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Adhesion of a Tape Loop†

Theresa Elder,a Timothy Twohig,b Harmeet Singh,c and Andrew B. Croll ∗a,b

In this work, we revisit experimentally and theoretically the mechanics of a tape loop. Using primarily
elastic materials (polydimethylsiloxane, PDMS, or polycarbonate, PC) and confocal microscopy, we
monitor the shape as well as the applied forces during an entire cycle of compression and retraction
of a half-loop compressed between parallel glass plates. We observe distinct differences in film
shape during the cycle; points of equal applied force or equal plate separation differ in shape upon
compression or retraction. To model the adhesion cycle in its entirety, we adapt the ‘Sticky Elastica’
of [Wagner et al., Soft Matter, 2013, 9, 1025] to the tape loop geometry, which allows a complete
analytical description of both the force balance and the film shape. We show that under compression
the system is generally not sensitive to interfacial interactions, whereas in the limit of large separation
of the confining parallel plates during retraction the system is well described by the peel model.
Ultimately, we apply this understanding to the measurement of the energy release rate of a wide
range of different cross-linker ratio PDMS elastomer half-loops in contact with glass. Finally, we
show how the model illuminates an incredibly simple adhesion measurement technique, which only
requires a ruler to perform.

1 Introduction

When attaching one flat object to another, say a poster to a wall,
it is not uncommon to use a loop of tape. Bending a flat piece
of adhesive tape 180◦ such that the sticky side of the tape points
outwards is a simply created solution, however, the mechanics of
the attachment process is more complex. An example of this com-
plexity can be seen when a newly made tape loop is gently placed
on a horizontal surface (Fig. 1a). The loop will retain its original
circular cross-section indefinitely (a fact which is independent of
the particular type of tape used or the substrate). If the loop is
compressed, it will deform into an elongated shape which is rel-
atively flat along the horizontal surface and highly curved at the
ends (see Fig. 1b). When the compressive pressure is released,
the shape opens slightly but does not return to its original cylin-
drical shape (Fig. 1c).

The cycle is hysteretic; adhesion is present but is not enough
to pull the system into equilibrium. Perhaps the observation that
equilibrium does not govern the shape of the tape loop is easily
ignored because tapes, like all pressure sensitive adhesives, are
designed to dissipate energy. Loss, of course, means the system
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will be path dependent. However, we show here that the same
effect is observed even with the use of low loss materials like
polycarbonate.

The ubiquity of the tape loop would also suggest that it might
be useful for quantifying adhesion. This could only be the case if
a loop were to find equilibrium when placed on a surface. In this
case, the loop would act like a fluid drop and flow into a partic-
ular contact shape (a contact angle could be measured if it were
a fluid). The shape would change from one surface to another
and could therefore be used to discuss adhesion. Unfortunately,
because the loop shape depends on history it is of no use in mea-
surement, and its use to solve the problem of attaching one flat
object to another can only be determined by an Edisonian process
(e.g. if it doesn’t work at first, use more tape loops).

In this work we experimentally examine the attachment and
detachment process using an idealized half-loop geometry and
several different polymeric thin films chosen to vary the amount
of energy loss at the interface. One of our main observations is
that the hysteresis in shape is a general geometric feature of any
adhesive loop, not simply the product of energy dissipation. We
go on to show how the ‘Sticky Elastica’ model can be adapted to
this geometry and provide theoretical insight, enabling the loop
to be reliably used as an adhesion measurement system. We ver-
ify the usefulness of the loop by measuring the adhesive energy
release rate for various polydimethylsiloxane (PDMS) elastomer
formulations. Finally, we use the model to identify an incredibly
simple method wherein only a ruler is necessary to measure a
system’s adhesive properties.
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Fig. 1 Geometry of a tape loop. (a.) A tape loop resting on a clean glass surface. (b.) A compressed tape loop. (c.) A tape loop after compression
is removed. (d.) schematic of a peel experiment. (e.) Schematic of a loop-tack test. (f.) Schematic of the tape loop experiment discussed here.

