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Multicomponent Diffusion of Interacting, Nonionic Micelles with 
Hydrophobic Solutes  
Nathan P. Alexander,a Ronald J. Phillips,a and Stephanie R. Dungan*,a,b 

Ternary diffusion coefficient matrices [𝐃𝐃] were measured using the Taylor dispersion method, for crowded aqueous 
solutions of decaethylene glycol monododecyl ether (C12E10) with either decane or limonene solute.  The matrix [𝐃𝐃], for 
both systems, was found to be highly non-diagonal, and concentration dependent, over a broad domain of solute to 
surfactant molar ratios and micelle volume fractions. A recently developed theoretical model, based on Batchelor’s theory 
for gradient diffusion in dilute, polydisperse mixtures of interacting spheres, was simplified by neglecting local polydispersity, 
and effectively used to predict [𝐃𝐃] with no adjustable parameters. Even though the model originates from dilute theory, the 
theoretical results were in surprisingly good agreement with experimental data for concentrated mixtures, with volume 
fractions up to 𝜙𝜙 ≈ 0.47. In addition, the theory predicts eigenvalues 𝐷𝐷− and 𝐷𝐷+ that correspond to long-time self and 
gradient diffusion coefficients, respectively, for monodisperse spheres, in reasonable agreement with experimental data.

1   Introduction 
Solute-containing micelle and microemulsion solutions 

diffuse in response to gradients in chemical potential of either 
solute or surfactant. Since strong molecular interactions drive 
self-assembly in these mixtures, the resulting fluxes of solute 
and surfactant occur in the form of many different species, 
including free molecular solute, surfactant monomer, dimers, 
trimers, etc., as well as a distribution of interacting colloidal 
aggregates with various sizes and shapes. When viewed broadly 
as a ternary mixture of solute (a), surfactant (s), and solvent, 
gradient diffusion can be described using the ternary form of 
Fick’s law, 

−�𝐽𝐽𝑎𝑎𝐽𝐽𝑠𝑠
� = �𝐷𝐷𝑎𝑎𝑎𝑎 𝐷𝐷𝑎𝑎𝑠𝑠

𝐷𝐷𝑠𝑠𝑎𝑎 𝐷𝐷𝑠𝑠𝑠𝑠
� �∇𝐶𝐶𝑎𝑎∇𝐶𝐶𝑠𝑠

�   .  (1) 

In eq 1, the main diffusivities (𝐷𝐷𝑎𝑎𝑎𝑎  and 𝐷𝐷𝑠𝑠𝑠𝑠) relate the molar flux 
of solute 𝐽𝐽a and surfactant 𝐽𝐽s, which are hereby defined relative 
to the mean volume velocity of the mixture, to their own molar 
concentration gradients, while the off–diagonal diffusivities 
(𝐷𝐷𝑎𝑎𝑠𝑠  and 𝐷𝐷𝑠𝑠𝑎𝑎) relate the flux of one component to a 
concentration gradient of the other. The solvent is excluded 
from eq 1 because fluxes of three components in a ternary 
solution are not independent.1 

Recent studies on multicomponent diffusion in nonionic 
micellar solutions2,3 and water–in–oil microemulsions4,5 
indicate strong multicomponent effects, including enhanced 
surfactant and suppressed solute diffusion down their 
respective gradients, surfactant diffusion up a solute gradient 

(𝐷𝐷𝑠𝑠𝑎𝑎 < 0), and solute diffusion down a surfactant gradient 
(𝐷𝐷𝑎𝑎𝑠𝑠 > 0). Both cross diffusion effects (𝐷𝐷𝑠𝑠𝑎𝑎 < 0 and 𝐷𝐷𝑎𝑎𝑠𝑠 > 0) 
were shown capable of establishing buoyancy driven 
convection (known more generally as double diffusive 
convection) at the interface between two initially stable ternary 
microemulsions.5 Furthermore, suppressed solute diffusion 
may play a role in limiting the oral absorption rates of 
hydrophobic drugs, nutrients, and fats when delivered using 
surfactants to enhance their aqueous solubility.6,7 

Significant progress has been made toward understanding 
multicomponent effects in mixtures with nonionic surfactants 
and solutes.2–4,8,9 Leaist et al.4,9 developed a theoretical model 
for multicomponent diffusion in very dilute solutions with 
negligible intermicellar interactions. According to this theory, 
multicomponent effects are driven by solubilization-induced 
gradients in free molecular solute and surfactant monomer and 
by counter diffusion of non-interacting micelles with size-
dependent Stokes-Einstein mobilities.4,9 This model was shown 
to be effective in predicting [𝐃𝐃] in dilute zwitterionic solutions 
with relatively hydrophilic alcohols.9 However, at higher 
concentrations and in dilute solutions with negligible molecular 
species, micellar and microemulsion solutions resemble 
colloidal dispersions, and the influence of particle interactions 
on [𝐃𝐃] is expected to play a larger role. 

In a series of influential papers,10–15 Batchelor developed a 
theory for gradient diffusion in dilute colloidal hard-sphere 
suspensions, which rigorously accounts for the influence of two-
sphere thermodynamic and hydrodynamic interactions (HI). 
The latter, which are characterized by velocity disturbances 
transmitted through the viscous liquid between Brownian 
particles, decay so slowly with interparticle separation distance 
that they are rarely negligible in colloidal dispersions.16 
However, until recently,2 HI have been neglected in models that 
describe multicomponent diffusion in surfactant solutions. 
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The exception is a recent theoretical model by Alexander et 
al.,2 developed for nonionic surfactant solutions with negligible 
molecular species, based on the theory of Batchelor for gradient 
diffusion in dilute, polydisperse hard-sphere suspensions.14,15 
Hence, this model rigorously accounts for pairwise 
hydrodynamic and thermodynamic intermicellar interactions, 
and it successfully predicted [𝐃𝐃] in C12E10/decane/water 
mixtures with no adjustable parameters, up to volume fractions 
near 𝜙𝜙 = 0.25.2 

In the present study, we further test the model of Alexander 
et al.2 with new experimental data for aqueous solutions with 
C12E10 micelles and either limonene or decane solutes, at 
concentrations that approach a micellar solution phase 
boundary, marking the emergence of a liquid crystalline phase. 
In addition, we simplify our theoretical equations by neglecting 
local size polydispersity in an effort to make the theory more 
tractable, and thereby gain physical insight. 

2   Materials and Methods 

2.1   Materials 

Nonionic surfactant decaethylene glycol monododecyl 
ether (C12E10, lot #SLBT1187 or #0000057654, each with a 
hydroxyl value equal to 92.0 mg/g), and hydrophobic solutes 
decane and limonene, were all purchased from Sigma-Aldrich 
and used without modification. Unfiltered, de-ionized water 
was used to prepare all stock micellar solutions. All mixtures 
were prepared by volume with aliquots from 100 mL stock 
solutions, and were allowed to equilibrate overnight at room 
temperature. Non-ideal changes in volume upon mixing were 
neglected. 

2.2   Taylor dispersion 

Ternary diffusion coefficient matrices [𝐃𝐃] were acquired by 
the Taylor dispersion method,17,18 using an apparatus and 
experimental procedure described previously.2 Data analysis 
was performed by fitting measured refractive index profiles 
with the following Taylor dispersion model equation:19,20 

𝑉𝑉(𝑡𝑡) = 𝑉𝑉0 + 𝑉𝑉1𝑡𝑡 + 𝑉𝑉𝑚𝑚𝑎𝑎𝑚𝑚�
𝑡𝑡𝑅𝑅
𝑡𝑡 �𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 �−

12𝐷𝐷−(𝑡𝑡 − 𝑡𝑡𝑅𝑅)2

𝑟𝑟2𝑡𝑡 �

+ (1 −𝑊𝑊)𝑊𝑊𝑊𝑊𝑊𝑊 �−
12𝐷𝐷+(𝑡𝑡 − 𝑡𝑡𝑅𝑅)2

𝑟𝑟2𝑡𝑡 ��   .             (2) 

Here, 𝑉𝑉0 is the baseline voltage of the detector, 𝑉𝑉𝑚𝑚𝑎𝑎𝑚𝑚  is the 
signal voltage when 𝑡𝑡 = 𝑡𝑡𝑅𝑅 , and 𝑉𝑉1𝑡𝑡 captures linear drift in the 
signal voltage. 𝐷𝐷− and 𝐷𝐷+ are the eigenvalues of [𝐃𝐃]: 

𝐷𝐷− =
(𝐷𝐷𝑎𝑎𝑎𝑎 + 𝐷𝐷𝑠𝑠𝑠𝑠)

2 −
�(𝐷𝐷𝑎𝑎𝑎𝑎 − 𝐷𝐷𝑠𝑠𝑠𝑠)2 + 4𝐷𝐷𝑎𝑎𝑠𝑠𝐷𝐷𝑠𝑠𝑎𝑎

2
(3) 

𝐷𝐷+ =
(𝐷𝐷𝑎𝑎𝑎𝑎 + 𝐷𝐷𝑠𝑠𝑠𝑠)

2 +
�(𝐷𝐷𝑎𝑎𝑎𝑎 − 𝐷𝐷𝑠𝑠𝑠𝑠)2 + 4𝐷𝐷𝑎𝑎𝑠𝑠𝐷𝐷𝑠𝑠𝑎𝑎

2   . (4) 

In eq 2, 𝑊𝑊 is a weighting factor, given by 

𝑊𝑊 =
(𝑎𝑎 + 𝑏𝑏𝛼𝛼1)�𝐷𝐷−

(𝑎𝑎 + 𝑏𝑏𝛼𝛼1)�𝐷𝐷− + (1 − 𝑎𝑎 − 𝑏𝑏𝛼𝛼1)�𝐷𝐷+
(5) 

and 

𝛼𝛼1 =
𝑅𝑅𝑎𝑎∆𝐶𝐶𝑎𝑎

𝑅𝑅𝑎𝑎∆𝐶𝐶𝑎𝑎 + 𝑅𝑅𝑠𝑠∆𝐶𝐶𝑠𝑠
(6) 

𝑎𝑎 =
𝐷𝐷+ − 𝐷𝐷𝑠𝑠𝑠𝑠 −

𝑅𝑅𝑎𝑎
𝑅𝑅𝑠𝑠
𝐷𝐷𝑎𝑎𝑠𝑠

𝐷𝐷+ − 𝐷𝐷−
(7) 

𝑏𝑏 =
𝐷𝐷𝑠𝑠𝑠𝑠 + 𝑅𝑅𝑎𝑎

𝑅𝑅𝑠𝑠
𝐷𝐷𝑎𝑎𝑠𝑠 − 𝐷𝐷𝑎𝑎𝑎𝑎 −

𝑅𝑅𝑠𝑠
𝑅𝑅𝑎𝑎

𝐷𝐷𝑠𝑠𝑎𝑎
𝐷𝐷+ − 𝐷𝐷−

  . (8) 

The parameters 𝑅𝑅a = (∂𝑛𝑛 ∂𝐶𝐶a⁄ )𝐶𝐶s  and 𝑅𝑅s = (∂𝑛𝑛 ∂𝐶𝐶s⁄ )𝐶𝐶a  are the 
refractive index increments with either 𝐶𝐶s or 𝐶𝐶a held constant, 
respectively. 

