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Quantifying the link between local structure and cellular
rearrangements using information in models of biological
tissues

Indrajit Tah,a Tristan A. Sharp,a Andrea J. Liu,a and Daniel M. Sussmanb

Machine learning techniques have been used to quantify the relationship between local structural
features and variations in local dynamical activity in disordered glass-forming materials. To date
these methods have been applied to an array of standard (Arrhenius and super-Arrhenius) glass
formers, where work on “soft spots” indicates a connection between the linear vibrational response
of a configuration and the energy barriers to non-linear deformations. Here we study the Voronoi
model, which takes its inspiration from dense epithelial monolayers and which displays anomalous,
sub-Arrhenius scaling of its dynamical relaxation time with decreasing temperature. Despite these
differences, we find that the likelihood of rearrangements can vary by several orders of magnitude
within the model tissue and extract a local structural quantity, “softness" that accurately predicts
the temperature-dependence of the relaxation time. We use an information-theoretic measure to
quantify the extent to which softness determines impending topological rearrangements; we find
that softness captures nearly all of the information about rearrangements that is obtainable from
structure, and that this information is large in the solid phase of the model and decreases rapidly as
state variables are varied into the fluid phase.

1 Introduction
It has recently been discovered that the global dynamics of cells
in dense epithelial tissues, are linked strongly to global structural
properties. The dynamics of epithelial cells within some dense
cultured monolayers slow to zero at the same time that the shapes
of the cells approach a precisely-defined limit1. In a similar vein,
the rate of cell dynamics correlates strongly with a relation be-
tween fluctuations in the aspect ratio and the mean aspect ra-
tio of cells2. Even when such precise relationships do not hold,
strong correlations can be found between the average shapes of
cross-sectional views of cells and their dynamics in a variety of
monolayers3. Here we ask whether there is a link between local
dynamics and local structure. Within dense tissue, movement of
an individual cell must be accommodated by neighboring cells,
and the possibility that the dynamics of a cell can be partially
controlled by the geometry of its neighborhood could have impli-
cations for cell-cell diffusion, embryogenesis, or metastasis.

The difficulty of finding a predictive connection between lo-
cal structures and dynamics is well-known in the study of glass-
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forming materials. At the level of an individual particle, the ques-
tion of whether the propensity of a particle to rearrange depends
on its local structural environment has been addressed by many
groups4–11, and in recent years machine learning techniques have
proven particularly powerful in identifying local structural quan-
tities that predict dynamical events12–23. These methods allow
for predictions of future local dynamics based on experimentally
accessible imaging of the current state of the system.

A common approach in previous applications of machine learn-
ing to the study of disordered materials – and the one we will fol-
low in this work – is to apply linear support vector machines24,25

(SVMs) to first solve a classification problem in which represen-
tative examples of “rearranging” and “non-rearranging” particles
are selected from molecular dynamics (or experimental!) trajec-
tories. A linear combination of local structural features is sought
that most strongly classifies these labeled datasets, represented
by a classifying hyperplane in the high-dimensional space of local
structural features. A scalar quantity, “softness,” is defined as the
signed distance from a point in this high-dimensional space to the
best-classifying hyperplane. In a variety of model glass-forming
systems, this approach has uncovered a connection between soft-
ness and energy barriers to local rearrangement events: in other
words, the propensity of a particle to undergo a rearrangement
depends strongly on some linear combination of local structural
features. Here we apply this machine learning methodology to
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show that there is a link between local cell dynamics and local
cell geometry in numerical simulations of a model of dense 2D
biological tissue.

However, it is not enough to establish the existence of a link
between local structure and dynamics – we also need to quan-
tify the strength of the link. Rather than focusing on the perfor-
mance of our classifier when applied to training and test data sets,
in this work we introduce a quantification that compares the in-
formation gained about rearrangements given knowledge of cell
softness with the maximum information that it is possible to gain
from structural information. The latter quantity is calculated by
performing many isoconfigurational simulations, i.e., by starting
from the same configuration of cells in a tissue but drawing from
independent realizations of the noise26. Remarkably, we will see
that in some parts of model parameter space, linear SVMs come
extremely close to capturing the maximum possible information
about rearrangements that can be obtained from structure.

Our particular focus in this work is the Voronoi model (VM)
of dense cellular matter, which captures important aspects of the
cell-shape-dependent nature of the rigidity transition in real ep-
ithelial tissues1,3,27. The Voronoi model treats confluent cells as
polygonal tilings governed by an energy functional that penalizes
deviations of the perimeter and area of cells from preferred val-
ues. The target shape parameter p0 – the ratio of the preferred
perimeter of a cell to the square-root of the area – is a key vari-
able that controls the mechanical response (rigidity transition) of
the system. In the absence of self-propulsion, thermal noise, or
some other means of generating cell rearrangements, the disor-
dered state of this model is unambiguously rigid (has a positive
shear modulus) for p0 < pc ≈ 3.81 and is mechanically unstable
(has a vanishingly small shear modulus in the thermodynamic
limit) for p0 & pc

27,28. Here we study both an equilibrium ther-
mal version of the Voronoi model as well as an active version with
self-propelled cells; at low temperature and activity scales, these
model tissues exhibit some of the usual phenomena associated
with nonlinear glassy dynamics, including caging, viscoelastic be-
havior, and dynamical heterogeneities29.

