G 1

µ0
|B̃r||Bapplied| characterize the effective strength of magnetic forces, in comparison to the elasticity. (d) The normalized maximum displacement

as a function of γ. The finite element solution is taken from previous work done by Zhao et al. 32.

porally changing and spatially uniform external magnetic field,
we will show in the following sections (Sec. 3) that the updates
of the magnetic forces can be directly done within the LAMMPS
script without re-running the integration in Eq. (6). This will
significantly simplify simulations of the dynamic motions of mag-
netic robots, such as swimming in water.

Viewing the magnetic actuation as forces can also help sim-
plify the modeling systems. Taking a ferromagnetic beam struc-
ture as an example with B̃r = [1,0,0]T and Bapplied = [0,0,1]T

(Fig. 1(a)-(b)), the magnetic forces applied to the interior nodes
will be cancelled out by summing the forces of the adjacent ele-
ments. This will lead to zero internal forces and non-zero nodal
forces at the two ends, which is consistent with the recent ob-
servations in the modeling of the magnetic actuation of ferro-
magnetic beams with the elastic model60. We further simulate
the deformed configurations of the representative ferromagnetic
beam (length L = 17.5 mm, width W = 5 mm, height H = 1 mm)
using the proposed magttice model (Fig. 1(c)), where we have

G = 330kPa,K = 20G and 1
µ0
|B̃r||Bapplied| as a tunable parame-

ter. As shown in Fig. 1(d), our simulation results are in excellent
agreement with FEM results reported by Zhao et al.32.

3 Applications to Smart Structures
Since the magttice model has been validated through a bench-
mark of beam bending simulation, we further demonstrate its ca-
pability of handling nonlinear and coupling deformation of smart
structures with inhomogeneous residual magnetic fields. These
examples include origami plates and magnetic robots, which rep-
resent structures with discretely and continuously nonuniform
residual magnetic flux density, respectively.

3.1 Origami plate

Miura-ori folds have been created by encoding alternating oblique
patterns of ferromagnetic domains in a simple rectangular struc-
ture (Fig. 2(a)). This is a representative example of non-

Journal Name, [year], [vol.], 1–9 | 3

Page 3 of 9 Soft Matter



68 mm

68 mm
560

17 mm

17 mm

𝑩𝑎𝑝𝑝𝑙𝑖𝑒𝑑

(a) (b)

-10.99 mm 6.70 mm

(c)

0.06 mN

-0.06 mN

Fig. 2 Origami plate for Miura-ori folds. (a) The initial planar structure with alternating ferromagnetic domain. The thickness of the plate is taken as
1 mm. (b) The deformed Miura-ori folds. (c) The distribution of the magnetic forces.

uniformly spatial residual magnetic flux density. We adopt the
same geometries (Fig. 2(a)) and material properties in previous
work32, where we have G = 330 kPa,K = 20G, 1

µ0
|B̃r| = 81kA/m

and |Bapplied|= 200 mT . After discretizing the origami plate into a
3D lattice, we compute the magnetic forces at each node. We then
let the structure deform under magnetic forces and relax to its
final equilibrium configuration by adding damping in the simula-
tion. As depicted in Fig. 2(b), the magttice model can successfully
capture the Miura-ori folds. It is interesting to note that forces
concentrate on the domain boundaries with zero values in the in-
terior of the domains (Fig. 2(c)). This can provide guidance for
developing more efficient reduced-order models, such as plates
and shells with active components, to understand ferromagnetic
origami plates’ mechanical behaviors with a much larger number
of unit cells.

3.2 Statically deformed configuration of the magnetic strip

𝜃
=
1
8
0
0

𝜃=270
0

𝜃
=
0
0

𝜃 = 900

𝛽𝑅 = 450Platform

𝑥

𝑦

𝜃

Fig. 3 Static configurations of the magnetic robot at different external
magnetic fields.