In order to acquire the four non-linear fit parameters 𝑎𝑎, 𝑏𝑏, 
𝐷𝐷−, and 𝐷𝐷+ of eq 2, two refractive index profiles with two 
different values for 𝛼𝛼1  were fit simultaneously, using non-linear 
least squares regression performed with Matlab’s 
“patternsearch” algorithm.21 One profile was generated from a 
pulse with excess solute (𝛼𝛼1 ≈ 1) and another from a pulse with 
excess surfactant (𝛼𝛼1 ≈ 0). The fit parameters were then used 
to evaluate [𝐃𝐃] via 

𝐷𝐷𝑎𝑎𝑎𝑎 = 𝐷𝐷− +
𝑎𝑎(1 − 𝑎𝑎 − 𝑏𝑏)

𝑏𝑏
(𝐷𝐷− − 𝐷𝐷+) (9) 

𝐷𝐷𝑎𝑎𝑠𝑠 =
𝑅𝑅𝑠𝑠
𝑅𝑅𝑎𝑎

𝑎𝑎(1 − 𝑎𝑎)
𝑏𝑏

(𝐷𝐷− − 𝐷𝐷+) (10) 

𝐷𝐷𝑠𝑠𝑎𝑎 =
𝑅𝑅𝑎𝑎
𝑅𝑅𝑠𝑠

(𝑎𝑎 + 𝑏𝑏)(1 − 𝑎𝑎 − 𝑏𝑏)
𝑏𝑏

(𝐷𝐷+ − 𝐷𝐷−) (11) 

𝐷𝐷𝑠𝑠𝑠𝑠 = 𝐷𝐷+ +
𝑎𝑎(1 − 𝑎𝑎 − 𝑏𝑏)

𝑏𝑏
(𝐷𝐷+ − 𝐷𝐷−) . (12) 

The ratios 𝑅𝑅a 𝑅𝑅s⁄  in eqs 10 and 11 were evaluated by integrating 
the refractive index profiles according to 𝑅𝑅a 𝑅𝑅s⁄ ≈ 𝐴𝐴a𝐺𝐺s 𝐴𝐴s𝐺𝐺a⁄ . 
Here, 𝐴𝐴a and 𝐴𝐴s are the areas under the dispersion profiles with 
𝛼𝛼1 ≈ 1 and 𝛼𝛼1 ≈ 0, respectively, and 𝐺𝐺a and 𝐺𝐺s are the 
corresponding detector gain settings. Error bars for the 
resulting elements of [𝐃𝐃] represent two standard deviations. 

3   Results 

3.1   Ternary diffusivities and eigenvalues 

The Taylor dispersion method was used to measure the 
ternary diffusion coefficient matrix [𝐃𝐃] at constant temperature 
𝑇𝑇 = 23.0 ± 0.3 oC and pressure for aqueous C12E10/limonene and 
C12E10/decane mixtures. In Figure 1, [𝐃𝐃] and eigenvalues 𝐷𝐷− and 
𝐷𝐷+ are shown for aqueous solutions of 200mM C12E10 with 
limonene concentrations 𝐶𝐶a in the range 0 ≤ 𝐶𝐶a ≤ 100𝑚𝑚𝑚𝑚. 
The coefficients that comprise [𝐃𝐃] were also measured in 
C12E10/limonene (Figure 2) and C12E10/decane (Figure 3) 
solutions that were diluted with water while maintaining a 
constant molar ratio of solute to surfactant equal to 𝐶𝐶a 𝐶𝐶s⁄  = 0.1. 
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Figure 1. Ternary diffusion coefficients and eigenvalues for aqueous 200mM 
C12E10 (s) + limonene (a) for 𝐶𝐶a 𝐶𝐶s⁄ = 0.01, 0.1, 0.2, 0.3, and 0.5. 

 

Figure 2. Ternary diffusion coefficients and eigenvalues for aqueous C12E10 (s) 
+ limonene (a) with 𝐶𝐶a 𝐶𝐶s⁄ = 0.1.  

The critical micelle concentration of C12E10 (0.09mM)22 and 
the aqueous solubilities of limonene (0.10mM)23 and decane 
(3.2 × 10–4mM)24 are small compared with the surfactant (𝐶𝐶𝑠𝑠 ≥
20𝑚𝑚𝑚𝑚) and solute (𝐶𝐶𝑎𝑎 ≥ 2𝑚𝑚𝑚𝑚) concentrations used in this 
study. Hence, aqueous C12E10/limonene and C12E10/decane 
mixtures diffused almost exclusively as solute-containing 
micelles while surfactant monomer and molecular solute fluxes 
contributed negligibly to [𝐃𝐃]. 

Theoretical results for gradient diffusion of colloidal hard 
spheres by Batchelor13–15 were derived relative to a volume- 
fixed reference frame, defined such that the net flux of material 
volume is zero. Diffusion measurements are generally 
performed relative to a fixed-laboratory reference frame. 
However, the lab frame approximates the volume-fixed frame  

 

Figure 3. Ternary diffusion coefficients and eigenvalues for aqueous C12E10 (s) 
+ decane (a) with 𝐶𝐶a 𝐶𝐶s⁄ = 0.1. 

when non-ideal changes in the volume of the solution are 
negligible upon mixing.25 That condition is satisfied when either 
the component molar volumes are constant with composition 
or when the initial concentration differences, established 
during the measurement, are made sufficiently small.25 In this 
work, we have established small initial concentration 
differences (5mM) in either the solute or the surfactant in an 
effort to minimize non-ideal changes in volume upon mixing. As 
a result, [𝐃𝐃] correspond to the volume-fixed reference frame. 

4   Discussion 

4.1   Ternary diffusion in C12E10/solute/water mixtures 

As shown in Figures 1, 2, and 3, the diffusion coefficient 
matrices [𝐃𝐃], measured via the Taylor dispersion method for 
both C12E10/limonene/water and C12E10/decane/water 
mixtures, are qualitatively similar. Both systems exhibit strong 
diffusion coupling, including solute diffusion down a surfactant 
gradient (𝐷𝐷as > 0) and surfactant diffusion up a solute gradient 
(𝐷𝐷sa < 0). Interestingly, the cross diffusivity 𝐷𝐷sa for both 
limonene (Figure 2) and decane (Figure 3) is insensitive to 
surfactant concentration and extrapolates to a nonzero value in 
the limit as 𝐶𝐶𝑠𝑠 → 0, indicating that this strong coupling effect is 
weakly influenced by intermicellar interactions. In contrast, the 
main solute 𝐷𝐷aa and surfactant 𝐷𝐷ss diffusivities (Figures 2 and 
3), strongly diverge with increasing 𝐶𝐶s and are similar to the 
slow 𝐷𝐷− and fast 𝐷𝐷+ eigenvalues, respectively, with (𝐷𝐷aa < 𝐷𝐷−) 
and (𝐷𝐷ss > 𝐷𝐷+) for all mixtures. In Figure 3, 𝐷𝐷aa (and 𝐷𝐷−) fall to 
near zero with increasing 𝐶𝐶𝑠𝑠, indicating solute diffusion down its 
own gradient is nearly arrested at the highest surfactant 
concentration, 𝐶𝐶s = 350𝑚𝑚𝑚𝑚. 
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4.2   Development of theory 

In this section, we further develop a theoretical model 
introduced in our earlier work,2 which is based on 
Batchelor’s14,15 theory for gradient diffusion in polydisperse 
colloidal mixtures, to describe gradient diffusion in solutions of 
solute-containing micelles with negligible molecular species. 
Here, micellar solutions are modeled as polydisperse, colloidal 
dispersions containing 𝑁𝑁 different particle types, self-
assembled from various numbers of solute and surfactant 
molecules. The molar flux 𝐽𝐽𝑖𝑖  of micelle type 𝑖𝑖 containing 𝑛𝑛𝑖𝑖  
solutes and 𝑚𝑚𝑖𝑖  surfactants is defined relative to the mean 
volume velocity of the mixture and given by the generalized 
form of Fick’s law, 

−𝐽𝐽𝑖𝑖 = �𝐷𝐷𝑖𝑖𝑖𝑖𝛻𝛻𝐶𝐶𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 . (13) 

The main micelle diffusivities 𝐷𝐷𝑖𝑖𝑖𝑖  relate the flux of each micelle 
species 𝑖𝑖 to its own molar concentration gradient ∇𝐶𝐶𝑖𝑖, whereas 
the micelle cross diffusivities 𝐷𝐷𝑖𝑖𝑖𝑖  (𝑗𝑗 ≠ 𝑖𝑖), which accommodate 
micelle-micelle diffusion coupling, relate the flux of a micelle 
species 𝑖𝑖 to a concentration gradient in a different micelle 
species 𝑗𝑗. 

The diffusivities 𝐷𝐷𝑖𝑖𝑖𝑖  are evaluated using Batchelor’s theory 
for gradient diffusion of polydisperse colloidal particle 
mixtures,14 

𝐷𝐷𝑖𝑖𝑖𝑖 =
𝐷𝐷𝑖𝑖0

𝑘𝑘𝐵𝐵𝑇𝑇
�𝐵𝐵𝑖𝑖𝑖𝑖𝜙𝜙𝑖𝑖

𝑁𝑁

𝑖𝑖=1

�𝜆𝜆𝑖𝑖𝑖𝑖3 �
𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝜙𝜙𝑖𝑖

�
𝑝𝑝,𝑇𝑇

+
𝜆𝜆𝑖𝑖𝑖𝑖3

1 − 𝜙𝜙�𝜆𝜆𝑙𝑙𝑖𝑖3𝜙𝜙𝑙𝑙 �
𝜕𝜕𝜇𝜇𝑙𝑙
𝜕𝜕𝜙𝜙𝑖𝑖

�
𝑝𝑝,𝑇𝑇

𝑁𝑁

𝑙𝑙=1

�   .                    (14) 

Here, as applied to our system, 𝐷𝐷𝑖𝑖0, 𝐵𝐵𝑖𝑖𝑖𝑖 , and 𝜙𝜙𝑖𝑖  are the infinite 
dilution diffusivity, bulk mobility coefficient, and volume 
fraction of micelle species 𝑖𝑖. 𝜙𝜙 = ∑ 𝜙𝜙𝑖𝑖𝑁𝑁

𝑖𝑖=1  is the total micelle 
volume fraction, 𝜇𝜇𝑖𝑖 is the chemical potential of micelle species 

𝑘𝑘, and 𝜆𝜆𝑖𝑖𝑖𝑖 = �𝑉𝑉𝑗𝑗
𝑉𝑉𝑖𝑖
�
1 3⁄

is a ratio of characteristic lengths, where 𝑉𝑉𝑖𝑖 

and 𝑉𝑉𝑖𝑖  are the volumes for a type 𝑗𝑗 and 𝑖𝑖 micelle, respectively. 
Neglecting flux contributions from singly dissolved solute 

and surfactant molecules, the net flux of solute 𝐽𝐽𝑎𝑎 and 
surfactant 𝐽𝐽𝑠𝑠 are calculated via weighted sums of the micelle 
species fluxes 

