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Using molecular dynamics simulations of a coarse-grained implicit solvent model, we investigate
the binding of crescent-shaped nanoparticles (NPs) on tubular lipid membranes. The NPs adhere
to the membrane through their concave side. We found that the binding/unbinding transition
is first-order, with the threshold binding energy being higher that the unbinding threshold, and
the energy barrier between the bound and unbound states at the transition that increases with
increasing the NP’s arclength Lnp or curvature mismatch µ = Rc/Rnp, where Rc and Rnp are the
radii of curvature of the tubular membrane and the NP, respectively. Furthermore, we found that
the threshold binding energy increases with increasing either Lnp or cµ. NPs with curvature larger
than that of the tubule (µ > 1) lie perpendicularly to the tubule’s axis. However, for µ smaller than
a specific arclength-dependent mismatch µ∗, the NPs are tilted with respect to the tubule’s axis,
with the tilt angle that increases with decreasing µ. We also investigated the self-assembly of the
NPs on the tubule at relatively weak adhesion strength and found that for µ > 1 and high values of
Lnp, the NPs self-assemble into linear chains, and lie side-by-side. For µ < µ∗, and high Lnp, the
NPs also self-assemble into chains, while being tilted with respect to the tubule’s axis.

I. INTRODUCTION

The understanding of the effect of nanoparticles (NPs)
geometry and surface properties on their interaction with
biomembranes is important to the development of effec-
tive and safe nanomaterials for biomedical applications
such as biosensing [1], gene therapy [2], diagnostics [3],
targeted drug delivery [4], photothermal therapy [5] and
magnetic hyperthemal therapy [6]. This understanding
is also important to the mitigation of health and environ-
mental hazards of some nanomaterials [7]. The adhesion
of nanoscale biomolecules or synthetic NPs on biomem-
branes, resulting from attractive forces between these and
the lipid head groups or specific receptors on the mem-
brane, often leads to morphological deformations of the
membrane, which depend strongly on the size, geometry
and surface properties of the adhered particles as well as
the elasticity of the membrane [8, 9, 11–14].

Many studies have been performed in the past to
investigate the adhesion of convex NPs, schemati-
cally shown by Fig. 1 (A, B), with different geome-
tries, such as nanospheres [11, 12, 15–24], nanoellip-
soids [25, 26], nanocylinders [9], nanospherocylinders [9,
10], nanocubes [9], as well as Janus NPs [27, 28] on
biomembranes. A general feature of these NPs is that,
due to their convex shape, they can easily adhere to the
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FIG. 1: Four general NP structures interacting with a lipid
bilayer (dark green). The light green (red) region of the NP in-
teracts attractively (repulsively) with the membrane. (A) cor-
responds to a convex NP with a uniform surface that interacts
attractively with the membrane. (B) corresponds to a convex
Janus NP with one moiety that interacts attractively with the
membrane and the other moiety interacts repulsively with the
membrane. (C) corresponds to a Janus concavo-convex NP
which interacts attractively with the membrane through its
convex side only. (D) corresponds to a Janus concavo-convex
NP which interacts attractively with the membrane through
its concave side only.

membrane, regardless of the difference between the cur-
vature of the NP and that of the membrane [21, 24].
The binding process of such NPs begins with the ad-
hesion of a small surface of the NP on the mem-
brane followed by a complete or partial wrapping of
the NP by the membrane to a degree determined by
the interplay between the adhesion strength, the ge-
ometry and size of the NP, and elasticity of the mem-
brane [11, 12, 15, 16, 21, 24]. Although NPs generically
similar to those in Fig. 1 (A) can be fully wrapped and en-
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docytosed by the membrane [21, 24, 26], Janus NPs simi-
lar to those in Fig. 1 (B) can only be partially wrapped by
the membrane [27, 28]. An interesting situation emerges
in the case of Janus concavo-convex (JCC) NPs, such as
those shown schematically in Fig. 1 (C, D). A JCC NP
that interacts attractively with the membrane through
its convex side (e.g. Fig. 1 (C)) will easily adheres to the
membrane in a manner similar to convex NPs, schemati-
cally shown by Fig. 1 (A, B) [27]. However, the adhesion
process of a JCC NP to a membrane through its concave
side (Fig. 1 (D)) is not clear. In particular, it is not clear
whether the binding of JCC NPs on lipid membranes is
discontinuous and the effect that the NP’s arclength and
curvature have on the binding transition.

An example of nanoscale particles, which interact
attractively with lipid membranes through their con-
cave side, corresponds to a family of membrane pro-
teins known as Bin-Amphyphisin-Rvs (BAR) domain
proteins [29]. BAR domain proteins have a complex
structure which includes a bundle of positively charged
alpha-helical coils that are arranged in a crescent-shaped
dimer, giving them an anisotropically curved shape. This
allows them to adhere to negatively charged lipid mem-
branes and generate curvature [30]. The curvature of
BAR domains may be high, such as the case of the N-
BAR domain proteins [31], gentle, such as the case of the
F-BAR domain proteins [32], or even negative, such as
the case of the I-BAR domain proteins [33]. BAR do-
main proteins are ubiquitously found in many parts of
eukaryotic cells, and are important to many cellular pro-
cesses, including cell motility, endocytosis, cytokinesis,
intracellular trafficking, and in the shaping of cellular or-
ganelles such as the endoplasmic reticulum and the Golgi
body [30, 34].