We next apply the magttice model to small-scale soft-bodied
robots made by magnetic strips with continuous and nonuni-
form residual magnetic flux density. We take the magneto-elastic,
rectangular sheet in the work of Hu et al.9 as a representative
structure and first focus on the statically deformed configura-
tions. As shown in Fig. 3 (the central schematic), a flat sheet
is placed on a solid platform and has a harmonic magnetization
profile with βR = 45◦. We model the same robot used in their
work, with length L = 3.7 mm, width w = 1.5 mm, and thickness
h = 185 µm. The material properties are also obtained from the
same work, such as G = 33 kPa,K = 20G, density ρ = 1.86 g/cm3

and 1
µ0
|B̃r| = 62 kA/m. In the following discussions, we keep all

the geometrical and material properties the same, unless other-
wise noted. To search for the static configuration after applying
the external magnetic field, we gradually increase |Bapplied| in the
simulations. After having |Bapplied| = 20 mT , the structure will
be further relaxed a sufficiently long time through a damped dy-
namic simulation until the changes of displacements become neg-
ligible. A pure repulsive interaction is assigned between the sheet
and platform to describe the non-penetration condition of the real
platform. Gravity is also included in the simulation, whose impor-
tant role will be discussed in detail in the Section 3.3.

Hu et al.9 already showed that the robot’s final configurations
depended on the direction of the external magnetic field and
had "C" and "V" stable configurations. To demonstrate these as-
pects, we run eight simulations by varying the direction θ from
0◦ to 315◦. As shown in Fig. 3, "V" shape is observed when
θ is closer to 45◦ and "C" shape can be obtained when θ is
closer to 215◦. Furthermore, rigid body rotation can be noticed
for θ = 90◦,180◦,270◦,315◦. Those findings are all in excellent
agreement with the analytical solutions and experiments in the
previous study9. However, the configurations for θ = 135◦ and
θ = 315◦ are more complicated, which is neither a "V" nor "C"
shape. In addition, there is no rigid body rotation and two con-
tact points between the robot and the platform.

3.3 Rigid body motion of the magnetic strip

The case with θ = 135◦ or θ = 315◦ seems an outlier in terms of
the rigid body rotation and the deformation mode. It motivates us
to further examine the effects of magnetic and gravity forces ap-
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Fig. 4 Competing effect of magnetic forces and the gravity on the rigid body motion. (a) Schematics of the rigid body rotation. (b) Rigid rotation as a
function of magnetic strength and gravity. (c) Representative deformed configurations of the robot under different magnetic and gravitational forces.

plied on the robot. We notice that there is a competition between
the magnetic force and gravity. Focusing on the moment at point
A, the magnetic force tends to generate rigid rotation to push the
strip away from the ground, while the gravity creates moments
to pull the strip down to the ground. Since the rigid body rota-
tion is also coupled with the large nonlinear elastic deformation
(Fig. 4(a)), we do not pursue the analytical formula of the mo-
ment applied to point A (center of the edge (x = 0,y = 0)) at a
given deformed configuration. Instead, we quantify the competi-
tion between magnetic and gravitational forces (along the nega-
tive y direction) by gradually tuning the value of density and the
magnitude of the applied magnetic flux density |Bapplied|. When
the rigid body rotation happens, only one contact point exists be-
tween the magnetic strip and platform, the tangential line of the
valley of the "V" shape can be used as an indicator of the extent
of the rigid body rotation. For the normal value of gravity on
earth, no rigid body rotation is observed, even for a large mag-
netic magnitude as 20 mT (Fig. 4(b)-(c)). When reducing the
gravity by a factor of 2, rigid body rotation begins when the mag-
netic magnitude is larger than 6.25 mT . And the strip reaches a
plateau (∼ 60◦) of the rotation angle (Fig. 4(b)-(c)). In our sim-
ulations, we can set the gravity equal to 0 (e.g., the microgravity
environment) and observe almost immediate rigid body rotation
(Fig. 4(b)). The theoretical rotation limit (90◦) is reached for
magnetic magnitude as small as 5 mT (Fig. 4(c)). These exam-
ples clearly show that gravity plays an important role in deter-
mining the magnetic stripe’s deformation modes, which can alter
the performance of the magnetic robotic jumping, turning, and
swimming. Furthermore, this also calls for more systematic sim-
ulations of the nonlinear deformation of ferromagnetic structures
to design more efficient magnetic robots at different working con-
ditions, to which the newly proposed magttice model can play an

important role.