𝐽𝐽a = �𝑛𝑛𝑖𝑖𝐽𝐽𝑖𝑖

𝑁𝑁

𝑖𝑖=1

(15) 

𝐽𝐽s = �𝑚𝑚𝑖𝑖𝐽𝐽𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 . (16) 

To derive the diffusivity matrix [𝐃𝐃], one can expand eq 13 with 
the chain rule and combine the result with eqs 1 and 14–16, 

𝐷𝐷aa = �
𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0

𝑘𝑘𝐵𝐵𝑇𝑇
��𝐵𝐵𝑖𝑖𝑖𝑖𝜙𝜙𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

�𝜆𝜆𝑖𝑖𝑖𝑖3 �
𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝜙𝜙𝑖𝑖

�
𝑝𝑝,𝑇𝑇

+
𝜆𝜆𝑖𝑖𝑖𝑖3

1 −𝜙𝜙�𝜆𝜆𝑙𝑙𝑖𝑖3𝜙𝜙𝑙𝑙 �
𝜕𝜕𝜇𝜇𝑙𝑙
𝜕𝜕𝜙𝜙𝑖𝑖

�
𝑝𝑝,𝑇𝑇

𝑁𝑁

𝑙𝑙=1

�
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝐶𝐶a

                (17) 

𝐷𝐷as = �
𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0

𝑘𝑘𝐵𝐵𝑇𝑇
��𝐵𝐵𝑖𝑖𝑖𝑖𝜙𝜙𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

�𝜆𝜆𝑖𝑖𝑖𝑖3 �
𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝜙𝜙𝑖𝑖

�
𝑝𝑝,𝑇𝑇

+
𝜆𝜆𝑖𝑖𝑖𝑖3

1 − 𝜙𝜙�𝜆𝜆𝑙𝑙𝑖𝑖3𝜙𝜙𝑙𝑙 �
𝜕𝜕𝜇𝜇𝑙𝑙
𝜕𝜕𝜙𝜙𝑖𝑖

�
𝑝𝑝,𝑇𝑇

𝑁𝑁

𝑙𝑙=1

�
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝐶𝐶s

                 (18) 

𝐷𝐷sa = �
𝑚𝑚𝑖𝑖𝐷𝐷𝑖𝑖0

𝑘𝑘𝐵𝐵𝑇𝑇
��𝐵𝐵𝑖𝑖𝑖𝑖𝜙𝜙𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

�𝜆𝜆𝑖𝑖𝑖𝑖3 �
𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝜙𝜙𝑖𝑖

�
𝑝𝑝,𝑇𝑇

+
𝜆𝜆𝑖𝑖𝑖𝑖3

1 −𝜙𝜙�𝜆𝜆𝑙𝑙𝑖𝑖3𝜙𝜙𝑙𝑙 �
𝜕𝜕𝜇𝜇𝑙𝑙
𝜕𝜕𝜙𝜙𝑖𝑖

�
𝑝𝑝,𝑇𝑇

𝑁𝑁

𝑙𝑙=1

�
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝐶𝐶a

                (19) 

𝐷𝐷ss = �
𝑚𝑚𝑖𝑖𝐷𝐷𝑖𝑖0

𝑘𝑘𝐵𝐵𝑇𝑇
��𝐵𝐵𝑖𝑖𝑖𝑖𝜙𝜙𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

�𝜆𝜆𝑖𝑖𝑖𝑖3 �
𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝜙𝜙𝑖𝑖

�
𝑝𝑝,𝑇𝑇

+
𝜆𝜆𝑖𝑖𝑖𝑖3

1 − 𝜙𝜙�𝜆𝜆𝑙𝑙𝑖𝑖3𝜙𝜙𝑙𝑙 �
𝜕𝜕𝜇𝜇𝑙𝑙
𝜕𝜕𝜙𝜙𝑖𝑖

�
𝑝𝑝,𝑇𝑇

𝑁𝑁

𝑙𝑙=1

�
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝐶𝐶s

  .              (20) 

Eqs 17–20 define [𝐃𝐃] for a polydisperse solution of micelles with 
arbitrary shapes, sizes, interaction potentials, and volume 
fractions. However, for suspensions of arbitrary concentration, 
the task of evaluating [𝐃𝐃] using this result is formidable. 

For dilute mixtures (𝜙𝜙 ≪ 1), 𝐵𝐵𝑖𝑖𝑖𝑖  and �𝜕𝜕𝜇𝜇𝑖𝑖 𝜕𝜕𝜙𝜙𝑖𝑖⁄ �
𝑝𝑝,𝑇𝑇

, which 

are generally functions of the species volume fractions 
(𝜙𝜙1,𝜙𝜙2, … ,𝜙𝜙𝑁𝑁) and size ratios 𝜆𝜆𝑖𝑖𝑖𝑖 , may each be approximated 
with a series truncated to 𝑂𝑂(𝜙𝜙). The series approximations 
combine with eq 14 to yield,14 

𝐷𝐷𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑖𝑖0

⎩
⎨

⎧
1 + (𝛽𝛽 + 𝑆𝑆)𝜙𝜙𝑖𝑖 + �𝐾𝐾𝑖𝑖𝑖𝑖′ 𝜙𝜙𝑖𝑖

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑖𝑖 ⎭

⎬

⎫
(21) 

𝐷𝐷𝑖𝑖𝑖𝑖
(𝑖𝑖≠𝑖𝑖)

=𝐷𝐷𝑖𝑖0𝜙𝜙𝑖𝑖 �𝛽𝛽𝑖𝑖𝑖𝑖 �
1 + 𝜆𝜆𝑖𝑖𝑖𝑖

2 �
3

+ 𝐾𝐾𝑖𝑖𝑖𝑖′′�   . (22) 

Here, the second osmotic virial coefficients 𝛽𝛽𝑖𝑖𝑖𝑖  and bulk mobility 
coefficients 𝐾𝐾𝑖𝑖𝑖𝑖′  and 𝐾𝐾𝑖𝑖𝑖𝑖′′ depend on the interaction potential 
between pairs of particles and provide corrections to infinitely 
dilute particle thermodynamic driving forces and mobilities, 
respectively. The coefficients 𝛽𝛽 = 𝛽𝛽𝑖𝑖𝑖𝑖  and 𝑆𝑆 = 𝐾𝐾𝑖𝑖𝑖𝑖′ + 𝐾𝐾𝑖𝑖𝑖𝑖′′ account 
for interactions between identical particles of the same species. 
Using eqs 21 and 22 in lieu of eq 14, one may derive a 
theoretical result for [𝐃𝐃] for dilute mixtures of polydisperse 
micelles with arbitrary shapes, sizes, and pair interactions: 

𝐷𝐷aa = �𝑛𝑛𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝐷𝐷𝑖𝑖0 ��1 + �𝐾𝐾𝑖𝑖𝑖𝑖′ 𝜙𝜙𝑖𝑖

𝑁𝑁

𝑖𝑖=1

�
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝐶𝐶a

+ 𝜙𝜙𝑖𝑖��𝛽𝛽𝑖𝑖𝑖𝑖 �
1 + 𝜆𝜆𝑖𝑖𝑖𝑖

2 �
3

+ 𝐾𝐾𝑖𝑖𝑖𝑖′′�
𝑁𝑁

𝑖𝑖=1

𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝐶𝐶a

�          (23) 

𝐷𝐷as = �𝑛𝑛𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝐷𝐷𝑖𝑖0 ��1 + �𝐾𝐾𝑖𝑖𝑖𝑖′ 𝜙𝜙𝑖𝑖

𝑁𝑁

𝑖𝑖=1

�
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝐶𝐶s

+ 𝜙𝜙𝑖𝑖��𝛽𝛽𝑖𝑖𝑖𝑖 �
1 + 𝜆𝜆𝑖𝑖𝑖𝑖

2 �
3

+ 𝐾𝐾𝑖𝑖𝑖𝑖′′�
𝑁𝑁

𝑖𝑖=1

𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝐶𝐶s

�          (24) 
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𝐷𝐷sa = �𝑚𝑚𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝐷𝐷𝑖𝑖0 ��1 + �𝐾𝐾𝑖𝑖𝑖𝑖′ 𝜙𝜙𝑖𝑖

𝑁𝑁

𝑖𝑖=1

�
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝐶𝐶a

+ 𝜙𝜙𝑖𝑖��𝛽𝛽𝑖𝑖𝑖𝑖 �
1 + 𝜆𝜆𝑖𝑖𝑖𝑖

2 �
3

+ 𝐾𝐾𝑖𝑖𝑖𝑖′′�
𝑁𝑁

𝑖𝑖=1

𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝐶𝐶a

�          (25) 

𝐷𝐷ss = �𝑚𝑚𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝐷𝐷𝑖𝑖0 ��1 + �𝐾𝐾𝑖𝑖𝑖𝑖′ 𝜙𝜙𝑖𝑖

𝑁𝑁

𝑖𝑖=1

�
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝐶𝐶s

+ 𝜙𝜙𝑖𝑖��𝛽𝛽𝑖𝑖𝑖𝑖 �
1 + 𝜆𝜆𝑖𝑖𝑖𝑖

2 �
3

+ 𝐾𝐾𝑖𝑖𝑖𝑖′′�
𝑁𝑁

𝑖𝑖=1

𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝐶𝐶s

�   .      (26) 

In order to calculate [𝐃𝐃] using eqs 23–26, the coefficients 𝛽𝛽𝑖𝑖𝑖𝑖 , 
𝐾𝐾𝑖𝑖𝑖𝑖′ , and 𝐾𝐾𝑖𝑖𝑖𝑖′′, as well as the micelle distribution function, must 
be known. For mixtures of particles that interact as hard 
spheres, the virial coefficients are given by,26 

𝛽𝛽𝑖𝑖𝑖𝑖 = 8  . (27) 

Relations from Batchelor15 provide estimates for the bulk 
mobility coefficients, 

𝐾𝐾𝑖𝑖𝑖𝑖′ =
−2.5

1 + 0.16𝜆𝜆𝑖𝑖𝑖𝑖
 , (28) 

and 

𝐾𝐾𝑖𝑖𝑖𝑖′′ =
𝜆𝜆𝑖𝑖𝑖𝑖2

1 + 𝜆𝜆𝑖𝑖𝑖𝑖3
− �𝜆𝜆𝑖𝑖𝑖𝑖2 + 3𝜆𝜆𝑖𝑖𝑖𝑖 + 1� , (29) 

which are accurate to within 5% of numerical calculations for 
1
8
≤ 𝜆𝜆𝑖𝑖𝑖𝑖 ≤ 8. 

Previously,2 eqs 21–29 were successfully used to predict [𝐃𝐃] 
for C12E10/decane/water mixtures. In that study, the distribution 
of micelle species was assumed to obey a Poisson distribution 
with a mean, variance, and higher moments dependent on the 
average number of solubilizate molecules per micelle 𝑛𝑛� =
𝐶𝐶𝑎𝑎 𝐶𝐶𝑠𝑠⁄ 𝑚𝑚� , where 𝑚𝑚�  is the average micelle aggregation number 
and the overbar indicates averages weighted by the micelle 
distribution function. As a result, the moments of the Poisson 
varied locally with composition along solute and/or surfactant 
concentration gradients. 