The adhesion of a thin film to a flat substrate is typically de-
scribed by peel mechanics, a very successful model that has de-
veloped over the past 50 years and is a staple in industrial adhe-
sion testing.1–5 To remove a thin piece of tape of width, b, from
a substrate, a force, F , must be applied to the free end of the
tape which is at some angle, θ , with respect to the substrate (see
Fig. 1d). If the applied force is large enough, a crack between the
tape and substrate will begin to propagate along the interface,
destroying adhesive interface and creating new substrate/air and
tape/air interfaces in the process. In the language of fracture
mechanics, the energy release rate, G = ∂UM/∂A is equal to the
Dupré work of adhesion, ∆γ, at this point. Here UM is the stored
mechanical energy of the system and A is the amount of contact
between the film and substrate. Careful analysis, coupled with
the assumptions of film inextensibility and neglecting bending,
allows the critical force to peel the tape to be related to the work
of adhesion as:

F =
∆γb

1− cos(θ)
. (1)

Peel experiments are often performed at 90◦, where Eqn. 1 be-
comes simply F = ∆γb. Over the years, many additional features
have been added to the model (plasticity or stretching in the film,
bending of the film, shear lag, friction, etc.), enabling the model
to successfully describe almost any scenario involving the removal
of a thin adhered sheet from a solid substrate by application of a

force to one end.4,6–12

When a film is bent in a loop, the direct application of Eqn. 1
is no longer permitted because UM will now depend on the film
shape, which itself will change during an experiment. The loop-
tack test is a good example of a common industrial thin-film ad-
hesion test that involves film curvature.13–19 In this case, a film
is bent back on itself to form a ‘tear-drop’ shape, rather than a
cylindrical loop (Fig. 1e). The sharp side of the tear-drop shape is
clamped and the curved, free side of the film is then pushed into
contact with a flat substrate and pulled off as forces are measured.
Much effort has been made to model the test, but simple expres-
sions of the type of Eqn. 1 do not currently exist. Interestingly,
experiments have shown that the indentation part of the test cy-
cle is independent of the system’s work of adhesion.16 Pull-off
curves typically show a quick rise of force, a plateau and a final
sharp peak force before ultimate separation of the film and sub-
strate.

Recently, adhesion and the loop geometry have seen great in-
terest due to the increasing use of nano-scale tubes such as carbon
nanotubes in electronics.20–25,25–32 Researchers have observed
that tubes of this scale will often show a deformed shape when
placed on a flat substrate20–22, and a variety of models using tech-
niques ranging from variational methods to molecular dynam-
ics have been developed to describe the observations.23–25,25–32

Models show a deposited tube will ‘flow’ to its equilibrium de-
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formed shape in contrast with the macroscopic loop (though
metastable states have been noted). This is not surprising as nan-
otubes are dominated by long range attractive and thermal forces
which will overcome energetic barriers on the nano-scale in the
same way as compression will on the macro-scale.

Below we describe the details of our experimental procedures
before describing our modeling of the tape loop. We then show
basic experimental results such as typical force-displacement
curves and shapes of the free part of the loop at various stages
in the experiment. We next discuss the force-displacement cycle
in detail, before describing a version of the experiment which ex-
ploits the zero load limit as simple, physically grounded, adhesion
measurement technique.

2 Experimental
Our experimental geometry is shown in Fig. 1f. The loop is sim-
plified to a half-loop in order to avoid the complexities of joining
sheet ends to form a true loop. For example, the effect of an over-
lap region which is of twice the film thickness, a distorted surface
contact near the overlap, or residual stresses created during join-
ing would all confound results. Because of the symmetry of the
problem, and that we are not exploring the final stages of loop
removal, our choice is not expected to alter the basic mechanics.

2.1 Sample Preparation

Polydimethylsiloxane (PDMS) was made into films from a Syl-
gard 184 elastomer kit. Different weight ratios of prepolymer to
crosslinker were prepared: 10:1, 20:1, 30:1, 40:1, 45:1, and 50:1.
The elastomer base was thoroughly mixed with the curing agent
via continual stirring for 10 min. The PDMS mixture was then
poured into a polystyrene sample dish to a desired weight based
on an anticipated thickness. Thinner samples were prepared by
spin-coating PDMS on a polyacryilc acid release layer coated glass
slide. The samples were then placed in vacuum oven at 25 in/Hg
pressure and then pressure was released after five minutes. Cy-
cling was repeated 4 times in order to evacuate all gas bubbles
from the mixture. The samples were then heated to ∼ 85◦C for
90 minutes under 15 in/Hg vacuum. Samples were promptly re-
moved after the 90 minute anneal and quick quenched on a cool
surface for a minimum of 30 minutes before use.