3.4 Turning of the magnetic robot

Uniform external magnetic fields with a changing direction are
usually necessary to maneuver robots for various locomotion,
such as rolling, jumping, and swimming. To model the homoge-
neous external magnetic field with a changing direction, we can
link the new (B′applied) and original (Bapplied) applied magnetic
flux densities through a rigid body rotation matrix

B′applied
i = Ri jB

applied
j , (7)

where Ri j is the component of the matrix R for a given rotational
angle ∆θ (∆θ > 0 for counter-clockwise rotation), such that

R =

(
cos(∆θ) −sin(∆θ)

sin(∆θ) cos(∆θ)

)
(8)

Substituting Eq. (7) and Eq. (8) into the magnetic force defined
by Eq. (8), the new forces associated with the rotating external
magnetic field can be expressed as

( f ′m)
a
i = Ri j( fm)a

i , i, j = 1,2,3,a = 1,2, ...8. (9)

We only need to compute the magnetic forces at each node once
for a given θ and directly compute the new magnetic forces after
rotating the external magnetic field to θ +∆θ based on Eq. (9).
It enables us to simulate the external magnetic field’s rotation by
just modifying the variables in the input script of LAMMPS.

We demonstrate this function by using the robot turning-
deformation as an example. The robot is first deformed into a "C"
shape by setting θ = 225◦ and |Bapplied|= 16.9 mT . Then we per-
form three sequential rotations along the clockwise direction with
∆θ =−45◦. The robot is rotating with the external magnetic field
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Figure 5. (a) Time variation of the direction of the external magnetic field. (b) Structures with spatially varied residual 

magnetic flux for robotic-turn. Here we have Δ𝜃 = −450.

Fig. 5 (a) Time variation of the direction of the external magnetic field. (b) Structures with spatially varied residual magnetic flux for robotic-turn. Here
we set ∆θ =−45◦.

and keep the "C" shape (Fig. 5) (see Movie 1 of ESI†). Following
this deformation sequence, it is very interesting to note that a "C"
shape can be achieved for θ = 90◦. This is different from the "C"
shape starting from the fixed direction of the external magnetic
field (Fig. 3), indicating the structure is bi-stable.

3.5 Swimming of magnetic robot

To demonstrate this magttice platform’s capability to model the
multiphysics problem–fluid-structure interaction, we investigate
the swimming of the magnetic robot and compare it with the ex-
perimental study in terms of the swimming gaits of the soft robot.
As shown in the experiments by Hu et al.9 and our simulations,
the soft magnetic robot’s asymmetric shape can alternate between
the "C"- and "V"-shapes under periodic B with time-varying mag-
nitude along the principal axis. When the soft magnetic robot
is immersed in water, this shape-changing mechanism can push
it to swim upwards and overcome gravity, which manifests a
gait similar to jellyfish swimming15,61,62. In the simulation, we
model the same robot used in the experimental study, with length
L = 3.7 mm (x-direction), width w = 1.5 mm (y-direction), and
thickness h = 185 µm (z-direction). It is placed in a fluid domain
with size Lx = 16 mm, Ly = 8 mm and Lz = 16 mm with center ini-
tially at (Lx/2,Ly/2,Lz/4). To model the swimming motion of the
robot in water, a fluid-structure interaction framework is intro-
duced. Here, we briefly review the computational method used
in this framework, which is detailed in our recent work50. The
fluid is governed by the Navier-Stokes equation (NSE)

∂u
∂ t

+u ·∇u = − 1
ρ f ∇p+

µ

ρ f ∇
2u+Fb, (10)

∇ ·u = 0, (11)

where ρ f , u, p are the fluid density, velocity, and pressure, respec-
tively. µ is the dynamic viscosity of the fluid, and Fb is the body
force. Instead of solving the NSE directly, we use the LBM to solve
the discrete Boltzmann equation that can recover incompressible
NSE through Chapman-Enskog analysis63, due to its high effi-
ciency and accuracy. In our simulation scheme, D3Q19 model is
used64 (Fig. 6(a)), where the fluid particles have possible discrete

velocities in 19 directions. The explicit parameter underpinning
the LBM is density distribution function fi(x, t), which is associ-
ated with the macroscopic properties of fluid as

ρ
f = ∑

i
fi, ρ

f u = ∑
i

fiei +
1
2

Fb∆t. (12)