Much of the microscopic details of the interaction be-
tween BAR domain proteins and lipid membranes have
been obtained through atomistic molecular dynamics
simulations [35–38] and coarse-grained molecular dynam-
ics simulations [36–43]. Atomic-scale simulations provide
a detailed picture of the interaction between an indi-
vidual BAR domain and a specific lipid bilayer, includ-
ing the time scale it takes for the protein to fully bind
to the membrane [38] and the effects of the protein’s
binding on the local lipid density [36] and local mem-
brane curvature [36, 38]. However, the high computa-
tional cost of atomistic molecular dynamics simulations
of BAR domain proteins does not allow for investigat-
ing their cooperative behavior on the long-wavelength
morphology of lipid membranes. These can be inferred
from coarse-grained molecular dynamics simulations of
self-assembled lipid membranes [36–43]. These simu-
lations have shown that the adhesion of the BAR do-
main proteins leads to their self-assembly, despite the
repulsive protein-protein interactions, and results in dra-
matic morphological changes of the membrane. There
are many outstanding question in regard to the effect of
BAR domain proteins interaction with lipid membrane,
particularly in regard to what aspects of the domains are

responsible for curvature sensing and generation [34].

BAR domains are complex and interact with lipid
membranes through a heterogeneous interface. In ad-
dition, BAR domains usually interact with lipid mem-
branes through amphipathic residues that insert in the
hydrophobic core of the membrane. BAR-domain pro-
teins might not therefore be ideally suitable for the un-
derstanding of the interaction of anisotropically curved
nanoscale particles, such as JCC NPs, with lipid mem-
branes. Such understanding has been attempted through
coarse-grained Monte Carlo simulations of dynamically
triangulated membranes, where the curvature-generating
NPs are treated as isotropic [44] or anisotropic fields [46,
47] with short-range attractive interactions. While al-
lowing for the investigation of the long-wavelength ef-
fect of these fields on the morphology of lipid mem-
branes, this approach cannot infer the effect of anisotrop-
ically curved NPs on the membrane at the microscopic
level. Furthermore, the results from this approach de-
pend strongly on the details of the model [48]. In another
less coarse-grained approach, the anisotropically curved
NPs are treated as intrinsically part of the membrane
with a preferred anisotropic curvature [49, 50]. A disad-
vantage of this model is that the proteins cannot bind or
unbind to the membrane, and their adhesion strength
is ill-defined. More recently, our group introduced a
relatively simple coarse-grained approach based on self-
assembled lipid membranes [51], in which the curvature-
generating agents are treated as explicit anisotropically
curved crescent-shaped NPs, shown in Fig. 2, that in-
teract attractively with the lipids head groups through
their concave side [52]. For simplicity, the concave sur-
face of these NPs is treated as homogeneous without am-
phipathic complexes that insert in the hydrophobic side
of the membrane, as is the case of the N-BAR domain
proteins. The goal of this study was not to specifically
investigate BAR domain proteins interaction with lipid
membranes. Instead, our goal was to investigate the
interaction of generic anisotropically curved NPs with
lipid membranes. Molecular dynamics simulations of this
model in the case of closed vesicles showed that, for weak
adhesion strength, the NPs aggregate into linear chains,
in which the NPs self-assemble side-by-side [52]. At high
adhesion strength, the NPs induce local saddle regions,
leading to their self-assembly into star-like networks on
the vesicle [52].

In the present article, we extend our earlier study
in [52] to investigate the binding and unbinding of
crescent-shaped NPs, and their aggregation on tubular
membranes. In Section III A, we show that the binding-
unbinding transition is first-order, with the binding of
the NPs requiring a higher adhesion energy per unit area
than their unbinding. Furthermore, both binding and
unbinding adhesion energy thresholds increase with in-
creasing the curvature mismatch, µ = Rc/Rnp, where
Rc and Rnp are the radii of curvature of the tubular
membrane and NPs, respectively, or increasing the NPs
arclength, Lnp. In Section III B, the mode of bind-
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FIG. 2: Two views of a crescent-shaped NP of radius Rnp

and arclength Lnp. The n-beads (purple beads) on the con-
cave surface of the NP interact attractively with the lipid head
beads but repulsively with the lipid tail beads, promoting ad-
hesion of the NP on the lipid membrane. The p-beads (green
beads) interact repulsively with all lipid beads. The points P
and R indicate locations on the ends of the NP, and the point
Q is at the apex of the NP.

ing of crescent-shaped NPs on tubular membranes is in-
vestigated as a function of µ and Lnp. We show that
for µ > 1, NPs lie perpendicularly to the tubule’s axis.
However, for µ smaller than a certain Lnp-dependent cur-
vature mismatch µ∗ < 1, NPs are tilted with respect
to the tubule’s axis, with an average tilt angle that in-
creases with decreasing µ or increasing Lnp. Finally, in
Section III C, we investigate the spatial arrangement of
many NPs on tubular membranes and found that they
form linear chains, with the NPs aligned side-by-side, for
µ & 1, or µ < µ∗, and high Lnp. However for low values

of Lnp or for µ∗ < µ . 1, the NPs are distributed more
uniformly on the tubule.

II. MODEL AND APPROACH

Here, we use a coarse-grained implicit-solvent model
that allows for the self-assembly of lipid membranes.
The details of this model was presented earlier in
Refs. [51, 53]. The same model was used in our previ-
ous study of membrane-induced aggregation of crescent-
shaped NPs [52]. Briefly, a lipid molecule is coarse-
grained in this model into a chain of one hydrophilic
(head) bead and two hydrophobic (tail) beads. The
anisotropically curved crescent-shaped NPs are modeled
as a composite of two types of beads, as shown in
Fig. 2. The interaction potential energy of the composite
membrane-NPs system is given by

U ({ri}) =
∑
i,j

U0
αiαj

(rij) +
∑
i

∑
j∈Ωi

Ubond
αiαj

(rij)

+
∑
i

∑
j∈Ωi

∑
k∈Ωi

Ubend
αiαjαk

(ri, rj , rk) , (1)

where ri is the position of bead i and rij = |rj−ri|. The
type of bead i, αi = h, t, n or p for lipid head beads,
lipid tail beads, NP bottom layer beads (purple beads in
Fig. 2), or other NP beads (green beads in Fig. 2), respec-
tively. Ωi is the set of beads bonded to i. In Eq. (1), U0

ij

is modeled by a soft two-body interaction, between beads
i and j, that depends on the types of the two beads, αi
and αj , and is given by the piecewise function,