Polycarbonate Films (PC) were made from solutions of 1-2 %
PC pellets, MW 60 kg/mol (Scientific Polymer Products), dis-
solved in chloroform (Fisher Scientific, Optima grade). Nile Red
dye was often mixed into solutions to aid in imaging. Solutions
were spin-coated onto a freshly cleaved mica surface that was
placed in a closed chamber. The closed chamber had excess chlo-
roform, a volatile solvent which provided vapor pressure to slow
evaporation. After a set time film was removed and annealed at
∼ 180◦C for several hours.

Samples were then cut into long rectangular strips of varied
widths and floated off their substrates on the surface of Milli-
Q water. The exact dimensions, length, width, and thickness of
these strips were measured with calipers and/or image analysis.
Next, each end of a strip was placed flush against one of the two
parallel plates of our apparatus. The distance of the plates was

adjusted to a distance where the section of film between the two
plates assumed an approximately circular curvature. Care was
taken to ensure bonding surfaces were not handled during the
setup process.

2.2 Apparatus

The apparati used in these experiments are documented in a pre-
vious publication.33 In brief, the apparati consisted of two par-
allel glass plates, one plate attached to a force sensor and the
second plate attached to an actuator. A camera was positioned
beside the plates in order to capture the vertical plate motion.
Two different versions were constructed. The macro version used
a Newport Motion Controller Model ESP 301 motor while the
micro version used a PI N-381 nanopositioner. Additionally, the
micro version was placed on an Olympus Flouview FV1000 laser
scanning confocal microscope (LSCM) stage for 3-D imaging. 3-D
imaging provided us a detailed shape of the film at each stage of
compression.

An additional horizontal apparatus was also created, in order
to quantify the film at a point of zero load. Similar to the previous
set-up a film was bent and placed between two glass plates. How-
ever, in this case two films were placed symmetrically between the
plates, forming two bends rather than one. One plate was fixed
in position. In order to reduce friction the second plate was fixed
to a “boat”. The “boat” was created from a counterbalanced con-
tainer constructed with a 3D printer and rests on a water surface
(see Fig. 7). In this experiment the loops are compressed beyond
the elastocapillary length by hand, and then allowed to relax to
equilibrium.

𝐻0

a.

b.

𝐻0

Fig. 2 A simplified adhesion measurement apparatus. a. shows a side
view and b. shows a top down view. Light grey is the ‘boat’, black repre-
sents a rigid connection to the table, blue shows water in a crystallization
bowl and glass plates are shown as cross-hatched rectangles. Two bent
films are shown in white.
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3 Modeling

3.1 Scaling

We begin modeling with a terse scaling analysis. First, we identify
the elasto-capillary length, `ec =

√
B/∆γ as the relevant system

lengthscale. Here B is the bending modulus which is equal to
Eh3/12(1− ν2) where E is the Young’s modulus, h is the film
thickness, and ν is the Poisson ratio. The system is expected
to behave differently as the confining lengthscale becomes large
or small compared to `ec.34 In the present case, the confining
length is the size of the gap between the two parallel plates, H,
hence we expect two regimes of behaviour over the course of the
experiment. Conjugate to H is the measured force, P, for which
there is no, a priori, natural scale.

If H > `ec the system is unconfined, and bending should not
be so important. If the film is inextensible, this means that
the only way it can accommodate a change in H is to open
along the interface by the same amount. When an amount of
area is opened (bδH) a work (FδH) must be done. A simple
energy balance then gives a tensile value of F ∼ ∆γb, which is the
90◦ peel-test result. Note that there is no hint of the symmetry
between opening and closing to be broken here.