However, our previous dynamic light scattering results 
indicate that decane-containing C12E10 micelles in water are 
narrowly polydisperse with a small relative standard deviation 
𝜎𝜎𝑅𝑅 < 0.1.2 Hence, in this work, local polydispersity and the 
higher moments are neglected, and the micelle distribution is 
defined using a Kronecker delta with a composition dependent 
mean: 

𝐶𝐶𝑖𝑖 =
𝐶𝐶𝑠𝑠
𝑚𝑚� 𝛿𝛿𝑖𝑖𝑖𝑖

∗ = �
𝐶𝐶𝑠𝑠
𝑚𝑚�  𝑤𝑤ℎ𝑊𝑊𝑛𝑛 𝑖𝑖 = 𝑖𝑖∗

0 𝑤𝑤ℎ𝑊𝑊𝑛𝑛 𝑖𝑖 ≠ 𝑖𝑖∗
�   . (30) 

Here, 𝑖𝑖∗ designates a micelle type with 𝑛𝑛� solutes, 𝑚𝑚�  surfactants, 
radius 𝑅𝑅𝑖𝑖∗ , and a local concentration equal to 𝐶𝐶𝑠𝑠 𝑚𝑚�⁄ . Using the 

delta distribution 𝐶𝐶𝑖𝑖 = 𝐶𝐶𝑠𝑠 𝑚𝑚�⁄ 𝛿𝛿𝑖𝑖𝑖𝑖∗ , eqs 23–26 may be simplified 
to (see Appendix A) 

𝐷𝐷aa
𝐷𝐷𝑖𝑖∗0

= 1 + 𝐾𝐾′𝜙𝜙 −𝑚𝑚 �𝜙𝜙,
𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠
� (31) 

𝐷𝐷as
𝐷𝐷𝑖𝑖∗0

=
𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠
�(𝛽𝛽 + 𝐾𝐾′′)𝜙𝜙 + 𝑚𝑚�𝜙𝜙,

𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠
�� (32) 

𝐷𝐷sa
𝐷𝐷𝑖𝑖∗0

= −
𝐶𝐶𝑠𝑠
𝐶𝐶𝑎𝑎
𝑚𝑚 �𝜙𝜙,

𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠
� (33) 

𝐷𝐷ss
𝐷𝐷𝑖𝑖∗0

= 1 + (𝛽𝛽 + 𝑆𝑆)𝜙𝜙 + 𝑚𝑚�𝜙𝜙,
𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠
� . (34) 

The function 𝑚𝑚�𝜙𝜙, 𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠
� is given by 

𝑚𝑚�𝜙𝜙,
𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠
� =

𝜕𝜕𝜕𝜕𝑛𝑛𝑅𝑅𝑖𝑖∗
𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶𝑎𝑎

(1 + 𝛾𝛾𝜙𝜙) − (𝛽𝛽 + 𝐾𝐾′′)𝜙𝜙𝑎𝑎   , (35) 

where 𝜙𝜙𝑎𝑎 = 𝐶𝐶𝑎𝑎𝑁𝑁𝐴𝐴𝑉𝑉𝑎𝑎  is the solute volume fraction, 𝑁𝑁𝐴𝐴  is 
Avogadro’s number, 𝑉𝑉𝑎𝑎  is the molecular volume of the solute, 
and the parameter 𝛾𝛾 is evaluated according to 

𝛾𝛾 = �
3
2𝛽𝛽 + 𝐾𝐾′ + 3𝐾𝐾′′� − �

𝑑𝑑(𝐾𝐾′′ − 𝐾𝐾′)
𝑑𝑑𝜆𝜆 �

𝜆𝜆=1
  . (36) 

𝐷𝐷𝑖𝑖∗
0  is calculated using the Stokes-Einstein equation 

𝐷𝐷𝑖𝑖∗
0 =

𝑘𝑘𝐵𝐵𝑇𝑇
6𝜋𝜋𝜋𝜋𝑅𝑅𝑖𝑖∗

  , (37) 

the volume fraction 𝜙𝜙 is determined using 

𝜙𝜙 = 𝑁𝑁𝐴𝐴
𝐶𝐶𝑠𝑠
𝑚𝑚�

4
3𝜋𝜋𝑅𝑅𝑖𝑖

∗
3  , (38) 

and the aggregation number can be evaluated using a micelle 
volume balance with 𝑛𝑛� = 𝐶𝐶𝑎𝑎 𝐶𝐶𝑠𝑠⁄ 𝑚𝑚� , 

𝑚𝑚� =
4
3𝜋𝜋𝑅𝑅𝑖𝑖∗

3

𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠
𝑉𝑉𝑎𝑎 + 𝑉𝑉𝑠𝑠 + 𝑛𝑛𝐻𝐻𝑉𝑉𝑤𝑤

  . (39) 

Here, 𝑉𝑉𝑠𝑠 , 𝑉𝑉𝑎𝑎 , and 𝑉𝑉𝑤𝑤  are the respective molecular volumes of a 
dry molecule of C12E10, solute, and water, and the hydration 
index 𝑛𝑛𝐻𝐻  is the number of bound water molecules per 
surfactant molecule. 

Note, according to eq B.1 in Appendix B, the derivative 𝜕𝜕𝑙𝑙𝜕𝜕𝑅𝑅𝑖𝑖∗
𝜕𝜕𝑙𝑙𝜕𝜕𝐶𝐶𝑎𝑎

 

is a univariate function of 𝐶𝐶𝑎𝑎 𝐶𝐶𝑠𝑠⁄ . Furthermore, the solute 
volume fraction 𝜙𝜙𝑎𝑎  can be rewritten using eqs 38 and 39 to yield 

𝜙𝜙𝑎𝑎 = 𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠
� 𝑉𝑉𝑎𝑎
𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠
𝑉𝑉𝑎𝑎+𝑉𝑉𝑠𝑠+𝜕𝜕𝐻𝐻𝑉𝑉𝑤𝑤

�𝜙𝜙. Thus, the function 𝑚𝑚�𝜙𝜙, 𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠
�, 

defined by eq 35, is dependent on 𝐶𝐶𝑎𝑎 𝐶𝐶𝑠𝑠⁄  and 𝜙𝜙. 
The parameters 𝑛𝑛𝐻𝐻  and 𝑅𝑅𝑖𝑖∗ are experimentally accessible as 

functions of 𝐶𝐶𝑎𝑎 𝐶𝐶𝑠𝑠⁄  via light scattering measurements 
extrapolated to infinite dilution, while data at higher 
concentrations indicates the particle interaction potential. For 
solutions of micelles that interact as hard spheres, 𝛽𝛽 = 8 and 
exact calculations by Batchelor12,15 provide 𝐾𝐾′ = −2.10, 𝐾𝐾′′ =
−4.45, 𝑆𝑆 = 𝐾𝐾′ + 𝐾𝐾′′ = −6.55, and 𝛾𝛾 = 1.25 (see Appendix A). 
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The remaining parameters are determined using eqs 37–39. As 
a result, the model defined by eqs 31–39 has no adjustable 
parameters. 

Theoretical predictions for the eigenvalues of [𝐃𝐃] may be 
determined using eqs 3, 4, and 31–34, 

𝐷𝐷−
𝐷𝐷𝑖𝑖∗0

= 1 + 𝐾𝐾′𝜙𝜙 (40) 

𝐷𝐷+
𝐷𝐷𝑖𝑖∗0

= 1 + (𝛽𝛽 + 𝑆𝑆)𝜙𝜙  . (41) 

Remarkably, eqs 40 and 41 indicate that 𝐷𝐷− and 𝐷𝐷+ correspond 
to self and gradient diffusion coefficients, respectively, for 
colloidal suspensions of monodisperse spheres, even though 
strong multicomponent diffusion effects may cause [𝐃𝐃] to be 
highly non-diagonal. 

4.3   Label and tracer limits for [𝐃𝐃] 

It is insightful to examine [𝐃𝐃] for the special case in which a 
solute behaves as a volume-less label in a solution of equally 
sized micelles with 𝜙𝜙𝑎𝑎 = 0, 𝑚𝑚� = 𝑚𝑚0, 𝑅𝑅𝑖𝑖∗ = 𝑅𝑅0, and 𝐷𝐷𝑖𝑖∗

0 = 𝐷𝐷0 
where 𝑚𝑚0, 𝑅𝑅0, and 𝐷𝐷0 are the solute-free micelle aggregation 
number, radius, and infinite dilution diffusivity, respectively. 
Here, micelles containing various numbers of solute labels 
diffuse with an average size and aggregation number that do 
not vary along solute or surfactant gradients. As a result, 
𝑚𝑚�𝜙𝜙, 𝐶𝐶𝑎𝑎

𝐶𝐶𝑠𝑠
� = 0, and eqs 31–34 simplify to 

𝐷𝐷aa
𝐷𝐷0 = 1 + 𝐾𝐾′𝜙𝜙 (42) 

𝐷𝐷as
𝐷𝐷0 =

𝐶𝐶a
𝐶𝐶s

(𝛽𝛽 + 𝐾𝐾′′)𝜙𝜙 (43) 

𝐷𝐷sa = 0 (44) 

𝐷𝐷ss
𝐷𝐷0 = 1 + (𝛽𝛽 + 𝑆𝑆)𝜙𝜙  . (45) 

In this case, solute diffuses down its own gradient at a rate 
determined by the micelle self diffusion coefficient, according 
to eq 42, and surfactant diffuses down a surfactant gradient 
according to the micelle gradient diffusion coefficient, given by 
eq 45. Furthermore, solute is carried within micelles down a 
surfactant gradient according to eq 43, while 𝐷𝐷𝑠𝑠𝑎𝑎  is predicted to 
equal zero. Eqs 42–45 describe ‘baseline’ multicomponent 
effects, common to ternary mixtures with any hydrophobic 
solute. Comparison of eqs 31–34 with eqs 42–45 indicate that 
the unique properties of a particular solute (i.e. its size, polarity, 
etc.) may affect [𝐃𝐃] through the function 𝑚𝑚�𝜙𝜙, 𝐶𝐶𝑎𝑎

𝐶𝐶𝑠𝑠
� and the 

Stokes-Einstein diffusivity 𝐷𝐷𝑖𝑖∗
0 . Per eqs 35–37, solubilizate alters 

the microstructure of a solution through 𝑚𝑚�𝜙𝜙, 𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠
� and 𝐷𝐷𝑖𝑖∗

0  by 

shifting the average micelle size 𝑅𝑅𝑖𝑖∗, which it may accomplish by 
occupying volume and by changing the average micelle 
aggregation number. 