There are several unusual features of the VM that make the
study of it via the aforementioned machine-learning methods of
immediate interest. From a biological perspective, previous work
connecting ensemble averaged measures of local cell shape with
overall system mobility suggests that the motile state of a mono-
layer can be inferred from static snapshots30; extending this in-
ferential capacity to the probabilities that individual or small col-
lections of cells will undergo coordinated motion is of obvious im-
portance for a range of meso-scale properties of tissue dynamics .
Methodologically, the Voronoi model is a highly anomalous glass-
former, with sub-Arrhenius scaling of the relaxation time with de-
creasing temperature29. While using linear SVMs to analyze soft-
ness works well in more “well-behaved” glassy systems, does it
also work when the energy barriers apparently get smaller as the
temperature is lowered (hinting at the stress-controlled nature
of the rigidity at T = 0)? Does the apparent absence of quasi-
localized low-frequency vibrational modes in T = 0 packings of
the VM indicate a fundamentally different connection between
linear and non-linear response? Additionally, the VM has a pa-

rameter regime in which there is a vanishing shear modulus and
apparently no energy barriers to cellular motion28,29,31. Does a
methodology which correlates a learned feature (softness) with
local energy barriers continue to work in a setting where such
energy barriers vanish?

The remainder of this paper is organized as follows. In Sec.
2 we outline both the numerical simulations of the thermal and
active VM we studied, as well as the approach to calculating soft-
ness via linear SVMs. In Sec. 3 we apply this approach to study
the behavior of softness in the “solid-like” regime of the model,
i.e., for values of the target shape parameter p0 < pc. In Sec. 4
we turn to the “fluid-like” regime of the model, and we show that
our machine-learning methodology can correctly infer the nature
of the model itself – i.e., the SVM approach correctly identifies
that characteristic energy barriers are softness-independent (and,
in fact, vanish). We close in Sec. 5 with a brief discussion.

2 Methods

2.1 Models studied

We study the 2D Voronoi model30,32,33 with the standard energy
functional,

E =
N

∑
i=1

1
2

kP(Pi−P0,i)
2 +

1
2

kA(Ai−A0,i)
2. (1)

Here Pi and P0,i are the actual and preferred perimeter of the
cell i, and Ai and A0,i are its actual and preferred area. The
first quadratic term models the effect of contractility of the acto-
myosin cortex and an effective line tension arising due to cor-
tical tension and cell-cell adhesion. The second quadratic term
models a combination of volume incompressibility of the 2D ep-
ithelial monolayer and its resistance to height fluctuations34. In
this work we set the associated area and perimeter moduli kA and
kP to unity. The degrees of freedom of this model are cellular
positions, and the cellular geometry is determined via a Voronoi
tessellation of the set of cellular positions. We simulate this space-
filling model of dense tissue in a periodic domain, choosing the
linear size and length units such L =

√
∑i A0,i =

√
N. We focus on

monodisperse systems, i.e., systems in which all cells are assigned
identical values of A0,i and P0,i, but note that we find qualitatively
similar results when studying bidisperse systems as well. In our
monodisperse system, the dimensionless ratio p0 ≡ P0/

√
〈A〉 de-

fines the target shape parameter which controls the mechanical
and dynamical state of the tissue35,36.

We use the open source “cellGPU” package37 to simulate both
thermal and self-propelled versions of the overdamped Voronoi
model. In both cases, the cell positions,~ri, are updated according
to the equation of motion,

d~ri

dt
= µ~Fi +~ηi (2)

where the constant µ is the inverse friction coefficient and ~Fi ≡
−dE/d~ri is the conservative force on cell i. In the thermal model
at temperature T , the stochastic term models random forces. Its
components are uncorrelated white noise, with zero mean and
〈ηiα (t)η jβ (t

′)〉= 2µT δ (t−t ′)δi jδαβ , where α and β are the Carte-
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sian components.

In the self-propelled model, each cell experiences time-
correlated random forces and the stochastic term is instead ~ηi =

v0η̂i. The constant v0 sets the magnitude of the motility and
η̂i =(cos(θi),sin(θi)) is the polarization vector of each cell. The di-
rector η̂i rotates randomly according to ∂tθi = ξi(t), where again,
ξi(t) is uncorrelated. 〈ξi(t)ξ j(t ′)〉 = 2Drδ (t− t ′)δi j with the rota-
tional diffusion constant Dr characterizing the scale of the orien-
tational noise. For the self-propelled model, we define an effective

temperature38 Te f f =
v2

0
2µDr

. This mapping to an effective temper-
ature is not without controversy – particularly in systems where
the degrees of freedom are not free to diffusive around but rather
may be caged to local positions. Nevertheless, it is a valuable
guide to one’s intuition, and one expects the effective tempera-
ture mapping to be exact39 in the limit where rotational diffusion
constant Dr→ ∞ at fixed “effective inertia” (µDr)

−1 .

We study both thermal and active versions of the Voronoi model
to check the robustness of our machine learning model and vali-
date various forms of cellular motion governed by different equa-
tions of motion. Indeed, the precise mechanism of cell movement
is itself an important research area, and if the machine-learning
approach we advocate here is to be applied to real experimental
systems it is important to establish the degree to which the physi-
cal interpretation of our results depend on the precise microscopic
details.

As a first step towards this, here we establish a baseline for
which the equilibrium and active models are expected to give sim-
ilar results. To this end, we show results for the active model at
µ = 1.0 and Dr = 50.0 except where noted. Most of our simula-
tions were carried out with time steps ranging from ∆t = 0.01 to
∆t = 0.1, depending on the temperature, self-propelled velocity,
and/or rotational diffusion constant under consideration – in all
cases we confirmed that our structural and dynamical results are
insensitive to simulating with an integration time step an order of
magnitude smaller in size.

For a wide array of p0 values and T or Te f f values, we per-
formed 100 independent simulations of 1024 cells each. We did
initial thermalization at each target (effective) temperature for
at least 106 time steps before recording data. In studying the
low-temperature fluid phase of the model in Sec. 4 we addition-
ally performed sets of independent simulations of N = 5000-cell
systems, initializing for 107 time steps and recording data over
5×106 subsequent time steps.