U0
αiαj

(rij) =


(Umax

αiαj
− Umin

αiαj
)

(rm−rij)2

r2m
+ Umin

αiαj
if rij ≤ rm,

−2Umin
αiαj

(rc−rij)3

(rc−rm)3 + 3Umin
αiαj

(rc−rij)2

(rc−rm)2 if rm < rij ≤ rc,
0 if rij > rc,

(2)

where Umax
αβ > 0 for any pair (α, β) and Umin

hh = Umin
ht =

0. Since the solvent is implicit in this model, the self-
assembly of the lipids into stable bilayers can be achieved
by setting Umin

tt < 0 [51].

In addition to the interaction given in Eq. (2), beads
that belong to a single lipid molecule or a NP are linked
through Ubond

αiαj
given by

Ubond
αiαj

(rij) =
kbond
αiαj

2
(rij − aij)2, (3)

where kbond
αiαj

is the stiffness of the bond between i and
j. The bending stiffness of the lipid molecules and the
rigidity of the NPs are maintained by the three-body in-

teraction Ubend
ikl which is given by,

Ubend
αiαjαk

(ri, rj , rk) =
kbend
αiαjαk

2

(
cos θ0

ijk − r̂ij · r̂ik
)2
, (4)

where kbend
αiαjαk

and θ0
ijk are the bending stiffness of a

triplet (i, j, k) and its preferred splay angle, respectively,
and r̂ij = (rj − ri)/|rj − ri|. The interaction parameters
of the lipids are given by Umax

hh = Umax
ht = 100ε, Umax

tt =
200ε, Umin

hh = Umin
ht = 0, Umin

tt = −6ε, kbond = 100ε/r2
m,

kbend = 100ε, rc = 2rm, a = 0.7rm and θ0 = 180o. In
the present study we limit ourselves to membranes with
cylindrical geometry.

A crescent-shaped NP is composed of beads that are
arranged in a curved simple cubic lattice, as shown by
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Fig. 2. The beads within a NP are linked via the bond-
ing interaction, Eq. (3), with kbond = 1600ε/r2

m. The
curvature of a NP is induced by adjusting the preferred
bond length, along the tangential (curvilinear) direction,
of the nth plane of the NP according to

atann = a1

[
1 + (n− 1)

a1

Rnp

]
, with n = 1, 2, · · · , (5)

where Rnp is the NP’s radius of curvature a1 = 1.0rm
is the preferred bond length of the concave (purple)
plane in Fig. 2. The preferred bond lengths along the
axial and radial directions are both kept at a1. The
NP beads are also linked via the bending interaction,
Eq. (3), with kbend = 1600ε. The preferred angle
θ0
ijk = 90o or 180o if all three beads i, k and l are along

the same radial direction or along the z-axis, as indi-
cated in Fig. 2. Otherwise, θ0

ijk = 2 cos−1(a1/2Rnp) or

θ0
ijk = 1800 − cos−1(a1/2Rnp).

Since we are interested in the case of NPs which prefer
to adhere to the lipid membrane through their concave
side, we set Umin

hn = −ξ < 0 and Umin
hp = 0 to minimize

NPs’ adhesion through their convex side. Insertion of
the NPs in the hydrophobic region of the membrane is
prevented by setting Umin

tn = Umin
tp = 0. Umax > 0 for all

nh, nt, ph and pt pairs. Henceforth, ξ is used as a mea-
sure of the strength of the adhesive interaction between
the NP and the membrane. For pairs of beads belong-
ing to the same NP, we set Umin

nn = Umin
pp = Umin

pp = 0
and Umax

nn = Umax
pp = Umax

pp = 0. In order to pre-
vent the NPs from aggregating in the absence of lipid
membranes, interactions between two beads belonging
to different NPs are fully repulsive. For these pairs of
beads, we set Umin

nn = Umin
pp = Umin

pp = 0 and Umax
nn =

Umax
pp = Umax

pp = 100ε. We consider NPs with three dif-
ferent values of arclength, corresponding Lnp = 10, 20
and 30 nm, and three values of the radius of curvature,
corresponding to Rnp = 11, 15 and 19 nm. NPs of length
Lnp = 10 nm are composed of 160 beads (40 n-beads
and 120 p-beads), NPs of length Lnp = 20 nm are com-
posed of 320 beads (80 n-beads and 240 p-beads), and
of length Lnp = 30 nm are composed of 480 beads (120
n-beads and 360 p-beads).

Particles are moved using a molecular dynamics
scheme with a Langevin thermostat [54]:

ṙi(t) = vi(t), and

mv̇i(t) = −∇iU ({ri})− Γvi(t) + σΞi(t), (6)

where m is the mass of a each bead (same for all beads),
Γ is a bead’s friction coefficient, and σΞi(t) is a random
force originating from the heat bath. Ξi(t) obeys

〈Ξi(t)〉 = 0, (7)

〈Ξ(µ)
i (t) Ξ

(ν)
j (t′)〉 = δµνδijδ (t− t′) , (8)

with µ, ν = x, y, or z. The dissipative and random
forces are interrelated through the dissipation-fluctuation

theorem, which leads to the relationship

Γ = σ2/2kBT. (9)

The simulations are performed in a box with constant
size. In particular, the length of the box along the axis
of the lipid tube, Lz, is fixed in each simulation, and
is set to either Lz = 30 nm or 60 nm, depending on the
simulation. All simulations are performed at kBT = 3ε, a
temperature at which the bilayer is in the fluid phase [51].
The equations of motion are numerically integrated using
the velocity-Verlet algorithm with Γ =

√
6m/τ where the

timescale τ = rm(m/ε)1/2 with rm and ε being used as
scales for length and energy, respectively. The time step
in all simulations corresponds to ∆t = 0.01τ . From the
comparison of the thickness of our model bilayer in the
fluid phase, which is around 4rm, with the thickness of a
typical fluid phospholipid bilayer, ∼ 4 nm, we estimate
rm ≈ 1 nm. Hence, in the remainder of this article, all
lengths are expressed in nanometers.