On the other hand, as H < `ec, confinement and bending be-
come dominant. Here we expect an energetic balance between
bending and work done, which leads to the well known ‘adhe-
sion free’ bending result: F = πBb/H2, a compressive force.33.
Again, there is no opening/closing symmetry breaking apparent
here either.

The two limits suggest that rescaling distances by `ec and forces
by ∆γb will lead to universal behaviour. If this is the case, scaling
predicts the system to follow a single force-displacement curve
which scales as H−2 at small H and asymptotically approaches a
constant value of -1 at large H.

3.2 Sticky Elastica

For a more complete picture of the process we consider the full
system energy and aim to calculate both the shape of a loop and
its force-displacement curve directly. To do so, we adapt the
‘Sticky Elastica’ model to the loop geometry, ignoring the scaled
variables suggested above for clarity.35 One of the key outcomes
of this analysis is that the boundary conditions are not all unre-
lated to the material specific details of the surfaces.35–38 Adhe-
sion influences the curvature of the film at the point of attach-
ment to the wall and the oft assumed zero-curvature boundary is
proven incorrect for cases in which ∆γ 6= 0.

Considering the geometry shown in Fig. 1f. Here θ(s) describes
the angle with respect to horizontal made by an adhesive thin
inextensible sheet and s is a coordinate that follows the contour of
the sheet. The sheet, of length L and width b, makes contact with
the parallel confining walls up to the point `/2 where it forms a
free curve. The boundary conditions are thus θ(`/2) =−π/2 and
θ(−`/2) = π/2. Alternatively, as the system is symmetric about
the origin we could infer that θ(0) = 0. The confining walls have
been moved towards one another such that the gap has a width
of L−∆L.

The total energy per sheet width is given by:

U =
∫ `/2

−`/2

[
B
2
(θ ′)2 +∆γ

]
ds−L∆γ−α

(
L−∆L−

∫ `/2

−`/2
cos(θ)ds

)
,

(2)
where θ ′ is dθ/ds, and α is a Lagrange multiplier which phys-
ically corresponds to the load per unit width, P. An additional
term could be added to ensure the vertical length constraint (e.g.
−α2(L−∆L−

∫
sinθds) could be added to Eqn. 2). However, as

we assume no shear force occurs at the contact point, the addi-
tional Lagrange multiplier goes to zero. We omit it for clarity. We
also note our inclusion of the term −L∆γ which is necessary to
account for the contact energy scaling with the total film size L.
While important to the total energy, we note this term does not
affect forces or the shape of the film and could be neglected for
convenience. Before minimizing, it is helpful to exploit symmetry:

U = 2
∫ `/2

0

[
B
2
(θ ′)2 +∆γ

]
ds−L∆γ−α

(
L−∆L−2

∫ `/2

0
cos(θ)ds

)
.

(3)
Equation 3 can be minimized in order to identify the minimal

curve, θ(s), however, as pointed out by Wagner and Vella, both
` and α may also change, hence variations of all three quanti-
ties must be simultaneously considered.35 We use an alternative
calculation which arrives at the same result:†

θ
′′ =−(α/B)sin(θ). (4)

Again we note that α = P, and we make this substitution in all
following steps. The length constraint is unchanged:

L−∆L = 2
∫ `

2

0
cos(θ)ds, (5)

and finally a new additional constraint emerges:

θ
′(`/2) =

√
(2∆γ)/B = (

√
2/`ec). (6)

Note that were it not for this natural boundary condition, our
results would be identical to the rectangular elastica, which has
been much studied.39–42 This is also the case for the ∆γ→ 0 limit.