2.2 Characterization of local dynamics

In atomic, molecular, or colloidal glasses one typically must
choose a threshold value of some dynamic indicator, for instance
D2

min or phop
40,41, in defining a characteristic rearrangement or

cage-breaking event. In contrast, in the space-filling models of
dense cellular matter considered here, rearrangements can be
naturally defined by changes in the set of cells that a target cell
shares an edge with. For the majority of this paper we focus on
these changes in the set of nearest neighbors for a given cell as the
signature of a rearrangement event. We neglect neighbor changes
associated with cell division or death events42, and only permit

neighbor exchanges via T1 transitions, an event in which an edge
separating two cells vanishes and an edge separating two of their
neighbors appears. Note that the T1 event marks the transition
of the system from one metastable minimum to another in the
energy landscape, and the initial length of the edge that disap-
pears is correlated with the energy difference between the two
metastable minima43,44.

Because the length of an edge that disappears during a T1
event must vanish during the event, small edge lengths are them-
selves predictive of future rearrangement events44. However,
edge length is only one of many quantities that correlate with T1
events, and we show here that a linear combination of structural
quantities, which could be readily extracted not only from simu-
lation snapshots but from video microscopy experiments on real
dense tissue, combine to give a much stronger predictor of the
propensity of a cell to rearrange than the minimum edge length.

2.3 Calculation of softness

To find a structural quantity that correlates strongly with T1
events, we first construct separate training sets (to build our clas-
sifier on) and test sets (to validate our learned features and eval-
uate the quality of our predictions). For Sec. 3, we build a la-
beled training set by scanning through long molecular dynam-
ics trajectories of the Voronoi model conducted at a particular
point in parameter space (i.e., for a particular value of p0 and
T ), and identify representatives from two characteristic popula-
tions of cells: those that will participate in a T1 rearrangement
event within a short future time window, and those that will not
participate in a T1 event for a longer future time window (“re-
arranging” and “non-rearranging” cells, respectively). The rear-
ranging training set consists of Nr = 4000 cells that participated
in a T1 event within 4τ of the time we identify them, and the
non-rearranging training set consists of Nnr = 4000 cells that do
not rearrange during at least a 160τ time window. As in previ-
ous work on softness13, the construction of a combined training
set using multiple thresholds to select out both rearranging and
non-rearranging cells is important to maximize the effectiveness
of this approach.

For each cell of the combined training set, we identify a large
collection of quantifiers of the local structural environment. We
have used three different sets of structural variables to construct
the SVM. The first set is the standard one used in Refs. 12–18,21,
introduced for machine learning applications by Behler and Par-
rinello45. The second set consists of additional measures of the
cellular geometry, such as those those listed in Table 2 (the full
list is provided in the Appendix.) The results here are for the third
set, which is the union of the two sets of structural quantities, but
prediction accuracy results are quantitatively nearly identical for
each of the sets, indicating that there is considerable redundancy
between the two sets. Indeed, the spirit of our effort to classify
local structure in some high-dimensional space does not require
that we look for optimal or orthogonal sets of structural descrip-
tors. For the rearranging cells, we calculate these structural fea-
tures on a configuration before the T1 event occurs, and for the
non-rearranging cells we calculate these structural features in the
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center of the time window over which they do not rearrange. We
emphasize that in none of the three sets of structural features we
consider do we include the minimum edge length of the cell and
its neighboring cells.

We standardize all structural features, so that they all have zero
mean and unit variance for the training set. Given this set of
standardized local structural features matched to labels for rear-
ranging and non-rearranging cells, we use a linear support vector
machine to find the optimal hyperplane separating the classes in
the training set. The softness for cell i, Si, is defined as the signed
distance of the point corresponding to cell i (defined by the values
of the structural variables for cell i) to the hyperplane. Cells with
points on the rearranging side of the hyperplane have S > 0 while
those with points on the non-rearranging side have S < 0.

3 Softness in the solid-like regime
We first apply the above methodology to the Voronoi model in the
regime of target shape parameters in which the model would be
unambiguously rigid at zero temperature (p0 < pc). The scaling
of the relaxation time in this regime is sub-Arrhenius, but the
low-temperature behavior can still be thought of as governed by
effective energy barriers to T1 transitions31. Specifically, then,
we train a classifier using data from simulations at p0 = 3.75 and
T = 2.0× 10−3; we then apply this learned classifier to data at
other temperatures and also at other effective temperatures in the
case of the self-propelled model.

In this section, we will first show that, when applied to new
data at the same set of parameters we trained at, softness accu-
rately classifies cells according to their propensity to execute a T1
transition. To help quantify how well softness succeeds at this
task, we measure the information gained about T1’s through soft-
ness. We find that the information gained does a very good job of
reflecting the glassy dynamics of the tissue, and the information
gained decreases as both p0 and T increase, i.e., as the relaxation
time in the model decreases and motion becomes more fluid-like.
We then show that, as in all other other glass-formers studied
so far13,19,23, softness correlates with an effective energy barrier.
Remarkably, even the sub-Arrhenius dynamics in the VM are ac-
curately predicted by shifts in the average value of softness as the
temperature is varied.

3.1 Properties of softness and cross-validation accuracy

After training our classifier, we apply it to a large quantity of pre-
viously unseen simulation data to measure distributions of soft-
ness and the probability that a cell will rearrange as a function
of the assigned softness value. The distribution of cell softness,
P(S), is shown in black at p0 = 3.75 for the thermal system at
T = 1.5×10−3 (Fig. 1(a)) and the self-propelled system at V0 = 0.5
and Dr = 50 (Fig. 1(b)). In the same panels we plot the distribu-
tion of softness for cells that are about to rearrange, P(S|R), in
red; as initial indications of reasonable generalization, we find
that the two distributions, P(S) and P(S|R), are well separated
and that roughly 90% of the cells about to rearrange have S > 0.