III. RESULTS

Fig. 3 depicts equilibrium configurations of a single NP,
with varying arclength Lnp and radius of curvature Rnp,
on tubular membranes with varying mean radius of cur-
vature Rc. Here, Rc, is defined as the average radius of
the bare tubule measured from the head groups of the
outer leaflet. Fig. 3 shows that, in most cases, the NP
leads to transverse deformations of the membrane by an
extent that depends on the curvature mismatch parame-
ter µ = Rc/Rnp and the NP’s arclength. Fig. 3 also shows
that the NP-induced deformations extend throughout the
z-axis, owing to the relatively short length of the tubes
along the z-axis.

We first focus on the case where the curvature of the
NP is higher than that of the membrane (µ > 1). A com-
parison between Fig. 3 (A) and (B), both corresponding
to NPs with same arclength but different values of µ (2.29
for (A) and 1.68 for (B)), shows that the deformation of
the membrane increases with increasing µ. A compari-
son between Fig. 3 (B) and (C), which correspond to NPs
with same mismatch parameter (µ = 1.68) but different
values of the arclength (30 nm for (B) and 20 nm for
(C)), show that the deformation of the membrane also
increases with increasing NP’s arclength. In particular,
Fig. 3 (A-C) show that the cross-section of the tubular
membrane becomes more oval as Lnp or µ is increased.
This is quantified by the transverse curvature, c⊥ of the
tubular membrane (curvature in the xy-plane) which is
calculated as a function of the polar angle, φ, measured
from the y-axis and with the origin of xy-plane corre-
sponding to the center of mass of the tubule (see inset
of Fig. 4 (A)). Fig. 4 (A) shows that for very weak mis-
match (µ = 1.09), the curvature in the case of a bound
NP is identical to the case where the NP is unbound, i.e.
the binding of the NP does not affect the tubule’s confor-
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Rnp= 11 nm, Lnp = 30 nm, Rc= 25.2 nm

Rnp = 15 nm, Lnp = 30 nm, Rc= 25.2 nm

Rnp = 15 nm, Lnp = 20 nm, Rc= 25.2 nm
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B
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E

Rnp = 11 nm, Lnp = 20 nm, Rc= 8.1 nm

F
Rnp = 15 nm, Lnp = 30 nm, Rc= 8.1 nm
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y z

y
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D

FIG. 3: Side and front equilibrium snapshots of a tubule with a single crescent NP, at different values of Rnp, Lnp and Rc. A,
B and C correspond to the case of a tubule with Rc = 25.2 nm (µ > 1). D, E and F correspond to the case of Rc = 8.1 nm
(µ < 1).. The red and blue beads of the tubule correspond to the hydrophilic and hydrophobic beads, respectively.

mation. However for strong mismatch, Figs. 4 (B) and
(C), which correspond to µ = 1.25 and 4.36, respectively,
show that the adhesion of the NP leads to a significant
deformation of the tubule, with the degree of deforma-
tion that increases with increasing µ. In particular, both
Figs. 4 (B) and (C) show that the curvature of the vesicle
follows that of the NP at φ ≈ 0. Around the two edges
of the NP, c⊥ is smallest, in line with the Figs. 3 (A-C),
which show that the tubule tends to be flat around the
edges of the NP. As φ approaches ±π, c⊥ then increases,
indicating that the bottom of the tubule’s cross section
is highly curved.

Fig. 3 (D-F) show that the NP’s deformation of the
membrane is very weak when the radius of the tubular
membrane is smaller than that of the NP (µ < 1). While
in most cases, the NP’s end-to-end vector is perpendic-
ular to the principal axis of the tubular membrane, as
shown by Fig. 3 (A-E), Fig. 3 (F) shows that long NPs,
at low values of µ, are tilted with respect to the tubule’s
principal axis. The effects of curvature mismatch and
NP’s arclength on its tilt will be quantified and discussed
in more detail in Section III B.

We found that the kinetics of binding of a NP to the
membrane proceeds through two or three steps, as shown
by Fig. 5. Fig. 5 (A), which corresponds to the case of
µ ≈ 2.3, shows that initially, the NP adheres to the mem-
brane via its two ends. This upright mode of adhesion
is associated with a low binding energy and very weak
deformation of the membrane, and is characterized by
a high transverse and longitudinal diffusivity of the NP
on the membrane. The upright adhesion mode is then
abruptly followed by a sidewise adhesion mode, shown
by the middle snapshot of Fig. 5 (A). This mode is also
associated with weak deformation of the membrane. In-
terestingly, the NP’s end-to-end vector,

−→
PR, in this ad-

hesion mode is mostly perpendicular to the tubule’s axis.
The NP is slightly tilted in this mode, i.e., the plane con-
taining the NP points P, Q and R (defined in Fig. 2) is
not parallel to the tubule’s axis. This mode of adhesion
allows the NP to maximize contact with the tubule while
maintaining weak deformation of the tubule. The side-
wise adhesion mode may be counterintuitive since the
interaction between the p-beads of the NP and the lipid
bead h-beads is fully repulsive. However, since the range
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FIG. 4: Transverse curvature, c⊥ versus the polar angle φ,
defined in the inset of (A). Blue and red curves correspond
to the case where the NP is unbound and unbound, respec-
tively. The bound state and unbound states correspond to
adhesion strength right after and before the adhesion thresh-
old, respectively. (A) corresponds to a case of weak mismatch
Rnp = 15 nm, Lnp = 30 nm and Rc = 13.7 nm. (B) cor-
responds to a case of moderate mismatch Rnp = 11 nm,
Lnp = 30 nm and Rc = 13.7 nm. (A) corresponds to a
case of strong mismatch Rnp = 15 nm, Lnp = 30 nm and
Rc = 13.7 nm.