Some appreciation for the implications of eqs 42–45 can be 
gained by considering their predictions in different physical 
conditions. In the limit of infinite dilution, there are no off–

diagonal elements of [𝐃𝐃], and both of the diagonal terms 𝐷𝐷aa 
and 𝐷𝐷ss equal the solute-free Stokes-Einstein diffusivity 𝐷𝐷0. 
Hence, in the absence of micelle-micelle interactions, solute 
and surfactant fluxes are both proportional to gradients in their 
own concentrations, and independent of the other. Next, 
consider a case where there is no gradient in surfactant 
concentration, but there is a gradient in solute concentration. 
The role of solute is only to label the micelles. The solute flux, 
therefore, must be governed by the self diffusion coefficient 
that describes the random walk of identical micelles in the 
absence of any imposed gradient in micelle concentration. That 
coefficient is given by eq 42. By contrast, if solute and surfactant 
gradients are imposed with the molar ratio 𝐶𝐶𝑎𝑎 𝐶𝐶𝑠𝑠⁄  held fixed, so 
that every micelle along the gradient has the same amount of 
solute with the same radius and aggregation number, then 
clearly the solute (and surfactant) flux is governed by the 
gradient diffusion coefficient of the micelles. Indeed, using eqs 
1, 42–45 (or, more generally, using eqs 31–34), and the 
constraint ∇(𝐶𝐶𝑎𝑎 𝐶𝐶𝑠𝑠⁄ ) = 0, one can show that [𝐃𝐃] degenerates 
to the micelle gradient diffusion coefficient according to [𝐃𝐃] =
𝐷𝐷0{1 + (𝛽𝛽 + 𝑆𝑆)𝜙𝜙}[𝐈𝐈], where [𝐈𝐈] is the identity matrix. Absent 
any such constraints, even in a solution with no gradient in 
solute concentration, micelle-micelle interactions can yield a 
gradient in solute chemical potential that drives a solute flux. 

We now examine [𝐃𝐃] for a different special case in which 
solute retains its identity but is present in trace amounts, 
corresponding to the limit 𝐶𝐶𝑎𝑎 𝐶𝐶𝑠𝑠⁄ → 0. In this limit, 𝑚𝑚�𝜙𝜙, 𝐶𝐶𝑎𝑎

𝐶𝐶𝑠𝑠
� →

0 and 𝐷𝐷𝑖𝑖∗
0 → 𝐷𝐷0, so that eqs 31–34 become (see Appendix B) 

𝐷𝐷aa
𝐷𝐷0 = 1 + 𝐾𝐾′𝜙𝜙 (46) 

𝐷𝐷as = 0 (47) 

𝐷𝐷sa
𝐷𝐷0 = −

𝑎𝑎1
𝑅𝑅0

(1 + 𝛾𝛾𝜙𝜙) + (𝛽𝛽 + 𝐾𝐾′′) �
𝑉𝑉a

𝑉𝑉s + 𝑛𝑛H𝑉𝑉w
�𝜙𝜙 (48) 

𝐷𝐷ss
𝐷𝐷0 = 1 + (𝛽𝛽 + 𝑆𝑆)𝜙𝜙  . (49) 

Here, 𝑎𝑎1 may be interpreted as a micelle growth rate, indicating 
how strongly the average micelle radius varies with the molar 
ratio 𝐶𝐶𝑎𝑎 𝐶𝐶𝑠𝑠⁄  (see eq A.21). Eqs 46 and 49 indicate that solute and 
surfactant diffuse down their respective gradients according to 
self and gradient diffusion coefficients of monodisperse 
spheres, which is the same behaviour predicted by eqs 42 and 
45 when solute was assumed to behave as a label. Furthermore, 
solutes with larger growth rates 𝑎𝑎1 drive stronger uphill 
surfactant fluxes (𝐷𝐷sa < 0) per eq 48 and surfactant gradients 
do not drive solute fluxes per eq 47 when micelles carry only 
trace amounts of solute. 

4.4   Comparison with experimental data 

Theoretical predictions for [𝐃𝐃] for aqueous C12E10/decane 
and C12E10/limonene mixtures were calculated using eqs 31–39 
with 𝑉𝑉a = 0.32 nm–3 (decane) or 0.26 nm–3 (limonene), 𝑉𝑉s = 0.99 
nm–3, 𝑉𝑉w = 0.03 nm–3, 𝛽𝛽 = 8, 𝐾𝐾′ = −2.10, 𝐾𝐾′′ = −4.45, 𝑆𝑆 =
𝐾𝐾′ + 𝐾𝐾′′ = −6.55, and 𝛾𝛾 = 1.25. The remaining parameters, 
𝑛𝑛H and 𝑅𝑅𝑖𝑖∗, were evaluated in accordance with our light 
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scattering results,2 which indicate 𝑛𝑛H = 40 and 𝑅𝑅𝑖𝑖∗ = 𝑎𝑎1
𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠

+ 𝑅𝑅0 

with a solute-free micelle radius 𝑅𝑅0 = 3.78 nm and growth rate 
𝑎𝑎1 = 2.42 nm (decane) or 1.56 nm (limonene). The growth rate 
for limonene was determined from currently unpublished 
dynamic light scattering data, following the same procedure 
used to acquire the decane value.2 In Figure 4A,B, theoretical 
results and experimental data for [𝐃𝐃] are plotted as a function 
of 𝐶𝐶𝑎𝑎 𝐶𝐶𝑠𝑠⁄  and 𝜙𝜙 for concentrated solutions of C12E10 micelles 
with either limonene (Figure 4A) or decane (Figure 4B), 
respectively. 

Overall, the theoretical results are in good agreement with 
the experimental values over the entire volume fraction and 
molar ratio domains, which is surprising given that the model is  
based on Batchelor’s theory for dilute particle mixtures, and has  

 

 

Figure 4. Ternary diffusion coefficients for (A) aqueous 200mM C12E10 (s) + 
limonene (a) and (B) aqueous C12E10 (s) + decane (a) with 𝐶𝐶𝑎𝑎 𝐶𝐶𝑠𝑠⁄ = 0.1. 
Theoretical predictions for [D], shown as solid and dashed lines, were 
calculated using eqs 31–39. 

no adjustable parameters. As shown, the model captures cross 
diffusion coupling, including solute diffusion down a surfactant  
gradient (𝐷𝐷𝑎𝑎𝑠𝑠 > 0) and surfactant diffusion up a solute gradient 
(𝐷𝐷𝑠𝑠𝑎𝑎 < 0). Furthermore, in Figure 4B, enhanced surfactant (𝐷𝐷𝑠𝑠𝑠𝑠) 
and suppressed solute (𝐷𝐷𝑎𝑎𝑎𝑎) diffusion down their respective 
gradients with increasing 𝜙𝜙 are also accurately predicted. 

As noted by others,27,28 Batchelor’s dilute theory for 
gradient diffusion in monodisperse hard sphere dispersions 
agrees well with numerical results28,29 for concentrated particle 
mixtures up to 𝜙𝜙 ≈ 0.4, suggesting a near cancellation of higher 
order, many-body hydrodynamic and thermodynamic virial 
contributions. We note that, according to eqs 31–36, 
thermodynamic and hydrodynamic virial coefficients are nearly 
always present together as a sum, perhaps with the exception 
of 𝐾𝐾′ in eq 31. Hence, cancellation similar to that hypothesized 
for binary gradient diffusion may occur in [𝐃𝐃], thereby 
extending the domain over which our dilute multicomponent 
theory, defined by eqs 31–39, provides accurate results. 

Eqs 31–34 were derived assuming negligibly polydisperse, 
spherical micelles that may vary in 𝑅𝑅𝑖𝑖∗ and 𝑚𝑚�  with 𝐶𝐶𝑎𝑎 𝐶𝐶𝑠𝑠⁄  but 
not with 𝜙𝜙 (see appendix A, eqs A.21 and A.22). Hence, good 
agreement between our theoretical and experimental values 
for [𝐃𝐃] for mixtures comprising C12E10 micelles with either 
decane or limonene solute provides evidence that, to a good 
approximation, these micelles behave as locally monodisperse 
hard spheres that do not significantly change in size or shape 
with respect to surfactant concentration, while holding the 
molar ratio constant, over the entire volume fraction and molar 
ratio domain explored in this study. This result is consistent with 
literature2,30–37 on the morphological behavior of micelles 
formed with C12E10 or related C12En surfactants, at least over a 
portion of the micellar solution region of their respective phase 
diagrams. Furthermore, the large size of C12E10's headgroup 
suggests that it should form spherical micellar aggregates over 
a significant temperature-composition domain.30,31 

At temperatures sufficiently far below the cloud point curve, 
hard-sphere behaviour and a weak dependence of micelle size 
with respect to surfactant concentration have been reported 
for mixtures of C12E6/water,35 C12E8/water,35 C12E10/water,2 
C12E10/decane/water,2 and C12E5/decane/water.36,37 The latter 
system is particularly interesting, since light scattering and cryo-
TEM data for C12E5/water indicate the presence of worm-like 
micelles that grow and form branched micellar networks with 
increasing surfactant concentration for dilute mixtures at 
temperatures as low as 8 oC.38 However, when loaded to 
capacity with decane at significantly higher temperature (23.5 
oC), decane-containing C12E5 micelles are reported to behave as 
nearly 𝜙𝜙-independent hard spheres over a large volume 
fraction domain.36,37 Hence, it is plausible that hard sphere 
theory could be applicable to ternary mixtures comprising a 
variety of nonionic surfactants and hydrophobic solutes, 
especially for nonionic surfactants with large headgroups 
relative to their hydrocarbon tails,30,31 or when heavily loaded 
with solute. 
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Figure 5. Cross diffusion coefficients 𝐷𝐷𝑠𝑠𝑎𝑎 for aqueous C12E10/decane (closed 
circles) and C12E10/limonene (open circles) with 𝐶𝐶𝑎𝑎 𝐶𝐶𝑠𝑠⁄ = 0.1. Theoretical 
predictions for 𝐷𝐷𝑠𝑠𝑎𝑎 were calculated using eqs 33 and 35–38 and are indicated 
by solid and dashed lines for mixtures with decane and limonene, 
respectively. 

Predictions for [𝐃𝐃] in the solute tracer limit (eqs 46–49) 
indicate that [𝐃𝐃] varies with solute type mainly through 𝐷𝐷𝑠𝑠𝑎𝑎 at 
low molar ratios. Hence, in order to compare [𝐃𝐃] for different 
solutes, experimental values for 𝐷𝐷𝑠𝑠𝑎𝑎  versus 𝐶𝐶𝑠𝑠 for aqueous 
C12E10/decane and C12E10/limonene mixtures with 𝐶𝐶𝑎𝑎 𝐶𝐶𝑠𝑠⁄ = 0.1 
are presented in Figure 5, superimposed over theoretical 
predictions (solid and dashed lines). As shown, 𝐷𝐷𝑠𝑠𝑎𝑎  values for 
C12E10 micelles with decane are greater in magnitude relative to 
those with limonene, suggesting that solutes with stronger 
growth rates 𝑎𝑎1 drive stronger uphill surfactant fluxes. 