One way to assess the capacity of softness to predict rearrange-
ments is to calculate the cross-validation accuracy (CV). To cal-

(C)

(b)

(a)

10−5

10−3

10−1

S

S

S

10−1 (C)

(b)

(a)(a)

(b)

(c)

Fig. 1 Probability distribution of softness for all cells (black solid curve)
and for cells that are about to rearrange (red dashed curve) for (a) the
thermal Voronoi model at temperature T = 1.5×10−3 and target shape
parameter p0 = 3.75, and (b) the self propelled Voronoi model at propul-
sion speed V0 = 0.5 and p0 = 3.75. (c) The probability of rearrangement
for cells as a function of their softness value for the thermal system (solid)
and self-propelled systems (dashed).
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culate the “ten-fold" CV accuracy, for example, a training set is
divided into 10 equal parts. Nine of the ten parts are used to
train and obtain a hyperplane, and a classification accuracy is
calculated on the remaining 10% of the data, called the test sub-
set (where the classification accuracy is simply is defined as the
fraction of cells in the rearranging test subset with S > 0). This
process is repeated 10 times in total, once for each choice of test
subset; the average prediction accuracy over the 10 trials is the
CV accuracy. The CV accuracy is useful for preventing an over-
fitting of the test set and thereby over-estimating the accuracy
of the classifier. We have found that the CV accuracy varies from
79% to 92% depending on temperature and self propulsion speed,
with lower accuracy at higher T and V0. This is comparable to val-
ues obtained from fitting a wide variety of disordered solids and
glassy liquids16.

We emphasize that the CV accuracy we report is a crude mea-
sure of the predictive capacity of our learned classifier. It con-
cerns the binary classification of just two subsets of continuously
distributed dynamical events, and as such depends on the thresh-
olds used. Our interest, though, is not the maximum CV accuracy,
but the physical interpretation of S. A more complete and more
physical way of assessing the success of S is to calculate PR(S), the
fraction of cells of a given S that are about to rearrange. In Fig. 1
(c) we show the probability of rearrangement PR as a function of
softness S for the thermal and self-propelled systems, respectively.
Evidently, PR(S) varies by 2-3 orders of magnitude with changing
S. This result shows that, as in previous studies of softness, the
scalar value of softness correlates directly and strongly with the
probability that a cell is about to rearrange.

The predictiveness of softness may be compared with that of
other local structural quantities. In Fig. 2, PR is again plotted,
but for several different measures of local structure. All of these
quantities are mapped to the interval [0,1] by plotting X , the per-
centile rank in different structural quantities. The values of PR for
different percentiles are shown also for the cell’s softness (black
circles), the cell’s shape parameter, p≡P/

√
〈A〉 (red squares), the

highest shape parameter among the cell’s neighbors, phn (blue tri-
angles), and the length of the shortest edge of the cell, lmin (green
diamonds). For lmin, both the cell’s own edges and those edges
next to the cell are considered, since a T1 transition that elimi-
nates any of those implies a change of neighbors.

A quantity that yields a curve that lies on the average rear-
rangement rate (horizontal magenta line), would completely fail
to predict rearrangements, since the cells would rearrange at the
average rate irrespective of their value of that quantity. In or-
der for the quantity to be predictive, its PR curve should devi-
ate strongly from the average rearrangement line. Clearly, the
range of PR spanned by softness (S) (black solid line) is higher
than for any other structural quantity studied. This means that
the probability of undergoing a rearrangement is more sensitive
to softness. How can this sensitivity be quantified, and how can
that quantification be compared in an absolute sense to the total
information contained in the local structure, independent of our
ability to measure it?

Fig. 2 Probability to rearrange vs the percentile X in the thermal system
of each structural quantity: softness–black circles connected with solid
lines, cell shape parameter p–red squares, dash-dotted lines, maximum
shape parameter of cell neighbor (phn) - blue triangles, dotted lines,
minimum length of cell edge 1/lmin - green diamonds, dashed lines. Of
all the quantities, softness gives the strongest variation of PR(X). The
magenta horizontal line represents the average rearrangement rate for
cells. (Same state as Fig. 1.)

3.2 Quantifying information gained
To quantify how well softness predicts rearrangements, we are
first led to consider the general question, how much information
does structure contain about dynamics? Performing multiple sim-
ulations starting from the same set of particle positions but draw-
ing independent realizations of their velocities, in what is termed
the isoconfigurational ensemble26, provides a powerful tool for
answering this question. It is straightforward to apply this idea
to quantify the short-time propensity of every cell in a given con-
figuration. For each cell i, one can calculate the fraction of all
realizations in which the cell participated in a T1 event during a
given short time window, Piso

R (i).
We use these ideas, building on previous work that constructed

length scales in disordered materials to via mutual information46,
and quantify the information gained by knowing the softness of
a cell by proceeding as follows. In a fixed short time interval in
a thermal system, there are two possible outcomes for each cell
– the cell does or does not participate in a T1 transition. The
Shannon entropy associated with this process is

H(p) =−plog2 p− (1− p)log2(1− p),

where p is the probability that the cell participates in a T1 event.
Let pi be the probability that a given cell i participates in a

T1 event. Suppose all cells have the same probability to rear-
range, so that pi = 〈PR〉. The entropy per cell is maximal this case:
Hmax ≡ H(〈PR〉). Any cell-specific knowledge about the probabil-
ity to rearrange will decrease this entropy, down to a limit of zero
in the hypothetical scenario where the outcome for every cell is
predicted perfectly.
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Knowledge of a structural quantity like softness modifies the
entropy associated with a cell whose softness is S via our (mea-
sured) knowledge of PR(S). The decrease in entropy corresponds
to an information gain; averaged over the entire system the infor-
mation gained per cell is

IS = ∑
i
(Hmax−H(PR(Si)))/N. (3)

At the other extreme, if a quantity Z is unrelated to rearrange-
ments then PR(Z) = 〈PR〉 and IZ = 0; i.e., no information about
rearrangements is gained by knowing Z. This corresponds to the
horizontal magenta line on Fig. 2. Of all quantities investigated, S
(black solid line) deviates most from the horizontal line and con-
sequently contains the most information about rearrangements.