of this interaction is shorter than that between the n-
beads and the h-beads, strong enough attractive n − h
interaction can offset the repulsive p−h interaction in the
sidewise adhesion mode. A sidewise adhesion mode with
the end-to-end

−→
PR-vector that is parallel to the tubule’s

axis is not favorable since this would lead to more con-
tacts between the p-beads and the h-beads, and there-
fore a net repulsive interaction between the NP and the
membrane that is too high to be offset by the net attrac-

tive interaction between the n-beads and the h-beads.
Increasing the strength of the repulsive interaction be-
tween the n-beads and h-beads makes the sidewise adhe-
sion mode less favorable as an intermediate state. Frost
et al. [32] observed that F-BAR domain proteins can bind
sidewise if the to membrane is too rigid. This adhesion
mode was later confirmed by both atomistic and coarse-
grained simulations [38]. Finally, the NP then abruptly
fully adheres to the membrane through its concave side,
as shown by the right snapshot in Fig. 5 (A). In contrast
to the two previous adhesion modes, the final mode of
adhesion is associated with the highest amount of mem-
brane deformation.

Fig. 5 (B) shows that at higher curvature mismatch,
µ ≈ 4.5, the binding of the NP proceeds first through the
upright mode, then followed directly by the full adhesion
mode, bypassing the sidewise adhesion mode. This is due
to the fact that due to the flatter nature of the tubule, for
high µ, a sidewise adhesion mode would require the NP’s
plane containing the points P , Q and R to be almost
parallel to the tubule’s axis, leading to more unfavorable
contact between the lipid head beads and the NP’s p-
beads than for the case of low values of µ.
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FIG. 5: (A) The binding energy vs time for the case of a NP
with Rnp = 11 nm, Lnp = 30 nm, on a tubular membrane of
radius Rc = 25.2 nm at the adhesion strength ξ = 1.5ε. Also
shown are typical configurations depicting the three modes of
adhesion, corresponding to the upright adhesion mode, side-
wise adhesion mode and full adhesion mode. (B) Same as
(A) for a NP with same radius of curvature and arclength on
a tubular membrane with Rc = 48 nm and at the adhesion
strength ξ = 2.4ε.
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FIG. 6: Binding/unbinding phase diagrams in terms of radius of the tubular membrane, Rc, and adhesion strength, ξ, for
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correspond to the binding threshold, obtained from upward annealing with respect to ξ. Open black circles correspond to the
unbinding threshold, obtained from downward annealing scans. Orange circles represent the binding threshold for the case of
flat NPs (i.e. for Rnp = ∞). The blue circles represent the binding threshold of a second NP to the membrane. Red circles
correspond to the binding/unbinding transition as obtained from free energy calculation (see text for explanation). Solid lines
are guides to the eye.

A. Binding/Unbinding Transition of a Single NP

The binding and unbinding thresholds, are obtained
from upward and downward annealing scan simulations,
respectively, with respect to the adhesion strength ξ,
for different values of the radius of the tubular mem-
brane Rc. Fig. 6 shows the binding and unbinding
thresholds (solid and open black circles, respectively)
for three combinations of (Rnp, Lnp) corresponding to
(11 nm, 30 nm) (Fig. 6 (A)), (11 nm, 20 nm) (Fig. 6
(B)) and (15 nm, 30 nm) (Fig. 6 (C)). We emphasize
that since the upright and sidewise adhesion modes (see
Fig. 5) appear only as intermediate states, we use the
full adhesion mode to define binding of the NP to the
membrane. The results in Fig. 6 are obtained from simu-
lations on tubular membranes with Lz = 30 nm. We did
few simulations on tubes with Lz = 60 nm and found
identical results. The solid black symbols, in Fig. 6, cor-
respond to the binding adhesion strength, ξb, and are
obtained from upward annealing scans with respect to
ξ. The open black circles correspond to the unbinding
adhesion strength, ξu, and are obtained from downward
annealing scans. Fig. 6 shows that for any Rc & Rnp,
ξb > ξu, indicating that the binding/unbinding transition
is discontinuous, and that there exists an energy barrier
against the binding of the NPs to the tubular membrane.
We note that the binding energy per unit of area, corre-
sponding to about 2kBT/ nm2 for the case of the 25-nm
tubule and 11kBT/ nm2 for the case of the 48-nm tubule,
is inline with estimated binding energies of BAR-domains
of about 5kBT/ nm2 [55, 56].

Fig. 6 also shows that, for a given NP’s curvature, both
binding and unbinding thresholds increase with Rc. Fur-
thermore, Fig. 6 shows that ξb−ξu increases with increas-
ing Rc, implying an increase in the energy barrier against
binding as µ is increased. A comparison between Fig. 6
(A) and (C) shows that for a given Rc, ξb increases with

increasing the NP’s curvature. Therefore, the binding
adhesion strength threshold is increased with increasing
curvature mismatch µ.