According to solubilization theory,39,40 micelle growth rates 
vary with the size and polarity of the solubilizate. Solubilization 
increases the interfacial area and alters the composition of the 
micelle core, both of which affect the core-shell interfacial 
energy of the micelle, driving changes in the aggregation 
number that affect micelle size. Small solubilizates with 
relatively high polarities, such as limonene, inflict a smaller 
interfacial energy penalty when solubilized, driving a smaller 
increase in the aggregation number, relative to larger, less polar 
solutes, such as decane. As a result, C12E10 micelles with 
limonene are expected to have a smaller growth rate and 
weaker cross diffusion coupling than those with decane, which 
is supported by the data shown in Figure 5, and is consistent 
with predictions for 𝐷𝐷𝑠𝑠𝑎𝑎  in the tracer limit according to eq 48. 

In Figure 6, measurements for the eigenvalues 𝐷𝐷− and 𝐷𝐷+ 
for C12E10/decane/water mixtures with 𝐶𝐶𝑎𝑎 𝐶𝐶𝑠𝑠⁄ = 0.1 are 
normalized with their respective values at infinite dilution (𝐷𝐷−0  
and 𝐷𝐷+0) and plotted as a function of 𝜙𝜙. The experimental data 
are superimposed over dilute theory by Batchelor13–15 (solid 
lines) for gradient and long-time self diffusion of monodisperse 
hard spheres. In addition, theory by Brady41 (dashed line), for 

 

Figure 6. Normalized eigenvalues for aqueous C12E10 (s) + decane (a) with 
𝐶𝐶𝑎𝑎 𝐶𝐶𝑠𝑠⁄ = 0.1. Monodisperse hard sphere theory by Batchelor13–15 and Brady41 
are shown as solid and dashed lines, respectively. Error bars indicate 95% 
confidence intervals. 

long-time self diffusion in concentrated monodisperse hard-
sphere suspensions, is also shown. Here, Batchelor’s dilute 
theory is expected to be more accurate for 𝜙𝜙 ≪ 1, while the 
theory by Brady provides an approximate result over the entire 
concentration domain up to the random close packing fraction 
for hard spheres (𝜙𝜙 ≈ 0.63). As shown, the normalized 
eigenvalues 𝐷𝐷− 𝐷𝐷−0⁄  and 𝐷𝐷+ 𝐷𝐷+0⁄  diverge with increasing 𝜙𝜙, with 
slopes over the entire range of volume fractions equal to 
−1.9 ± 0.2 and 2.7 ± 0.1, respectively. These values are in 
reasonable agreement with predictions by Batchelor13–15 for 
long-time self (−2.10) and gradient (1.45) diffusion of 
monodisperse hard spheres, supporting our theoretical 
predictions given by eqs 40 and 41. 

5   Conclusions 
Interactions between nonionic micelles in concentrated 

aqueous C12E10/decane and C12E10/limonene mixtures are 
shown to strongly affect the ternary diffusion coefficient 
matrices [𝐃𝐃] for both systems. Hence, theoretical predictions 
for [𝐃𝐃] that do not account for both thermodynamic and 
hydrodynamic intermicellar interactions may be misleading. A 
theoretical model developed previously, based on the rigorous 
theory by Bachelor for dilute, polydisperse colloidal hard 
spheres, was simplified by neglecting local size polydispersity, 
and was effectively used to predict [𝐃𝐃] for both micellar 
systems with no adjustable parameters. Furthermore, the 
theoretical predictions are surprisingly accurate far beyond the 
dilute regime, up to concentrations approaching a phase 
boundary. Lastly, despite strong multicomponent diffusion 
effects, the fast 𝐷𝐷+ and slow 𝐷𝐷− eigenvalues of [𝐃𝐃] for aqueous 
C12E10/decane mixtures correspond to gradient and self 
diffusion coefficients for monodisperse hard sphere 
dispersions. 
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Appendix A: Derivation of �𝐃𝐃� for dilute mixtures 
of spherical micelles with negligible 
polydispersity 

In this section, we provide a detailed derivation of 𝐷𝐷𝑎𝑎𝑎𝑎  in eq 
31, starting from eq 23. Eqs 32–34 may be derived by an 
analogous approach, yielding the complete matrix [𝐃𝐃]. We 
begin with eq 23, 

𝐷𝐷aa = �𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0
𝑁𝑁

𝑖𝑖=1

��1 + �𝐾𝐾𝑖𝑖𝑖𝑖′ 𝜙𝜙𝑖𝑖

𝑁𝑁

𝑖𝑖=1

�
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝐶𝐶a

+ 𝜙𝜙𝑖𝑖��𝛽𝛽𝑖𝑖𝑖𝑖 �
1 + 𝜆𝜆𝑖𝑖𝑖𝑖

2 �
3

+ 𝐾𝐾𝑖𝑖𝑖𝑖′′�
𝑁𝑁

𝑖𝑖=1

𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝐶𝐶a

�   .    (𝐴𝐴. 1) 

In eq A.1, 𝐶𝐶𝑖𝑖 and 𝜙𝜙𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑁𝑁𝐴𝐴𝑉𝑉𝑖𝑖  are the only functions of 𝐶𝐶a and 
𝐶𝐶s, permitting rearrangement to the following amenable form, 

𝐷𝐷aa = �
𝜕𝜕�𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0𝐶𝐶𝑖𝑖�

𝜕𝜕𝐶𝐶𝑎𝑎

𝑁𝑁

𝑖𝑖=1

�1 + �𝐾𝐾𝑖𝑖𝑖𝑖′ 𝜙𝜙𝑖𝑖

𝑁𝑁

𝑖𝑖=1

� 

+�𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0𝜙𝜙𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝜕𝜕
𝜕𝜕𝐶𝐶a

��𝛽𝛽𝑖𝑖𝑖𝑖 �
1 + 𝜆𝜆𝑖𝑖𝑖𝑖

2 �
3

+ 𝐾𝐾𝑖𝑖𝑖𝑖′′�
𝑁𝑁

𝑖𝑖=1

𝐶𝐶𝑖𝑖  . (𝐴𝐴. 2) 

For micelle distributions that are monomodal and narrow, 
reasonable approximations for the species concentrations 𝐶𝐶𝑖𝑖, 
and volume fractions 𝜙𝜙𝑖𝑖 , can be defined using a Kronecker delta 
distribution function (see eq 30), so that 𝐶𝐶𝑖𝑖 = 𝐶𝐶𝑠𝑠 𝑚𝑚�⁄ 𝛿𝛿𝑖𝑖𝑖𝑖∗ and 
𝜙𝜙𝑖𝑖 = 𝐶𝐶𝑠𝑠 𝑚𝑚�⁄ 𝑁𝑁𝐴𝐴𝑉𝑉𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖∗. According to this definition, 𝐶𝐶𝑖𝑖 is nonzero 
only when the index 𝑖𝑖 = 𝑖𝑖∗, which denotes a micelle type 
representative of the distribution mean and characterized as 
having 𝑛𝑛� solutes, 𝑚𝑚�  surfactants, radius 𝑅𝑅𝑖𝑖∗ , and concentration 
𝐶𝐶𝑠𝑠 𝑚𝑚�⁄ , all of which are functions of composition (𝐶𝐶𝑎𝑎 and 𝐶𝐶𝑠𝑠). 
Inserting the Kronecker distribution into eq A.2 yields, 

𝐷𝐷aa = �
𝜕𝜕�𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0

𝐶𝐶𝑠𝑠
𝑚𝑚� 𝛿𝛿𝑖𝑖𝑖𝑖∗�

𝜕𝜕𝐶𝐶𝑎𝑎
�1 + �𝐾𝐾𝑖𝑖𝑖𝑖′

𝐶𝐶𝑠𝑠
𝑚𝑚� 𝑁𝑁𝐴𝐴𝑉𝑉𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖

∗

𝑁𝑁

𝑖𝑖=1

�
𝑁𝑁

𝑖𝑖=1

 

+�𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0
𝐶𝐶𝑠𝑠
𝑚𝑚� 𝑁𝑁𝐴𝐴𝑉𝑉𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖

∗

𝑁𝑁

𝑖𝑖=1

𝜕𝜕
𝜕𝜕𝐶𝐶a

���𝛽𝛽𝑖𝑖𝑖𝑖 �
1 + 𝜆𝜆𝑖𝑖𝑖𝑖

2 �
3

+ 𝐾𝐾𝑖𝑖𝑖𝑖′′�
𝑁𝑁

𝑖𝑖=1

𝐶𝐶𝑠𝑠
𝑚𝑚� 𝛿𝛿𝑖𝑖𝑖𝑖

∗�  .

(𝐴𝐴. 3)

 

Using the sifting property, which selects the micelle type 𝑖𝑖∗ from 
a set of 𝑁𝑁 different micelle types, with equations 𝜙𝜙 =
𝐶𝐶𝑠𝑠 𝑚𝑚�⁄ 𝑁𝑁𝐴𝐴𝑉𝑉𝑖𝑖∗ and 𝐶𝐶𝑎𝑎 = 𝑛𝑛� 𝑚𝑚�⁄ 𝐶𝐶𝑠𝑠, the summations over 𝑘𝑘 and 𝑗𝑗 in 
eq A.3 are evaluated to give 

𝐷𝐷aa = �
𝜕𝜕�𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0

𝐶𝐶𝑠𝑠
𝑚𝑚� 𝛿𝛿𝑖𝑖𝑖𝑖∗�

𝜕𝜕𝐶𝐶𝑎𝑎

𝑁𝑁

𝑖𝑖=1

(1 + 𝐾𝐾𝑖𝑖𝑖𝑖∗′ 𝜙𝜙) + 

+�𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0
𝐶𝐶𝑠𝑠
𝑚𝑚� 𝑁𝑁𝐴𝐴𝑉𝑉𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖

∗

𝑁𝑁

𝑖𝑖=1

𝜕𝜕
𝜕𝜕𝐶𝐶a

��𝛽𝛽𝑖𝑖𝑖𝑖∗ �
1 + 𝜆𝜆𝑖𝑖𝑖𝑖∗

2 �
3

+ 𝐾𝐾𝑖𝑖𝑖𝑖∗′′ �
𝐶𝐶𝑠𝑠
𝑚𝑚�� . (𝐴𝐴. 4) 

The product rule is used to rearrange the first summation in eq 
A.4, 

�
𝜕𝜕�𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0

𝐶𝐶𝑠𝑠
𝑚𝑚� 𝛿𝛿𝑖𝑖𝑖𝑖∗�

𝜕𝜕𝐶𝐶𝑎𝑎

𝑁𝑁

𝑖𝑖=1

(1 + 𝐾𝐾𝑖𝑖𝑖𝑖∗′ 𝜙𝜙) 

= ��
𝜕𝜕
𝜕𝜕𝐶𝐶𝑎𝑎

�𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0
𝐶𝐶𝑠𝑠
𝑚𝑚� 𝛿𝛿𝑖𝑖𝑖𝑖

∗(1 + 𝐾𝐾𝑖𝑖𝑖𝑖∗′ 𝜙𝜙)� − 𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0
𝐶𝐶𝑠𝑠
𝑚𝑚� 𝛿𝛿𝑖𝑖𝑖𝑖

∗
𝜕𝜕(𝐾𝐾𝑖𝑖𝑖𝑖∗′ 𝜙𝜙)
𝜕𝜕𝐶𝐶𝑎𝑎

�
𝑁𝑁

𝑖𝑖=1

 . 