How close does softness come to the limit imposed by the sys-
tem itself? Softness provides an estimate of the true probability
for a cell to rearrange; we calculate the true probability of rear-
rangement for each cell by performing many isoconfigurational
simulations, all starting from an identical configuration of cells
but with random noise realizations in Eq. 2. The maximum infor-
mation that can be gained from structural information, according
to our isoconfigurational calculation, is

Iiso = ∑
i
(Hmax−H(Piso

R (i)))/N. (4)

In Table 1 we report the information gained by softness and com-
pare it to this isoconfigurational calculation of the maximum pos-
sible information gain. We also compare to the other most pre-
dictive features we have identified, and to other simple geometric
features that have historically been considered.

{p0,T} Iiso
Hmax

IS
Iiso

Ip
Iiso

Inhp
Iiso

Ilmin
Iiso

Hmax

{3.75,10−2.82} 0.202 0.889 0.500 0.556 0.806 0.018
{3.75,10−2.45} 0.116 0.857 0.098 0.537 0.642 0.0524

Table 1 Bits of Information per cell encoded in various structural features.
The subscripts iso, S, p, nhp, lmin denote iso-configuration, softness, the
shape index of the cell itself, the highest shape index of any neighboring
cell, and the cell minimum edge length. Hmax is the information that
would be gained by perfect prediction.

Although no quantity we measure gains the maximum avail-
able information, we see that softness captures a demonstrably
large fraction of the total information that structure can pro-
vide, as measured by Iiso. Other structural measures capture a
much smaller amount of information, with only the length of the
shortest edge coming close to the information gained via softness
(which we again emphasize was not considered as a structural
features in building the softness classifier). We note that these re-
sults partially support the intuition that small edge lengths are
predictive of future rearrangements, but that combining infor-
mation about the shortest edges with many other structural fea-
tures gives a more robust predictor for future cell rearrangements
throughout the parameter space of the model.

3.3 Information gained from softness at different points in
the phase diagram

We have seen that IS provides a reasonable approximation of the
maximum information at a particular state point, and it has the
virtue that it can be readily calculated directly on our large en-
semble of trajectories without the need to compute expensive
isoconfigurational simulations associated with every simulation
snapshot. The ratio IS/Hmax gives a measure of both the impor-
tance of local structure and also how heterogeneously the rear-
rangement dynamics in a system are distributed. We report this in
Fig. 3, which shows that this measure depends strongly on (p0, T )
for thermal systems and on (p0, v0) for self-propelled systems. At
larger p0 and T (or Te f f ), the softness S contains vanishingly small
amounts of information about whether T1 transitions will occur,
as one might expect, although we note that even in the “fluid”-like
regime of the model local structural information has some pre-
dictive power. This suggests that the typical paths cells explore
as they perform T1 transitions still involves going over small-but-
finite energy barriers. A contour of constant relaxation rate (black
line), 〈PR〉, is shown for comparison. The plot is remarkably sim-
ilar to those obtained previously for thermal and self-propelled
systems when plotting the average shape 〈p〉 and diffusion con-
stant in the p0 − T or p0 − v0 planes29,30. The agreement be-
tween the contours of constant 〈PR〉 and contours of shades of
blue shows that the average rearrangement rate is highly corre-
lated with the amount of information about rearrangements cap-
tured by softness, with more information from softness at lower
rearrangement rates. This suggests that the amount of informa-
tion captured by softness depends strongly on the average rear-
rangement rate.

3.4 Arrhenius behaviour of PR(S)

The top panel of Fig. 4 shows lnPR(S) as a function of 1
T . An

Arrhenius relation, corresponding to a well-defined barrier to re-
arrangement, corresponds to a straight line on this plot. We find
the probability of rearrangement for cells of a given softness S
follows an Arrhenius relationship with 1/T ,

PR(S) = exp(Σ(S)− ∆E(S)
T

) (5)

where the configurational (Σ(S)) and and energy barrier (∆E(S))
terms do not themselves depend on temperature T . Similar re-
sults have been found in other systems13,15,17–19,23. The result
also holds for Te f f in the self-propelled particle system. Note that
PR(S) becomes nearly independent of S (the Arrhenius curves for
different softness cross) at an “onset” temperature near the left
axis in the figure. This is consistent with the results of previous
studies on supercooled liquids: in Lennard-Jones systems above
the onset temperature, T0, structure does not predict rearrange-
ments 13. In the bottom panel of Fig. 4 we show the dependence
of Σ and ∆E on softness for the thermal and self-propelled sys-
tems. These results are consistent with the interpretation that
below the onset temperature cells that have large negative soft-
ness values are in local configurations with higher energy barriers
to rearrangements, whereas cells that have large positive softness
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Fig. 3 Top Panel: The fraction of information extracted from the local
structure (bluescale) approximately follows the decrease in the rate of
T1 transitions: lines of constant 〈PR〉 (〈PR〉 = 10−5,10−3.8,10−2.8 from
left to right) show the increase in rearrangement rate with temperature
for thermal system. Bottom panel: Similar plot for self-propelled system
where lines of constant 〈PR〉 (〈PR〉= 10−3.5,10−3.0,10−2.5 from left to right)
show the increase in rearrangement rate with propulsion speed for self-
propelled system.

values are not. The variation of these quantities with S, together
with the distribution of softness itself, supports the finding that
at low (effective) temperatures there are broad distributions of
dynamically heterogeneous regions of the system29.