The discontinuous nature of the binding-unbinding
transition of anisotropically curved NPs can be inferred
from the inspection of the tubule’s conformation right af-
ter full binding of the NP. Fig. 7 shows that right after full
binding, apart from the portion of the membrane bound
to the NP, the tubule’s cross-section remains mostly cir-
cular. The difference between the curvature energy of
this intermediate state and that before binding is ap-
proximately given by

∆Fc =
κl

2R2
c

[
Lnp

(
µ2 − R2

c

R̃c
2

)

+ 2πRc

(
R2
c

R̃c
2 − 1

)]
, (10)

where κ is the membrane’s bending modulus and l is the
length of the tubule along the z-axis. Here, the defor-

Before full binding                               Intermediate state Equilibrium state

!" #!"
!$%

FIG. 7: Snapshots of the tubule, in the case of Rnp = 11 nm,
Lnp = 30 nm, Rc = 48 nm and ξ = 2.4ε, before full bind-
ing (left), right after full binding (center) and at equilibrium
(right).
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mation is assumed to extend throughout the z-axis, as
is the case in our simulations. In the case where µ > 1,
Rnp < R̃c < Rc. As a result, ∆Fc increases as either Lnp
or µ is increased, implying an increase in the energy bar-
rier with increasing µ or Lnp, and therefore a widening of
the gap between the binding and unbinding thresholds, in
agreement with Fig. 6. This analysis also agrees with the
fact that for µ ≈ 1, the binding and unbinding thresholds
are practically identical, in agreement with Fig. 6.

We also performed simulations of flat NPs (1/Rnp = 0)
and found that they bind in such a way that they lie par-
allel to the tubule’s axis. Furthermore, we found that the
binding and unbinding transitions of flat NPs are identi-
cal as shown by the orange data in the phase diagrams of
Fig. 6, implying a reversible nature of the binding transi-
tion of flat NPs. As in the case of curved NPs, the binding
of flat NPs is also a first-order transition since the con-
tact area between the NP and the membrane increases
discontinuously from 0 to the a finite value corresponding
to the area of the face of the NP that interacts attrac-
tively with the membrane. Therefore, the reversibility of
this transition implies that the energy barrier between
the unbound and bound states of flat NPs is about or
weaker than the thermal energy. Fig. 6 also shows that
unlike curved NPs, the binding/unbinding transition of
flat NPs is independent of the curvature of the tubule or
length of the NP, and lower than the binding and un-
binding transitions of the crescent NPs.

We also inferred the binding of a second NP on the
tubule by performing upward annealing simulations of an
unbound NP and a tubular membrane with an already
bound NP. The binding threshold of the second NP is
shown by the blue data in Fig. 6 (A-C). This figure shows
that the binding energy threshold of the second NP is
weaker than that of the first NP. We also found that the
second NP binds at a location near the first NP, where
a local curvature of the membrane has already been gen-
erated by the first NP. The adhesion of the second NP
is therefore mediated by curvature sensing which is en-
ergetically less taxing than the adhesion of the first NP,
which requires curvature generation.

To validate the binding/unbinding transitions dis-
cussed earlier, we calculated the free energy of the com-
posite membrane-NP system given by

F = Fadh + Fcurv, (11)

where Fadh is the net potential energy due to interac-
tions between the NP and the membrane. Fcurv, is es-
timated using the Helfrich Hamiltonian [57] with a local
Monge representation following a method we introduced
earlier [23]. This approach does not account for the mem-
brane conformational entropic contributions, while only
partially accounts for the lipids conformational entropy.
As such, this approach is a saddle-point approximation.
In Eq. (11), we neglect the contribution arising from the
the spontaneous curvature which can be induced from the
redistribution of the lipids in the inner and outer leaflets

of the tubules [58]. Furthermore, since the volume of a
tubule in our model is not constrained, the area of the
tubule freely adjusts to a value that minimizes the surface
energy. Hence, a tension term is also not accounted for
in Eq. (11). The results from this approach are shown
by the red data in the phase diagrams of Fig. 6. The
free energy calculations therefore predict an equilibrium
binding/unbinding phase transition that nicely lies be-
tween the non-equilibrium binding and unbinding tran-
sitions that are respectively obtained from upward and
downward annealing scans with respect to ξ.

B. Modes of NPs Adhesion

We have seen earlier that when the curvature mismatch
µ > 1, the NP’s end-to-end vector lies perpendicularly
to the axis of the tubular membrane, as in the case of
Fig. 3 (A-E). However, NPs are tilted with respect to the
tubule’s axis for µ < 1 as in the case of Fig. 3 (F). We
characterize the NP’s tilt by the angle, θ, between the
axis of the tubular membrane and the axis perpendicular
to the plane containing the three points, P , Q and R,
on the NP, as indicated in Fig. 8 (A). θ = 0 therefore
corresponds to an NP lying perpendicularly to the tubule.

The tilt angle vs the tubule’s radius is depicted in Fig. 8
(B) for the cases of Rnp = 15 and 19 nm, both with
Lnp = 30 nm and at the adhesion strength ξ = 1ε. This
figure shows that the tilt angle is indeed close to 0 when
Rc > Rnp, and that it increases monotonically with de-
creasing Rc. Fig. 8 (B) also shows that for a given Rc,
the average value of the tilt angle increases with increas-
ing NP’s radius of curvature. The reason why the tilt
angle remains finite even for large values of Rc is due to
fluctuations and the fact that by definition 0 ≤ θ ≤ 90o.
Interestingly, Fig. 8 (C) shows that the tilt angle depends
only on the mismatch parameter, µ, for a given Lnp.