The magnetic robot is represented by a flat sheet and accounted
for by the magttice model introduced in Sec. 2. The mechanical
properties of the magnetic robot are the same as those in the
experimental study (G = 33 kPa,K = 20G, density ρ = 1.86 g/cm3

and 1
µ0
|B̃r|= 62 kA/m). The coupling between magnetic robot and

fluid is fulfilled by the immersed boundary method (IBM), which
has been extensively used to study the fluid-structure interaction
problems48,50,65–67. In IBM, the FSI force F f is calculated as

F f = β (u f (t)−us(t)), (13)

where β is the force coefficient, us(t) is the velocity of the struc-
ture, and u f (t) is the fluid velocity at the position where the struc-
ture locates. u f (t) is interpolated from its surrounding fluid ve-
locity as

u f (t) =
∫

Ω

u(x, t)δ (x−xs)dΩ. (14)

where δ is a smoothed approximation of the Dirac delta interpo-
lation function. To reflect the existence of structure in the fluid,
the FSI force will be spread into the surrounding fluid mesh as

f
′
(x, t) =

∫
Ωs

F f
δ (x−xs)dΩ. (15)

The sequence of Bapplied is given in Fig. 6(b), where the max-
imum Bapplied, Bapplied

max = 17 mT and frequency f = 25 HZ. Ac-
cordingly, the robot can perform locomotion when B is oscillating
along the direction α = 105◦ and α = 285◦. In one period, the
prescribed Bapplied sequence can make the robot demonstrate a
slow recovery stroke, in which the robot changes from "C"-shape
to "V"-shapes (0 ms− 19.5 ms as shown in Fig. 6(c)). Following
is a fast power stroke (19.5 ms− 32 ms as shown in Fig. 6(c)),
which takes the robot back to "C"-shape. From the comparison
of the configuration evolution of magnetic robot between experi-
ment and simulation results (cf. Fig. 6(c)), we can see the current
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Fig. 6 Swimming of the magnetic robot. (a) Fluid-structure interaction scheme for the swimming of the magnetic robot. (b) Sequence of the applied
magnetic field Bapplied, α is equal to 360◦−θ . (c) Comparison of the gaits of the magnetic robot in one period: from recovery stroke to power stroke.
The experimental results are adapted from Hu et al. 9.

fluid-structure interaction platform can capture the whole swim-
ming gaits of the robot underwater. Furthermore, the asymmetry
of the "C"-shape and "V"-shape makes the robot experiences more
propulsion in power stroke than the reduction in recovery stroke.
This net propulsion will propel the robot to move upwards along
z-direction. It resembles that of an actual jellyfish swimming,61,
and it is also observed in our simulation (see Movie 2 of ESI†).

4 Conclusion
We derived a lattice model for hard-magnetic soft materials, so-
called magttice. In the magttice model, the elastic energies are
described by lattice stretching and volumetric changes, and the
magnetic energy is modeled as potential energy associated with
given nodal forces. Within this magttice model, the magnetic
actuation can be incorporated into the existing lattice model
in the OpenFSI package (https://github.com/huilinye/
OpenFSI) directly through variables in the job script of LAMMPS
simulations. Tuning the magnitude and direction of the applied
magnetic flux density can also be realized in the script, without
modifying any source code, if the external magnetic field is spa-
tially uniform. The proposed magttice model is powerful and
easy to use, as demonstrated by the examples in this study, in-
cluding the origami plate and magnetic robots. Besides excellent
agreements with the previous FEM simulations and experiments,
our numerical analysis also revealed that magnetic forces would
only exist at the domain boundaries under a uniform external
magnetic field if the residual magnetic flux density is uniform

within the domain. This finding will help develop a more efficient
reduced-order model for structures with many domain structures,
such as origami plates. Besides, we found that gravity plays an
important role in the soft magnetic robots’ rigid body rotation.
This may provide theoretical guidance for designing soft mag-
netic robots working in environments with different gravity, such
as microgravity in outer space. Lastly, the magnetic robot swim-
ming modeling confirms the capability of handling nonlinear and
multiphysics coupled deformations, which explores another path
to design soft robots for biomedical applications, such as medical
micro/nanorobots14.
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