3.5 Temperature-dependence of the softness distribution,
and the relationship between structure and dynamics

The Arrhenius behavior of PR(S) may come as a surprise, partic-
ularly as the behavior of the relaxation time itself in these sys-
tems is sub-Arrhenius: it suggests that softness is providing a
decomposition of the system into locally Arrhenius components,
and that the sub-Arrhenius behavior of the system overall stems
from the way the distribution P(S) shifts to lower values of S
with decreasing temperature 13,14,21. In supercooled liquids with
super-Arrhenius behavior it was found that the the overall super-
Arrhenius scaling of the relaxation time in those systems was,
indeed, consistent with the magnitude of this overall shift in the
softness distribution together with the detailed probability of re-
arranging at different values of softness. In the Kob-Andersen
model, this careful balance came together in the statement that
the average softness of a system controls its structural relaxation

100 200 300 400 500
1/T

-10

-8

-6

-4

ln
 P

R

100 200 300 400 500
1/T

eff

-12

-10

-8

-6

-4

ln
 P

R

-2 -1 0 1 2
S

0

0.005

0.01

0.015

0.02

∆
E

-4

-3.5

-3

-2.5

-2

∑

(b)

(a)

(c)

-2 -1 0 1 2
S

0

0.005

0.01

0.015

0.02

∆
E

-4

-3.5

-3

-2.5

-2

∑

(c)

Fig. 4 PR(S) as a function of 1/T for different softness values ranging
from S∼−2 (blue) to S∼ 2 (red) for (a) the thermal system and (b) the
self-propelled system. For the latter system we use Te f f (see text). (c)
The quantities Σ(S) (blue squares) and ∆E(S) (black circles) defined in
Eq. 5 for the two systems, with data for the thermal system indicated by
solid symbols and data for the self-propelled system indicated by open
symbols.
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time15

τα ∼
1

PR(〈S〉)
. (6)

To reiterate: in those earlier studies a classifier was trained at a
single temperature, the probability of rearrangement as a func-
tion of softness was shown to obey Eq. 5, and the classifier was
applied to new simulation data at different temperatures to obtain
〈S〉 at each T . From this information they accurately predicted the
structural relaxation time as a function of T .

Fig. 5 The softness distribution for (a) the thermal system at different
temperatures T and (b) the self-propelled system at different propulsion
speeds V0. The probability of rearrangement PR(S) for cells as a function
of their softness value for (c) thermal systems at different T and (d)
self-propelled systems at different V0.

How does this story play out in the case of a model with sub-
Arrhenius scaling of the dynamics? The top panel of Fig. 5 shows
that for the Voronoi models, the distribution of softness similarly
shifts slightly to lower values of S with decreasing temperature
and self propulsion speed. In the bottom panel of Fig. 5 we show
the probability of rearrangement PR(S) as a function of cell soft-
ness (S) value for the thermal system and for the self-propelled
system.

In Fig. 6 (a) and (b) we display the relaxation time (τ ∼
1/(PR(S)) as a function of softness S for our model systems. The
vertical lines represent the mean softness of the system, with color
indicating the value at each temperature or propulsion speed.
Surprisingly, here, too, the combination of shifts in the average
value of softness as the temperature of a system is changed and
the probability of rearranging at a given value of softness con-
spire to accurately reproduce the temperature dependence of the
relaxation time. This is shown in Fig. 6(c), where we plot the
relaxation time as measured by the dynamics together with that
predicted by Eq. 6.
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Fig. 6 The inverse probability of rearrangement 1/PR(S) as a function of
softness S for (a) the thermal Voronoi model and (b) the self-propelled
model. Vertical lines represent the equilibrium average softness 〈S〉, and
their upper limits indicate the relaxation time τα predicted by Eq. 6 at
each temperature T and self propulsion speed V0. (c) Angell plot of
relaxation time (defined as Q(τα ) = exp(−1)) for thermal (solid circles)
and self-propelled (open circles) Voronoi models. The solid and dashed
lines are the relaxation times predicted by Eq. 6 for the thermal and self-
propelled models, respectively. For the self-propelled model, we define

an effective temperature Te f f =
V 2

0
2µDr

. Temperature is normalized by the
value of Tg where relaxation time is τα = 5×104.
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4 Properties of softness in the fluid-like
regime

In the previous section we applied the methodology of Ref.13 –
with appropriate modifications for a model in which a threshold-
free definition of rearrangement events can be defined in terms
of T1 events – to study a system in which sub-Arrhenius scaling
of the relaxation time is observed and which possesses a nonzero
shear modulus at zero temperature. We found that, as in previ-
ous studies of more standard glass-forming systems, a predictive
classifier can be built, that the relaxation time of the system is
well-characterized by τα ∼ 1

PR(〈S〉) , and that S itself has a physical
interpretation as a local energy barrier scale to rearrangement.

What happens, then, when we apply the SVM approach to pre-
dict dynamics from local structure in a parameter regime of the
model, p0 & 3.81, in which the shear modulus is very small at
zero temperature28, there are only vanishingly small energy bar-
riers to nonlinear cell motions, and the relaxation time scales as
approximately a simple power law over the entire range of tem-
peratures studied29? Figure 3 indicated a small amount of infor-
mation about T1 transitions was gained even in the fluid regime,
suggesting that the cells are traversing small but finite energy bar-
riers as they performing T1 transitions. However, this is likely
because at the relatively high temperatures studied above, the
model is off the manifold of zero-energy motions. Is it possible
to modify the details of how we trained the classifier in order to
correctly identify the existence of barrier-free paths to relaxation?

To examine these questions, we train a classifier that is different
from the one studied in the previous section. The previous clas-
sifier was trained at p0 = 3.75 and T = 2.0×10−3. Here we train
a classifier at p0 = 3.85 and T = 9.7× 10−4 (a parameter-space
point for which the structural relaxation time is approximately
τα = 104). We then apply this classifier to additional simulation
data at much lower temperatures than those studied in the previ-
ous section, at T = {3×10−6, 6×10−6, 1×10−5, 2.9×10−5, 5.8×
10−5, 9.7× 10−5, 2.9× 10−4, 5.8× 10−4, 9.7× 10−4}. While low
temperatures in absolute terms, this range of temperature corre-
sponds approximately to alpha relaxation times stretching from
104 to 107.