A rough estimation of the tilt angle, in the case of
µ < 1, can be obtained from the following purely geomet-
ric argument, which assumes that the tubule’s geometry
remains cylindrical when the NP adheres at some tilt. A
maximum contact between the NP and the membrane is
therefore achieved if the NP tilts at an angle such that
its radius of curvature is equal to the maximum radius of
curvature, Rmax, of the ellipse resulting from the inter-
section between the plane containing points P, Q and R
belonging to the NP, and the tubule’s cylinder, as shown
by Fig. 8 (A),

Rnp = Rmax = b2/a, (12)

where a = Rc is the length of the semi-minor axis of the
ellipse, and b = Rc/ sin θ is the length of the semi-major
axis of the ellipse. This leads to a tilt angle

θ = cos−1√µ. (13)

We note that the assumption in this argument that the
tubule remains cylindrical implies that the NP cannot
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FIG. 8: (A) Left: A configuration showing a NP adhered to a lipid tubule with a tilt angle θ. Right: The ellipse resulting from
the intersection of the plane containing the three points P, Q and R, which belong to the NP, and the cylinder of radius Rc. a
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dashed line corresponds to Eq. (13). (D) Normalized distributions of the tilt angle for the case of NPs with Rnp = 15 nm and
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FIG. 10: Configuration snapshots of 5 NPs with radius of curvature Rnp = 15 nm with different arclengths on tubular
membranes with different radii. Configurations on the left, middle and right rows correspond to curvature mismatch µ = 1.68,
1.13 and 0.633 respectively. The configurations are obtained from simulations at ξ = 0.6ε.

fully adhere to the tubule, since the NP has a constant
curvature whereas the bisecting ellipse has varying cur-
vature, as shown by Fig. 8 (A). Nevertheless, Fig. 8 (B)
and (C) show that the tilt angle as predicted by this ge-
ometric argument is in qualitative agreement with the
simulations.

A major difference between the numerical results and
the geometric argument, as shown by Fig. 8 (C), is that
the NPs are substantially tilted only for µ . µ∗ ≈ 0.7
(corresponding roughly to the inflection point of the
graph of the tilt angle versus µ in Fig. 7(C)) in the case of
Lnp = 30 nm. To understand why the tilt angle remains
small even when µ is slightly lower than 1, we extracted
the distribution of the tilt angle, ρ(θ), for different values
of µ. Fig. 8 (D) shows the tilt angle distributions for the
case of Rnp = 15 nm and Lnp = 30 nm for different val-
ues of Rc. This figure shows that ρ(θ) is peaked at θ = 0
for µ > µ∗, implying that for this range of µ, non-tilted
configurations of the NP are most probable, albeit with
a large amount of fluctuations around θ = 0.The distri-
butions become peaked at a finite values of θ only for
µ . µ∗, and the amount of fluctuations in the tilt angle
decreases with decreasing µ.

We now turn to the effect of the NP’s arclength on
its mode of binding. Fig. 9 (A) depicts the tilt angle vs
the radius of the tubular membrane for NPs with radius
of curvature Rnp = 15 nm and three values of the arc
length, Lnp = 10, 20, and 30 nm. Fig. 9 (B) shows the
tilt angle distributions of these systems for the case of

Rc = 8.68 nm (µ = 0.58). This figure shows that the
distributions for Lnp = 20 and 30 nm are peaked at fi-
nite values of θ. However, for the case of Lnp = 10 nm,
the distribution is peaked at θ ≈ 0. This implies that
short NPs are in general non-tilted even for low values
of µ. Fig. 9 (A) shows that as the NP’s arclength is de-
creased, the crossover radius of the tubule between the
tilted and non-tilted configurations of the NP, is shifted
to lower values. This implies that µ∗ decreases with de-
creasing Lnp. We note the crossover µ∗ is not observed
for the shortest NPs (Lnp = 10 nm), since this would re-
quire very thin tubules which cannot be simulated while
maintaining their stability. Fig. 9 (B) also shows that the
spread of the distributions increases with decreasing NP’s
arclength. This implies that the degree of NP’s tilt is the
result of a competition between the positional entropy
of the NP on the tubule and the binding energy whose
absolute value decreases with decreasing NP’s arclength.

C. Self-Assembly of NPs on Tubular Membranes

We now turn to the self-assembly of many NPs on
tubular membranes. Here we focus on the case of rela-
tively weak adhesion strength, corresponding to ξ = 0.6ε.
Fig. 10 shows snapshots of 5 NPs with Rnp = 15 nm and
three values of Lnp on tubular membranes with radius
of curvature Rc = 25.2, 16.9 and 9.5 nm. The results
are obtained from simulations of tubular membranes of
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length Lz = 62 nm. The self-assembly of the NPs is
quantified in Fig. 11 through scatterplots of the separa-
tion between the centers of mass of the two NPs along
the z-axis, ∆z, and their angular separation, ∆φ (as
schematically defined in the inset of Fig. 11 (A)).

Fig. 10 (A-C), which correspond to the case of Rc =
25.2 nm and µ = 1.68 for different values of the NP’s
arclength, show that the arrangement of the NPs on the
tubular membrane depends on their arclength. Longest
NPs (Lnp = 30 nm) self-assemble into linear chains along
the z-axis and are arranged side-by-side. The corre-
sponding scatterplot shown in Fig. 11 (A) shows that
both ∆φ and ∆z are indeed small. This self-assembly is
caused by the fact that, in this case, the NPs cause an
appreciable curvature deformation of the tubule, thereby
limiting NPs to be located in the most curved region of
the tubule.

For Lnp = 20 nm, both Fig. 10 (B) and Fig. 11 (B)
show results similar to the case of Lnp = 30 nm, although
in this case, ∆z extends to higher values. This must be
due to the fact that the amount of tubule’s deformation in
this case is less than that in the case of Lnp = 30 nm and
the tilt angle distribution widens with decreasing NPs
arclength, as discussed earlier, leading to increased steric
repulsion between the NPs. Both Fig. 10 (C) and Fig. 11
(C) show that the shortest NPs (Lnp = 10 nm) are dis-
tributed uniformly on the tubule. This is due to the fact
that the shortest NPs do not cause much deformation of
the tubule.

Fig. 10 (D-F) show that as µ is decreased to 1.13, the
NPs are more distributed uniformly on the tubule, both
in terms of separation angle and distance. This is ex-
pected since, as we have seen earlier, the amount of mor-
phological deformation of the tubule caused by the NP
decreases as µ approaches 1.