3.3 Solutions

Eqn. 4 can be solved analytically using an elliptic integral of the
first kind. Integrating once gives an expression for the curvature:

θ
′ =
√

2(P/B)cos(θ)+ c1, (7)

where c1 is an integration constant. If Eqn. 6 is to be accommo-
dated, then c1 must be equal to (2∆γ)/B. Solving the differential
equation yields:

θ(s) = 2am
(√

P+∆γ

2B
s,

√
2

1+∆γ/P

)
, (8)

where am is the Jacobi amplitude function. The point of contact,
`, can also be explicitly determined:

`

2
= F

(
− π

4
,

√
2

1+∆γ/P

)√
2B

P+∆γ
, (9)
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where F is the eliptic integral of the first kind. We note that we
have recovered the result of Majidi.38

If P= 0, Eqn. 4 can be integrated twice, yielding θ(s) = a1s+a2.
Given the boundary condition for θ at s = 0 and s = `/2 we can
further determine that a2 = 0, and a1 = −π/`. The curve is fully
specified if the curvature, a1, can be uniquely defined (requiring
an additional boundary condition). Eqn. 6 would solve this prob-
lem, however, this boundary condition can only be satisfied at a
single point (when H =

√
2`ec). We discuss this point in greater

detail in section 4.5 below.

4 Results and Discussion
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Fig. 3 A typical force displacement curve for a 10:1, thickness 56.4 µm
film. Fits to the circular, Rectantular Elastica and Sticky Elastica model
are shown.
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Fig. 4 Film shapes measured by confocal microscopy at various stages
of compression (a.) or retraction (b.). (a.) shows circular fits (solid
red curves, radii of 2220, 1400, 720, 220 respectively) as well as fits to
the Rectangular Elastica. Disagreement between the Rectangular Elas-
tica and the measured film is more pronounced for the wider separations,
suggesting gravity may play a role. (b.) shows the same film during
retraction and fits to the equilibrium “Sticky Elastica” model. Physically
measured plate separations are shown in the caption for both compres-
sion and retraction, and fits are truncated at the apparent contact point
(y=0).

4.1 Basic Experimental Results

The raw experimental results are shown in Fig. 3 and Fig. 4. The
former shows a typical force-displacement curve and the latter
shows the shape of the free-standing part of the film at various

stages of the experiment. Starting at the point labelled 1. on
the force curve, the two walls increasingly confine the PDMS film
up to some arbitrarily chosen peak compression. This segment of
the cycle begins with a near zero force which is always positive
and monotonically increases during compression. Regardless the
magnitude of the adhesive force (this varies with the mixing ratio
for PDMS), the curve is quantitatively consistent with earlier pre-
dictions for adhesion-free elastic films.33 This can also be verified
by experimentally removing any adhesion by coating PDMS films
with a monolayer of cornstarch particles. Films at all points be-
tween 1. and 2. maintain shapes that are well described as cylin-
drical, again in agreement with adhesion free films (circular fits
are shown in Fig. 4a.). While the true shape in this region may
not be circular, we emphasize that the shape must be so nearly
circular that there is effectively no difference.

After peak compression (point 2.), the sample walls are moved
apart and forces are observed to drop more quickly than they
rose on approach. Notably, the force drops to zero well before the
confining walls have reached their initial separation. The sample’s
shape at point 3. is also very well described as cylindrical.

Further plate separation drives forces below zero and the sam-
ple moves into a tensile rather than compressive regime (points
3. to 4.). At large separations, the force approaches a constant
value. At large separation, one would expect the test to be iden-
tical to a 90◦ peel test, thus Eqn. 1 can be used to determine a
critical energy release rate. In the case of the film shown in Fig-
ure 3 the energy release rate is found to be Gc = 0.27±0.02 N/m
when the motor is moving the plates at a quasi-static (average)
rate of 1×10−5±2×10−6 m/s, but with the motor moving in-
crementally at a rate of 3× 10−3m/s. This value is consistent
with published measurements using a more conventional glass
sphere indentation test (a JKR adhesion test).43,44

This cycle is repeatable; when the motor is reversed to com-
press the sample again the same curve is traced. Likewise, the
same shapes are observed with each repeated loop. The hystere-
sis observed does not have to do with loose film due to improper
film placement or other transient issues. Wait times at different
stages of the test also do not heavily influence the curves. For
example, waiting at point 1. has no effect. Waiting at point 2.
a small logarithmic relaxation is noted and has previously been
attributed to material (not adhesive) processes.33