For these very cold systems in the fluid regime, T1 transitions
are very rare and it is difficult to build sufficiently large train-
ing sets from them or to obtain reliable estimates of the very low
probability of a cell experiencing a T1 transition. We therefore re-
turn to the use of a “hop” indicator function, Ph(i; t)41, to identify
dynamical events: to define Ph(i; t) for a cell i at time t we first
specify two time intervals A = [t−5τ, t] and B = [t, t +5τ]; the hop
indicator function can then be expressed as

Ph(i; t) =
√
〈(ri−〈ri〉B)2〉A〈(ri−〈ri〉A)2〉B, (7)

where 〈〉A and 〈〉B denote averages over A and B intervals.
The probability distribution of this indicator function is re-

ported in the top panel of Fig. 7. Notably, for these low tempera-
tures and in a system where the dynamical timescale itself simply
grows as 1/T , the distribution of values of the indicator function
collapses perfectly when scaled by the temperature – this tem-

perature dependence is also what one would expect in studying
the distribution of the Ph indicator as applied to any Brownian
random walk. This behavior is consistent with power-law growth
of the overall relaxation time at this state point. Note, though,
that in more usual particulate glasses (e.g., binary Lennard-Jones
mixtures) the probability of rearrangements changes by orders of
magnitude with decreasing temperatures, but this simple collapse
of the Ph distribution would not occur. Instead, when rare rear-
rangements do occur in those systems, the statistics of particle
motions is quantitatively similar to rearrangements occurring at
other temperatures.

Fig. 7 (Top) Probability distribution of Ph, scaled by temperature, for
the thermal VM at p0 = 3.85 and T = 3×10−6−9.7×10−4 (blue to red
points). (Bottom) The log of the probability distribution of softness for
the same systems, measured using a classifier trained at T = 9.7×10−4.
The distribution is nearly unchanged, despite the temperature (and the
relaxation time) changing by over two orders of magnitude.

We follow the protocol outlined in Ref.13, choosing a cutoff
value of Ph that selects only the top ∼ 5% of all Ph values as an
“active” cell, defining “inactive” cells as those that stay below an-
other a small threshold of Ph for several hundred τ to ultimately
form a balanced set of cells in our training set. We train a linear
SVM – using the same Behler and Parrinello45 structure functions
(specialized to the monodisperse case) as were used in Ref.13

– and, consistent with the low amount of information gained by
softness in this regime (as seen in the previous section), our cross-
validation accuracy is comparatively low: we only identify cells
participating in dynamical events in our training set with ∼ 70%
accuracy. The distributions of softness themselves across our stud-
ied temperature regime are shown in the bottom panel of Fig. 7;
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as can be seen, other than a small change in the low-softness tail,
there is almost no change in this distribution across a broad range
of temperature scales, quite unlike the results in the previous sec-
tion.

The next step in the standard analysis is to calculate PR(S) at
different temperatures. The collapse Fig. 7 indicates that if we use
a single threshold for Ph to determine what a “rearrangement" is,
there will be no events at sufficiently low temperatures; already-
rare events at T = 9.7× 10−4 would be essentially unobservable
at T = 3×10−6 within the limitations of our simulations. But the
collapse also suggest a different way to define events. Reflecting
the fact that the low-temperature dynamical events in this model
are themselves very different, we make use of the data collapse in
Fig. 7 and define an active cell as having equally extreme values of
Ph at any given temperature; that is, we scale the threshold we use
to define a rearrangement by the temperature (rather than using
a temperature-independent, fixed threshold as in previous work).

By looking systematically at the probability of “rearranging”
with this definition of dynamical events and comparing with
Eq. 5, we can still decompose PR(S) into a configurational part
Σ(S) and an energy barrier scale ∆E(S) across all our data cover-
ing two orders of magnitude in temperature. We find ∆E(S) = 0
to within numerical accuracy. That is, by training in this regime
not only do we (correctly) find that local structure does not in-
dicate an energy barrier scale, we also find that there is also no
temperature-dependent part of PR at all – i.e., the softness analy-
sis indicates that there are no energy barriers at low temperature,
exactly as expected from the nature of the model28,29.

We repeat this analysis to study parameter space points at
p0 = {3.75, 3.8, 3.85, 3.9} and over comparably lower temper-
ature regimes. In each case, we use the classifier trained at
p0 = 3.85. We find that ∆E = 0 for p0 = 3.85 and p0 = 3.9, and
that it is nonzero for p0 = 3.75 and p0 = 3.8. Apparently the
combination of features that maximizes the (limited) predictive
capacity of local structural information at these very low temper-
atures in the fluid phase nevertheless contains sufficient informa-
tion to predict the emergence of nonzero energy barriers in the
solid phase. We find this result striking. It likely has strong im-
plications for the reason why linear SVMs give softnesses that are
interpretable as energy barrier scales in the first place, and we are
continuing to study this intriguing result.

5 Discussion
We have shown that local structure in these tissue models suffices
to obtain a quantity, softness, that strongly predicts rearrange-
ments, and have quantified the amount of information that it cap-
tures. The information provided by softness is strongly correlated
with the relaxation time (contours of constant information shape
parameter are nearly the same as contours of constant average
T1 rate). The results of the present study, when combined with
previous work on both strong and fragile glass-formers, raise sev-
eral natural questions about the “softness” protocol for identifying
local structures that are predictive of activated dynamics. Most
pressingly, under what conditions does softness correctly identify
an energy barrier scale in the problem? And to what extent does
the answer to that question depend on the nature of the model

under study and to the details of how the training sets are con-
structed?

Remarkably, we find that a single classifier trained in a low-
temperature but fluid-like regime of the Voronoi model correctly
predicts both the absence of energy barriers in the fluid-like
regime and the presence of them in the solid-like regime. It may
be useful to contrast this finding with expectations in a “normal”
system going from a simple fluid to supercooled fluid / glassy
phase. In the normal fluid phase there are not meaningful bar-
riers to particle rearrangements, nor are there dynamical hetero-
geneities of the sort seen at lower temperatures. After building
a classifier to attempt to identify fluid particles in the tails of the
Gaussian distribution of particle displacements by looking at lo-
cal structures, one would not expect this same classifier to cor-
rectly identify local structures that appropriately describe dynam-
ical heterogeneities in the glassy phase. Nor would one expect,
even if this classifier had some predictive accuracy, it would nec-
essary be physically interpretable as encoding the energy barriers
to local rearrangements.