Fig. 10 (G-I) show that as µ is further decreased to
0.63, NPs with Lnp = 30 nm are relatively close to each
other, but the separation angle is more widely distributed
as compared to the case of µ = 1.68, as demonstrated
by the snapshot of Fig. 10 (G) and by the scatterplot
of Fig. 12 (A). However, as the arclength of the NPs
is decreased, the NPs distribution on the tubule be-
comes more uniform, as demonstrated by the snapshots
of Fig. 10 (H and I) and by the scatterplot of Fig. 12
(B). The proximity of the NPs with Lnp = 30 nm along
the z-axis is attributed to a localized deformation of the
tubule along the z-axis into a slightly flattened shape.
As Lnp is decreased, the amount of tubule’s deformation
is decreased, leading to the more uniform distribution of
the NPs. The results above show that the higher is the
NPs arclength and mismatch between the NPs curvature
and that of the tubule, the more prone they are to self-
assemble into chains on the tubule.

IV. SUMMARY AND CONCLUSIONS

In summary, we presented in this article results of a de-
tailed systematic molecular dynamics study, based on an
implicit-solvent model, of the interaction between tubu-
lar lipid membranes and crescent-shaped NPs, that in-
teract with the membrane through their concave side.
Crescent-shaped NPs are either unbound or completely
bound to the lipid membrane. In the bound state, the
concave surface of the NP is completely apposed to the
outer surface of the lipid membrane. Using annealing
scans with respect to the adhesive energy, we found that
the binding transition of the NPs is highly first-order,
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FIG. 11: Scatter plot of the separation angle between two
neighboring NPs, ∆φ, and separation distance along the
z-axis, ∆z, for the case of NPs with radius of curvature
Rnp = 15 nm on tubular membranes with Rc = 25.2 nm at
the adhesion strength ξ = 0.6ε. (A), (B) and (C) correspond
to NPs with arclength Lnp = 30, 20 and 10 nm, respectively.
The definitions of ∆φ and ∆z are illustrated in the inset snap-
shots of (A).
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with the binding adhesive energy, per unit area, being
higher than the unbinding adhesive energy per unit area.
We also found that both binding and unbinding adhe-
sion thresholds increase with increasing NPs arclength,
LNP , or curvature mismatch, defined as µ = Rc/Rnp
where Rnp and Rc are the radii of curvature of the NP
and tubule, respectively. Furthermore, the difference
between these energies increases with µ or LNP . This
implies that the affinity of these NPs to bind to lipid
membranes diminishes with increasing µ or the NPs’ ar-
clength. The discontinuous nature of the binding transi-
tion is due to the fact that the binding of crescent-shaped
NPs on tubular membranes proceeds through interme-
diate states with high curvature energy that can only
be overcome for high enough adhesion energy. We also
found, that an additional NP binds at a location vicinal
to the first one, where a friendly curvature has already
been generated by the first NP. This leads to a lower
adhesion threshold of additional NPs.

Much of our understanding of the interaction between
NPs and lipid membranes is based on studies of NPs
with various geometries that adhere to lipid membranes
through their convex surfaces. In these cases, the mem-
brane wraps the NPs to a degree that increases with in-
creasing adhesion strength or the NPs mean radius of
curvature. The increase in the degree of wrapping of
such NPs by the membrane often exhibits a first order
transition, with an energy barrier that increases with in-
creasing the degree of the NPs’ anisotropy [26]. A major

difference between the adhesion transition of these NPs
and crescent-shaped NPs is that the the latter do not
partially bind to lipid membranes, and the transition is
between unbound and completely bound states.

The crescent-shaped NPs considered in the present
study are reminiscent of both F-BAR and N-BAR do-
main proteins, which also adhere to lipid membranes
through their concave surfaces. The NPs in our study
are however considerably simpler in structure than BAR
domain proteins, whose binding to the lipid membrane
is often aided by amphipathic residues that insert in the
hydrophobic core of the membrane.

The binding mode of the crescent-shaped NPs depends
on both the curvature mismatch and their arclength.
NPs with high curvature mismatch lie perpendicularly
to the axis of the tubule for µ > 1. However for low
mismatch values µ . µ∗ < 1, where µ∗ increases with
increasing Lnp, the NPs are tilted with respect to the
tubule’s axis, with the tilt angle that increases with de-
creasing µ. Interestingly, we found that in the range of
curvature mismatch µ∗ . µ < 1, non-tilted configura-
tions of the NPs remain most probable, as in the case of
µ > 1, albeit with an increased amount of fluctuations.

Finally, we also investigated the self-assembly of the
crescent NPs on tubular membranes, and found that
they self-assemble into chains when both curvature mis-
match and NPs arclength are high, in agreement with
our prior study [52]. However for µ ≈ 1 or low values
of arclength, the NPs distribute more uniformly on the
tubule. The self-assembly of these NPs is mediated by
the membrane curvature. Experiments have shown that
various types of BAR-domain proteins organize into well-
ordered structures on lipid membranes [59]. However,
there is hint that protein-protein interactions play a ma-
jor role on these self-assemblies [32, 59]. Computational
studies of coarse-grained models, where the main effect
of the BAR-domain proteins is taken to be induction of
a local spontaneous curvature of the membrane while ne-
glecting many microscopic details, have shown that the
proteins self-assemble on the membrane [39, 45, 46, 49] in
agreement with our results. Due to the complex structure
of BAR-domain proteins, it is difficult to determine the
contribution of protein-protein interaction to their self-
assembly on lipid membranes. Therefore, It would be
very desirable to test the present results experimentally
through simple crescent-shaped NPs. Recent advances
in nanomaterials fabrication which allow for the synthe-
sis of crescent-shaped NPs with tunable dimensions and
properties [60–63] should make this possible.
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