Finally, we note that although hysteresis is not uncommon
in adhesion measurements what is observed here is atyp-
ical.45–48 For example in measurements between a PDMS
sphere and a PDMS flat it is typical to record an energy re-
lease rate of 20 mN/m while advancing contact and a value of
100 mN/m or more when receding. What is different here is
that the advancing curves measure an adhesion value of zero
during advance (rather than just a smaller value). Were there
to be some adhesion, the advancing curve would have to be
negative at large separations and pass through zero at some
fixed plate separation (see discussion of this point below).
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4.2 Indentation Analysis

The indentation segment of the force-displacement curve (region
1. to 2.) appears insensitive to the work of adhesion. Fig. 3
shows a fit to the zero adhesion model described in33 (Model I).
The model assumes a circular cross-section for the free part of the
film and balances bending with work as described in section 3.1.
The only free parameter in the fit is the Young’s modulus of the
film, and the fit value precisely matches the modulus measured
by more conventional means.

The Elastica model can also be used to fit this region, under the
same assumption that the work of adhesion is zero and with the
additional assumption that the Lagrange multiplier, α, is equal to
the applied load (Fig. 3, Model II). Shapes generated are the well-
known Rectangular Elastica and although not circular are near
circular away from the bounding walls (see Fig. 4). Given the
measured force and measured wall separation the shape of the
elastica does not closely match the measurement. Experiments
may not resolve the true contact points of the films, and it is likely
for the large separations (where the discrepancy is largest) that
gravity contributes to the film shape.

More importantly, that ∆γ is zero upon approach but nonzero
upon retraction is simply unphysical. ∆γ is a measure of surface
energies, and is a fixed materials property of the system. It simply
cannot disappear due to the direction of motion. This is a key
point we wish to raise in this article, and its resolution we believe
has to do with the oft ignored aspects of stability which enter
many adhesion problems.

To more clearly address this anomaly, let us consider adhesion
as a fracture process. In this case, propagation of an interfacial
crack is determined by comparison of the work of adhesion with
the system’s energy release rate:

G =
∂UM

∂A
, (10)

where UM is the mechanical energy of the system and A is the
area opened by the propagation of a virtual crack. The energy
cost to move the crack a ‘virtual’ distance is then given as:

∂U = (G−∆γ)∂A. (11)

If G > ∆γ the crack will only reduce the overall energy if it de-
creases in area (opens), if G < ∆γ then the energy is decreased
by closing the crack (∂A increases). The system is in equilibrium
only if G = ∆γ.

In general the energy release rate is what is measured in an
experiment, not the work of adhesion. This is because the system
is not necessarily in equilibrium at each step, which will happen if
the crack moves more slowly than the instrument. We specifically
use this language to emphasize that we are measuring an energy
release rate below.

The crack can only grow or shrink if it is unstable at the par-
ticular plate separation in question. This could be determined
by taking an areal derivative of G. If ∂G/∂A > 0 the crack is
stable and can only open or close if the plates are moved.
Importantly, if G < ∆γ and ∂G/∂A > 0 a crack could be ’stuck’
in a non-equilibrium state. The system would be frustrated

as appears to be the case observed here. As is commonly the
case with frustrated systems, the system is history dependent. In
this case, compression causes the free length of the loop (`) to be
fixed (as the crack cannot move until the walls move) and the lo-
cal problem becomes simply minimizing the bending energy. The
film adopts the smallest curvature which fits between the walls -
a Rectangular Elastica.41

Consider the process taking place in two steps, a common con-
ceptual exercise in adhesion problems.3 First a purely elastic de-
formation is caused by the plate boundaries (ignoring adhesion).
Next, adhesion is ‘turned on’ and the interface adjusts to a new
equilibrium. In the case of the loop, the second step amounts to
the curvature at the contact point becoming non-zero in accor-
dance with the adhesive boundary condition derived above.
This cannot happen without the contact point moving along
the interface, something that could not happen if the crack is
stable (∂G/∂A > 0).