In glassy systems, the lowest-frequency modes are quasilocal-
ized; this reflects the physics that the corresponding rearrange-
ments are localized. In contrast, the lowest-frequency vibrational
modes of the ground states of the Voronoi model are spatially
extended29, initially suggesting that rearrangements or at least
the motions associated with rearrangements are extended. Given
this, it may be surprising that local structure succeeds in pre-
dicting rearrangements so well. This is related to the fascinat-
ing difference in the linear vs. the non-linear mechanics of the
low-temperature states of the VM. This difference is also reflected
in the previous finding that, despite the extended linear vibra-
tional modes of the VM found by quenching to zero temperature,
the spatial extent of dynamical heterogeneities (as inferred from
the value of four-point correlation functions) is similar to those
in more typical glass-forming models29. Thus, while the low-
frequency vibrational modes are extended, the physics governing
nonlinear motions rearrangements may not be.

The fact that softness, which predicts T1 events, reproduces the
temperature-dependence of the structural relaxation time in the
glassy regime of the model indicates that the T1 transitions are
central to the dynamics within the tissue. Softness also suggests
that there is a spectrum of effective energy barriers in a tissue,
which accounts for orders of magnitude variation in the rate of
T1s. It would be interesting to apply our learned classifier to an
even more disparate set of data than we have done above. In
addition to more thoroughly testing our classifiers on very differ-
ent model points (e.g., on values of the preferred shape param-
eter even farther from the training value than we have reported
here), one could imagine studying even greater perturbations of
the model, such as the addition of intrinsic curvature47.

Our results for self-propelled models represent, we believe, the
first analysis of softness in an active system. In this paper we have
restricted ourselves to the regime in which the self-propelled sys-
tem is reasonably well-described by an effective temperature, so
it is relatively unsurprising that our methodology continues to
work. The analysis approach is not limited to that regime, how-
ever, and it will be interesting to study systems far from that limit.
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As the non-equilibrium nature of the active simulations are en-
hanced, how different do the statistics of the energy barriers to
rearrangements become? At what point does maintaining good
predictive capacity require the use of additional structural fea-
tures, such as the relative polarization directions of nearby cells?
Answering these questions will be a first step towards applying
this style of analysis directly to experimental datasets on epithelial
tissues and cell cultures. In those that behave much like Voronoi
and vertex models, we could even ask whether the learned classi-
fier from this model of dense 2D epithelial tissue is able to main-
tain any predictive capacity when applied to experimental data,
or whether additional features (cell polarization, levels of protein
expression within cells, etc.) are necessary to predict cell rear-
rangements in real epithelial tissues.
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Appendix
We use two sets of structure functions to quantify the local envi-
ronment around each cell for input to the support vector machine.
The first set consists of those commonly used45 that depend di-
rectly on the configuration of cell centers. We augment these with
a second set of structural features that depend directly on the cell
shapes, obtained from the Voronoi tessellation.

Comprising the first set, each radial structure function Riα in-
dicates the number of neighbors at a particular distance from the
cell i.

R(i;α) = ∑
j

exp(−(di j−µα )
2/(2σ

2
0 )),

The vector from the position of cell i to the position of
cell j has length di j. We include 24 radial functions. We
use σ0 = 0.1 and µα = 0.7,0.8, ...,2.9,3.0 corresponding to α =

{0,1 . . .13,14,15 . . .22,23};
In the second set, the following 10 values are included for each

cell i: the number of Voronoi edges of cell i, then the cell own
shape index pi, and the shape index of the cell’s most compact
neighbors, p j for j = 0...7, where p j is the shape index of the
Voronoi neighbor with the j− th smallest shape index (or zero if
cell i has less than j Voronoi neighbors). With these 10 Voronoi-
dependent values, in total we consider M = 34 structure functions.

For rearranging cells, structural functions are calculated be-
tween 4 to 8τ before a T1 transition; this way, the the structure

reflects the local tissue that may rearrange, rather than when it
is actively rearranging. For non-rearranging cells, the structure is
calculated in the middle of the 160-τ window.

Given this, we write our training set on N examples as
{(F1,y1),(F2,y2), ..,(FN ,yN)}. Here Fi = {F1

i ,F
2
i , ..,F

M
i } is the set

of M input structural features (discussed above) that describes
the local neighbourhood of cell i, and yi is the label for example
i. We use the label yi = 1 for rearranging cells, and y1 = −1 for
non-rearranging cells. Then, we use the SVM24,25 algorithm with
a linear kernel to find the optimal hyperplane ~W · ~F − b = 0 that
separates the rearranging cells (yi = 1) from the non-rearranging
cells (yi = −1). ~W is the vector of weights associated with each
structural feature, and b is the bias.

We find a classifying hyperplane for a training set obtained
from a single temperature and preferred perimeter, and apply
that learned hyperplane to the rest of our data to obtain the re-
sults reported above: given any cell k we find its local structural
features, (Fk), and define a scalar continuous variable, “softness,”
as Sn = ~W ·Fk− b, which is signed distance of the point Fk to the
hyperplane.

Which structural variables dominate softness

One way to determine which structural variables for softness are
most important is to use recursive feature elimination48. Here,
we instead look at which structural variables have the strongest
correlations with S. We calculate Pearson correlation coefficients
with softness for each of the structural variables (after normaliza-
tion as discussed in the SI) used in SVM. The correlation coeffi-
cients are listed in Table 2. Of all quantities calculated, the neigh-
bor which have largest shape index is most highly correlated with
softness. The cell’s own shape index is essentially equally well-
correlated with S, as is the highest shape index of the neighbor
cells.

An alternative analysis based on the accuracy of an SVM in
predicting T1’s if trained only on one of these structural features
found similar results.
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