4.3 Retraction Analysis

When the plates are opened again (for example, point 2. to point
3. and 4. in figure 3) the interfacial crack remains fixed in place
as the plates open. Opening leads to a reduction in curvature in
the film, but the film does not follow the 1.-2. path. Instead,
the system adjusts the boundary conditions at the contact point,
and θ ′ increases from zero. At some point the increase stalls
(θ ′ =

√
2∆γ/B) and the interface must open as the plates move,

following the true equilibrium curve discussed above. Results of
the equilibrium are shown as the dashed curve (Model III) in Fig-
ure 3. Shapes predicted by the model are extremely accurate in
this regime as can be seen in figure 4.

There are an infinite family of curves which an experiment
might follow, depending on when compression is stopped and
the motor is reversed. However curves are always bound by the
“θ ′ = 0” curve above and the “Sticky Elastica” curve below. In-
terestingly, provided the system is compressed beyond the elas-
tocapillary length, the force displacement curve will always pass
through the unique point H0 =

√
2B/∆γ as P = 0. We discuss the

implications of this unique point below.

4.4 Modulus and Energy Release Rate Measurement

Experiments were repeated with PDMS samples of different thick-
nesses, dimensions and cross-linking ratios. The tape loop geom-
etry allows fitting the indentation curve to yield a measurement
of the bending modulus, something not easily possible in either a
loop-tack or peel test. Independently measured thickness values
allow the Young’s modulus to be determined, which we plot in
figure 5a. As is widely acknowledged, higher ratios lead to lower
modulus materials.49–55.

More interestingly, higher ratios also lead to larger measured
values of the energy release rate (Gc). The increase is likely due
to increased viscoelasticity at the interface in the softer materials.
Figure 5b. provides a summary of our measurements. Though
measurements of adhesion with PDMS have been done for quite
some time, we believe this to be the first quantitative measure-
ment of Gc between PDMS and glass for this wide range of cross-
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Fig. 5 (a.) Young’s Modulus as a function of crosslinker ratio (ar-
birary units) as measured from indentation curves. Error bars denote the
standard deviation of the measurements. (b.) Energy release rate as a
function of crosslinker ratio.

linker ratios.44,45,51,54,56–63

As a convenience for prediction of the energy release rate for
mixtures not directly measured here, we plot the correlation of Gc

with moduli in figure 6. We find the data is well fit by Gc = AE−n

where A = 200±60 and n = 0.49±0.03. We caution that this is an
entirely empirical fit; there is no reason to believe a power law
is the correct form of the relationship and the rule is likely error
prone beyond the measured range of Fig. 6. Furthermore, the
modulus of Sylgard 184 is not only cross-linker ratio dependent
but is also highly related to annealing temperature. It is unclear if
changes in annealing temperature affect measured Gc differently
than its modulus alone would suggest.

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

0 . 1

1

G c 
(N

/m
)

Y o u n g ' s  M o d u l u s  ( P a )
Fig. 6 Data from Fig. 5(a.) and (b.) plotted Gc vs Young’s Modulus. A
power law fit is shown by the solid curve.

Experiments were also conducted with very thin (∼ 2µm) poly-
carbonate films. Polycarbonate is a glassy polymer at room tem-
perature and is therefore expected to suffer very little viscoelas-
tic loss during an experiment. Similar behaviour was noted
(hysteresis in force-displacement curves, no adhesion sensitiv-
ity on indentation, negative forces during retraction), verifying
our contention that the hysteresis is not due to viscous loss. We
measured moduli of 1.6± 0.01 GPa and energy release rates of
0.04±0.05 N/m. The high error in energy release rate we believe
is due to significant static charge present in the system. Even neu-
tralization with a Zerostat 3 and long wait times after a sample
was loaded the parallel plate setup did not result in highly repeat-
able values. We therefore do not believe our measurement is an
accurate measurement of true polycarbonate/glass interfaces, but
is convoluted with some amount of electrostatic adhesion.

Finally, we would like to point out the versatility and sim-
plicity of the technique and compare with other accepted
technologies. First, all that is necessary to do a tape-loop
measurement is a force transducer sensitive enough to mea-
sure 2∆γ/b, where b is the film width which can easily be ad-
justed to fit a given transducer. Given that a force transducer
can be constructed from any cantilever, the method is some-
what unlimited in sensitivity. We do point out that material
failure would limit peak forces measurable here. Compared
to a loop-tack test, the tape loop has a relatively simple the-
oretical framework (and very simple limits) and no issues of
out of plane bending. The tape loop requires much less total
length than would be safe for a typical peel setup and as no
direct visual observation is necessary, the technique could be
scaled to nano-scale materials. Provided no material changes
occur during a cycle, experiments can be repeated indefinitely
to increase sensitivity. And lastly, the technique does not rely
on soft materials or casting a material in a mould as would a
JKR experiment.47 Alternatively, a thin film may be laid over
a soft spherical JKR probe, but given the problem of wrap-
ping a sphere with a flat sheet it is likely that such an exper-
iment would cause an unclear stretching state for the film in
question, which might influence adhesion measurements in
unknown ways.

4.5 A Simple Technique for the Measurement of Energy Re-
lease Rates

Once a loop is compressed beyond the capillary length and the
load is reduced to zero, the loop will follow the equilibrium curve
described by Eqn. 8. At the point of zero load, the loop forms a
stable structure with a well defined plate separation. Noting that
am(u,m→ 0)→ u the shape of the free portion of film becomes
exactly circular as Eqn. 8 reduces to θ(s)→

√
2s/`ec. Hence, the

plate separation is given by:

H0 =
√

2`ec =

√
2B
∆γ

(12)

It is notable that the plate separation at this point relates only
to two material properties - the bending modulus and the energy
release rate (work of adhesion). Simply, this means that if a loop’s
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modulus is known the separation can give a direct measurement
of the systems adhesive properties. We demonstrate this observa-
tion in two ways.

First, for all the PDMS experiments run, we can extract and plot
the plate separation as a function of bending modulus (see Fig. 7
where we show only 10:1 PDMS for clarity). For both micro and
macro experiments, we see this data falls along a slope of ∼ 0.5
on a log-log axis ( Eqn. 12).

Secondly, we constructed a frictionless horizontal setup by cre-
ating a floating “boat” which held one parallel plate next to a
“wall” holding the second parallel plate. Between the two par-
allel plates two opposite facing half loops were arranged (two
are now necessary to balance moments). The floating side was
then pushed by hand towards the fixed plate. When the distance
between the two parallel plates was smaller than the estimated
elastocapillary length, pressure was removed and the the system
was allowed to relax. After waiting times ranging from 30 min to
12 h the plate separation was measured through image analysis
and a cell phone camera. With the measured modulus of 10:1
PDMS and the film thickness, this data was also added to Fig. 7.

The data from all three experiments falls along the same trend
and is well fit by a square root relation (H0 = cB0.5). The fit’s
only free parameter, the power law amplitude c yields a value of
3.67±0.14 though the fitting error likely under estimates the true
variation. The result is a measurement of ∆γ = 0.15±0.006, which
is in fair agreement with the average value measured by direct fit-
ting of the full sticky Elastica model and published values.43,44

1 E - 9 1 E - 8 1 E - 7 1 E - 6 1 E - 5 1 E - 4 0 . 0 0 11 E - 4

0 . 0 0 1

0 . 0 1

0 . 1
 M a c r o  E x p e r i m e n t
 M i c r o  E x p e r i m e n t
 B o a t  E x p e r i m e n t
 H 0 = c B 0 . 5

H 0
 (m

)

B e n d i n g  M o d u l u s  ( P a  m 3 )
Fig. 7 Data validating the simple adhesion measurement. H0, the plate
separation at P = 0, is plotted against the bending modulus for various
10:1 PDMS films. Data from both macro and micro setups as well as the
‘boat’ experiments all fall along a common square-root curve as discussed
in the text.

5 Conclusion
In this work we have outlined how the Sticky Elastica model can
be adapted to the tape-loop geometry and used to fit experimen-
tal data. We show that force-displacement loop hysteresis is due
to crack stability, rather than a direction dependent work of adhe-
sion. The loop geometry is seen to provide a reliable and simple
method to measure both film modulus and energy release rates,
which we demonstrate with a suite of polydimethylsiloxane elas-
tomers as well as polycarbonate films. Finally, the model suggests

using the point of zero load in a force-displacement cycle as a
force sensor free method of adhesion measurement.
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