(𝐴𝐴. 5) 

The 𝑖𝑖 summation on the right side of eq A.5 is evaluated using 
the sifting property, 𝜙𝜙 = 𝐶𝐶𝑠𝑠 𝑚𝑚�⁄ 𝑁𝑁𝐴𝐴𝑉𝑉𝑖𝑖∗, and 𝐶𝐶𝑎𝑎 = 𝑛𝑛� 𝑚𝑚�⁄ 𝐶𝐶𝑠𝑠, 

�
𝜕𝜕�𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0

𝐶𝐶𝑠𝑠
𝑚𝑚� 𝛿𝛿𝑖𝑖𝑖𝑖∗�

𝜕𝜕𝐶𝐶𝑎𝑎

𝑁𝑁

𝑖𝑖=1

(1 + 𝐾𝐾𝑖𝑖𝑖𝑖∗′ 𝜙𝜙) 

=
𝜕𝜕
𝜕𝜕𝐶𝐶𝑎𝑎

�𝐶𝐶𝑎𝑎𝐷𝐷𝑖𝑖∗
0 (1 + 𝐾𝐾𝑖𝑖∗𝑖𝑖∗′ 𝜙𝜙)� − 𝐶𝐶𝑎𝑎𝐷𝐷𝑖𝑖∗

0 �
𝜕𝜕(𝐾𝐾𝑖𝑖𝑖𝑖∗′ 𝜙𝜙)
𝜕𝜕𝐶𝐶𝑎𝑎

�
𝑖𝑖=𝑖𝑖∗

. (𝐴𝐴. 6) 

Here, 𝐾𝐾𝑖𝑖∗𝑖𝑖∗′  is a constant and the derivatives in eq A.6 are 
expanded to provide, 

�
𝜕𝜕�𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0

𝐶𝐶𝑠𝑠
𝑚𝑚� 𝛿𝛿𝑖𝑖𝑖𝑖∗�

𝜕𝜕𝐶𝐶𝑎𝑎

𝑁𝑁

𝑖𝑖=1

(1 + 𝐾𝐾𝑖𝑖𝑖𝑖∗′ 𝜙𝜙) 

=
𝜕𝜕�𝐶𝐶𝑎𝑎𝐷𝐷𝑖𝑖∗

0�
𝜕𝜕𝐶𝐶𝑎𝑎

(1 + 𝐾𝐾𝑖𝑖∗𝑖𝑖∗′ 𝜙𝜙) − 𝐶𝐶𝑎𝑎𝐷𝐷𝑖𝑖∗
0𝜙𝜙 �

𝜕𝜕𝐾𝐾𝑖𝑖𝑖𝑖∗′

𝜕𝜕𝐶𝐶𝑎𝑎
�
𝑖𝑖=𝑖𝑖∗

. (𝐴𝐴. 7) 

Differentiating the Stokes-Einstein equation, 𝐷𝐷𝑖𝑖∗
0 = 𝑖𝑖𝐵𝐵𝑇𝑇

6𝜋𝜋𝜋𝜋𝑅𝑅𝑖𝑖∗
, one 

can show, 

𝜕𝜕�𝐶𝐶𝑎𝑎𝐷𝐷𝑖𝑖∗
0 �

𝜕𝜕𝐶𝐶𝑎𝑎
= 𝐷𝐷𝑖𝑖∗

0 �1 −
𝜕𝜕𝜕𝜕𝑛𝑛𝑅𝑅𝑖𝑖∗
𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶𝑎𝑎

�   . (𝐴𝐴. 8) 

Combining eqs A.7 and A.8 yields,  

�
𝜕𝜕�𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0

𝐶𝐶𝑠𝑠
𝑚𝑚� 𝛿𝛿𝑖𝑖𝑖𝑖∗�

𝜕𝜕𝐶𝐶𝑎𝑎

𝑁𝑁

𝑖𝑖=1

(1 + 𝐾𝐾𝑖𝑖𝑖𝑖∗′ 𝜙𝜙) 

= 𝐷𝐷𝑖𝑖∗
0 ��1 −

𝜕𝜕𝜕𝜕𝑛𝑛𝑅𝑅𝑖𝑖∗
𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶𝑎𝑎

� (1 + 𝐾𝐾𝑖𝑖∗𝑖𝑖∗′ 𝜙𝜙) − 𝜙𝜙�
𝜕𝜕𝐾𝐾𝑖𝑖𝑖𝑖∗′

𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶𝑎𝑎
�
𝑖𝑖=𝑖𝑖∗

�  . (𝐴𝐴. 9) 

Now, focusing on the second summation on the right side of eq 
A.4, the derivative can be evaluated, 

�𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0
𝐶𝐶𝑠𝑠
𝑚𝑚� 𝑁𝑁𝐴𝐴𝑉𝑉𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖

∗

𝑁𝑁

𝑖𝑖=1

𝜕𝜕
𝜕𝜕𝐶𝐶a

��𝛽𝛽𝑖𝑖𝑖𝑖∗ �
1 + 𝜆𝜆𝑖𝑖𝑖𝑖∗

2 �
3

+ 𝐾𝐾𝑖𝑖𝑖𝑖∗′′ �
𝐶𝐶𝑠𝑠
𝑚𝑚�� = 

�𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0
𝐶𝐶𝑠𝑠
𝑚𝑚� 𝑁𝑁𝐴𝐴𝑉𝑉𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖

∗

𝑁𝑁

𝑖𝑖=1

𝐶𝐶𝑠𝑠
𝑚𝑚� �

3
8
𝛽𝛽𝑖𝑖𝑖𝑖∗(1 + 𝜆𝜆𝑖𝑖𝑖𝑖∗)2 �

𝜕𝜕𝜆𝜆𝑖𝑖𝑖𝑖∗
𝜕𝜕𝐶𝐶𝑎𝑎

�

+ �
1 + 𝜆𝜆𝑖𝑖𝑖𝑖∗

2 �
3

�
𝜕𝜕𝛽𝛽𝑖𝑖𝑖𝑖∗
𝜕𝜕𝐶𝐶𝑎𝑎

� + �
𝜕𝜕𝐾𝐾𝑖𝑖𝑖𝑖∗′′

𝜕𝜕𝐶𝐶𝑎𝑎
�� 

+�𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0
𝐶𝐶𝑠𝑠
𝑚𝑚� 𝑁𝑁𝐴𝐴𝑉𝑉𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖

∗

𝑁𝑁

𝑖𝑖=1

�𝛽𝛽𝑖𝑖𝑖𝑖∗ �
1 + 𝜆𝜆𝑖𝑖𝑖𝑖∗

2 �
3

+ 𝐾𝐾𝑖𝑖𝑖𝑖∗′′ �
𝜕𝜕
𝜕𝜕𝐶𝐶a

�
𝐶𝐶𝑠𝑠
𝑚𝑚��

 , 

(𝐴𝐴. 10) 
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and the sum over 𝑖𝑖 is performed using the sifting property, 𝜙𝜙 =
𝐶𝐶𝑠𝑠 𝑚𝑚�⁄ 𝑁𝑁𝐴𝐴𝑉𝑉𝑖𝑖∗, and 𝐶𝐶𝑎𝑎 = 𝑛𝑛� 𝑚𝑚�⁄ 𝐶𝐶𝑠𝑠: 

�𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0
𝐶𝐶𝑠𝑠
𝑚𝑚� 𝑁𝑁𝐴𝐴𝑉𝑉𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖

∗

𝑁𝑁

𝑖𝑖=1

𝜕𝜕
𝜕𝜕𝐶𝐶a

��𝛽𝛽𝑖𝑖𝑖𝑖∗ �
1 + 𝜆𝜆𝑖𝑖𝑖𝑖∗

2 �
3

+ 𝐾𝐾𝑖𝑖𝑖𝑖∗′′ �
𝐶𝐶𝑠𝑠
𝑚𝑚�� = 

𝐶𝐶𝑎𝑎𝐷𝐷𝑖𝑖∗
0𝜙𝜙 �

3
2𝛽𝛽𝑖𝑖

∗𝑖𝑖∗ �
𝜕𝜕𝜆𝜆𝑖𝑖𝑖𝑖∗
𝜕𝜕𝐶𝐶𝑎𝑎

�
𝑖𝑖=𝑖𝑖∗

+ �
𝜕𝜕(𝛽𝛽𝑖𝑖𝑖𝑖∗ + 𝐾𝐾𝑖𝑖𝑖𝑖∗′′ )

𝜕𝜕𝐶𝐶𝑎𝑎
�
𝑖𝑖=𝑖𝑖∗

+ (𝛽𝛽𝑖𝑖∗𝑖𝑖∗ + 𝐾𝐾𝑖𝑖∗𝑖𝑖∗′′ )
𝑚𝑚�
𝐶𝐶𝑠𝑠

𝜕𝜕
𝜕𝜕𝐶𝐶a

�
𝐶𝐶𝑠𝑠
𝑚𝑚���   .            (𝐴𝐴. 11) 

The size ratio for spheres is defined as 𝜆𝜆𝑖𝑖𝑖𝑖∗ = 𝑅𝑅𝑖𝑖∗
𝑅𝑅𝑖𝑖

.  Hence, 

�
𝜕𝜕𝜆𝜆𝑖𝑖𝑖𝑖∗
𝜕𝜕𝐶𝐶𝑎𝑎

�
𝑖𝑖=𝑖𝑖∗

=
𝜕𝜕𝜕𝜕𝑛𝑛𝑅𝑅𝑖𝑖∗
𝜕𝜕𝐶𝐶𝑎𝑎

  . (𝐴𝐴. 12) 

Furthermore, since 𝐶𝐶a and 𝐶𝐶s are independent variables, 

𝑚𝑚�
𝐶𝐶𝑠𝑠

𝜕𝜕
𝜕𝜕𝐶𝐶a

�
𝐶𝐶𝑠𝑠
𝑚𝑚�� = −

𝜕𝜕𝜕𝜕𝑛𝑛𝑚𝑚�
𝜕𝜕𝐶𝐶a

  . (𝐴𝐴. 13) 

Combining eqs A.11–A.13, one finds, 

�𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖0
𝐶𝐶𝑠𝑠
𝑚𝑚� 𝑁𝑁𝐴𝐴𝑉𝑉𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖

∗

𝑁𝑁

𝑖𝑖=1

𝜕𝜕
𝜕𝜕𝐶𝐶a

��𝛽𝛽𝑖𝑖𝑖𝑖∗ �
1 + 𝜆𝜆𝑖𝑖𝑖𝑖∗

2 �
3

+ 𝐾𝐾𝑖𝑖𝑖𝑖∗′′ �
𝐶𝐶𝑠𝑠
𝑚𝑚�� = 

𝐷𝐷𝑖𝑖∗
0𝜙𝜙 �

3
2𝛽𝛽𝑖𝑖

∗𝑖𝑖∗
𝜕𝜕𝜕𝜕𝑛𝑛𝑅𝑅𝑖𝑖∗
𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶𝑎𝑎

+ �
𝜕𝜕(𝛽𝛽𝑖𝑖𝑖𝑖∗ + 𝐾𝐾𝑖𝑖𝑖𝑖∗′′ )

𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶𝑎𝑎
�
𝑖𝑖=𝑖𝑖∗

− (𝛽𝛽𝑖𝑖∗𝑖𝑖∗ + 𝐾𝐾𝑖𝑖∗𝑖𝑖∗′′ )
𝜕𝜕𝜕𝜕𝑛𝑛𝑚𝑚�
𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶a

   �  .                      (𝐴𝐴. 14) 

Eqs A.4, A.9, and A.14 combine to yield 

𝐷𝐷aa
𝐷𝐷𝑖𝑖∗0

= 1 + 𝐾𝐾′𝜙𝜙 − �1 + �𝐾𝐾′ −
3
2𝛽𝛽�𝜙𝜙�

𝜕𝜕𝜕𝜕𝑛𝑛𝑅𝑅𝑖𝑖∗
𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶𝑎𝑎

 

+𝜙𝜙 �
𝜕𝜕(𝛽𝛽𝑖𝑖𝑖𝑖∗ + 𝐾𝐾𝑖𝑖𝑖𝑖∗′′ − 𝐾𝐾𝑖𝑖𝑖𝑖∗′ )

𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶𝑎𝑎
�
𝑖𝑖=𝑖𝑖∗

− (𝛽𝛽 + 𝐾𝐾′′)
𝜕𝜕𝜕𝜕𝑛𝑛𝑚𝑚�
𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶a

𝜙𝜙  . (𝐴𝐴. 15) 

In eq A.15, redundant subscripts on the interaction coefficients 
have been removed. If the hydration index 𝑛𝑛H is constant with 
composition, differentiation of eq 39 provides,  

𝜕𝜕𝜕𝜕𝑛𝑛𝑚𝑚�
𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶a

= 3
𝜕𝜕𝜕𝜕𝑛𝑛𝑅𝑅𝑖𝑖∗
𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶a

−
𝜙𝜙𝑎𝑎
𝜙𝜙   , (𝐴𝐴. 16) 

where 𝜙𝜙𝑎𝑎 = 𝐶𝐶𝑎𝑎𝑁𝑁𝐴𝐴𝑉𝑉𝑎𝑎  is the solute volume fraction. 
Furthermore, if the interaction potential between pairs of 
micelles is, at most, a single variable function of the interparticle 
separation distance, then we may write, 

�
𝜕𝜕(𝛽𝛽𝑖𝑖𝑖𝑖∗ + 𝐾𝐾𝑖𝑖𝑖𝑖∗′′ − 𝐾𝐾𝑖𝑖𝑖𝑖∗′ )

𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶𝑎𝑎
�
𝑖𝑖=𝑖𝑖∗

= �
𝑑𝑑(𝐾𝐾′′ − 𝐾𝐾′)

𝑑𝑑𝜆𝜆 �
𝜆𝜆=1

�
𝜕𝜕𝜆𝜆𝑖𝑖𝑖𝑖∗
𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶𝑎𝑎

�
𝑖𝑖=𝑖𝑖∗

. (𝐴𝐴. 17) 

Finally, eqs A.12 and A.15–A.17 combine, after some 
rearrangement, to produce, 

𝐷𝐷aa
𝐷𝐷𝑖𝑖∗0

= 1 + 𝐾𝐾′𝜙𝜙 −𝑚𝑚 �𝜙𝜙,
𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠
�   , (𝐴𝐴. 18) 

where the function 𝑚𝑚�𝜙𝜙, 𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠
� is given by, 

𝑚𝑚�𝜙𝜙,
𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠
� =

𝜕𝜕𝜕𝜕𝑛𝑛𝑅𝑅𝑖𝑖∗
𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶𝑎𝑎

(1 + 𝛾𝛾𝜙𝜙) − (𝛽𝛽 + 𝐾𝐾′′)𝜙𝜙𝑎𝑎  , (𝐴𝐴. 19) 

and 

𝛾𝛾 = �
3
2𝛽𝛽 + 𝐾𝐾′ + 3𝐾𝐾′′� − �

𝑑𝑑(𝐾𝐾′′ − 𝐾𝐾′)
𝑑𝑑𝜆𝜆 �

𝜆𝜆=1
. (𝐴𝐴. 20) 

In order to determine the remaining elements of [D] in 
terms of 𝑚𝑚�𝜙𝜙, 𝐶𝐶𝑎𝑎

𝐶𝐶𝑠𝑠
�, we note that 𝑅𝑅𝑖𝑖∗ and 𝑚𝑚�  are thermodynamic 

state functions of a ternary solution. According to the Gibbs 
phase rule, these functions depend on four independent, 
intensive variables, which we choose to be 𝑇𝑇, 𝑊𝑊, 𝐶𝐶𝑎𝑎 𝐶𝐶𝑠𝑠⁄  and 𝜙𝜙. 
Our light scattering results2 at constant 𝑇𝑇 and 𝑊𝑊 indicate 𝑅𝑅𝑖𝑖∗ and 
𝑚𝑚�  vary strongly with 𝐶𝐶𝑎𝑎 𝐶𝐶𝑠𝑠⁄  but are weak functions of 𝜙𝜙. Hence, 
to a good approximation, we may write expressions for 𝑅𝑅𝑖𝑖∗ and 
𝑚𝑚�  at constant 𝑇𝑇 and 𝑊𝑊 as a power series in 𝐶𝐶𝑎𝑎 𝐶𝐶𝑠𝑠⁄ , 

𝑅𝑅𝑖𝑖∗ = 𝑅𝑅0 + �𝑎𝑎𝑖𝑖

∞

𝑖𝑖=1

�
𝐶𝐶a
𝐶𝐶s
�
𝑖𝑖

(𝐴𝐴. 21) 

𝑚𝑚� = 𝑚𝑚0 + �𝑏𝑏𝑖𝑖

∞

𝑖𝑖=1

�
𝐶𝐶a
𝐶𝐶s
�
𝑖𝑖

  . (𝐴𝐴. 22) 

Differentiating equations A.21 and A.22 with respect to 𝐶𝐶𝑎𝑎 and 
𝐶𝐶𝑠𝑠, one finds, 

𝜕𝜕𝜕𝜕𝑛𝑛𝑅𝑅𝑖𝑖∗
𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶𝑎𝑎

= −
𝜕𝜕𝜕𝜕𝑛𝑛𝑅𝑅𝑖𝑖∗
𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶𝑠𝑠

(𝐴𝐴. 23) 

𝜕𝜕𝜕𝜕𝑛𝑛𝑚𝑚�
𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶𝑎𝑎

= −
𝜕𝜕𝜕𝜕𝑛𝑛𝑚𝑚�
𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶𝑠𝑠

  . (𝐴𝐴. 24) 

Eqs A.23 and A.24 may be used in derivations similar to that 
described above for 𝐷𝐷aa to find 

𝐷𝐷as
𝐷𝐷𝑖𝑖∗0

=
𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠
�(𝛽𝛽 + 𝐾𝐾′′)𝜙𝜙 + 𝑚𝑚�𝜙𝜙,

𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠
�� (𝐴𝐴. 25) 

𝐷𝐷sa
𝐷𝐷𝑖𝑖∗0

= −
𝐶𝐶𝑠𝑠
𝐶𝐶𝑎𝑎
𝑚𝑚 �𝜙𝜙,

𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠
� (𝐴𝐴. 26) 

𝐷𝐷ss
𝐷𝐷𝑖𝑖∗0

= 1 + (𝛽𝛽 + 𝑆𝑆)𝜙𝜙 + 𝑚𝑚�𝜙𝜙,
𝐶𝐶𝑎𝑎
𝐶𝐶𝑠𝑠
� . (𝐴𝐴. 27) 

In Table 1, exact numerical calculations by Batchelor12,15 for 
the mobility coefficients 𝐾𝐾𝑖𝑖𝑖𝑖′  and 𝐾𝐾𝑖𝑖𝑖𝑖′′ are provided for 𝜆𝜆𝑖𝑖𝑖𝑖 = 0.9, 

1.0, and 1.1. These numerical results were used to calculate the 
central difference approximation for the derivative, 

�𝑑𝑑(𝐾𝐾′′−𝐾𝐾′)
𝑑𝑑𝜆𝜆

�
𝜆𝜆=1

= −4.70, in eq A.20. Thus, for micelles that 

interact as identically sized (𝜆𝜆 = 1) hard spheres, 𝛽𝛽 = 8, 𝐾𝐾′ =
−2.10, 𝐾𝐾′′ = −4.45, 𝑆𝑆 = 𝐾𝐾′ + 𝐾𝐾′′ = −6.55, and 𝛾𝛾 = 1.25. 
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Table 1. Mobility coefficients calculated by Batchelor12,15 

𝜆𝜆𝑖𝑖𝑖𝑖 𝐾𝐾𝑖𝑖𝑖𝑖′  𝐾𝐾𝑖𝑖𝑖𝑖′′ 
0.9 -2.13 -4.02 
1.0 -2.10 -4.45 
1.1 -2.06 -4.89 

Appendix B: The solute tracer limit for [D] 
Differentiation of eq A.21 provides 

𝜕𝜕𝜕𝜕𝑛𝑛𝑅𝑅𝑖𝑖∗
𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶𝑎𝑎

=
∑ 𝑘𝑘𝑎𝑎𝑖𝑖∞
𝑖𝑖=1 �𝐶𝐶a𝐶𝐶s

�
𝑖𝑖

𝑅𝑅0 + ∑ 𝑎𝑎𝑖𝑖∞
𝑖𝑖=1 �𝐶𝐶a𝐶𝐶s

�
𝑖𝑖   . (𝐵𝐵. 1) 

Eq B.1 is divided by 𝐶𝐶a 𝐶𝐶s⁄  to yield 

𝐶𝐶s
𝐶𝐶a
𝜕𝜕𝜕𝜕𝑛𝑛𝑅𝑅𝑖𝑖∗
𝜕𝜕𝜕𝜕𝑛𝑛𝐶𝐶𝑎𝑎

=
𝑎𝑎1 + ∑ 𝑘𝑘𝑎𝑎𝑖𝑖∞

𝑖𝑖=2 �𝐶𝐶a𝐶𝐶s
�
𝑖𝑖−1

𝑅𝑅0 + ∑ 𝑎𝑎𝑖𝑖∞
𝑖𝑖=1 �𝐶𝐶a𝐶𝐶s

�
𝑖𝑖   . (𝐵𝐵. 2) 

Furthermore, we note that 

𝐶𝐶s
𝐶𝐶a
𝜙𝜙𝑎𝑎
𝜙𝜙 =

𝑉𝑉a
𝑉𝑉s + 𝑛𝑛H𝑉𝑉w

  . (𝐵𝐵. 3) 

According to eqs B.1 and B.2, 𝜕𝜕𝑙𝑙𝜕𝜕𝑅𝑅𝑖𝑖∗
𝜕𝜕𝑙𝑙𝜕𝜕𝐶𝐶𝑎𝑎

→ 0 and 𝐶𝐶s
𝐶𝐶a

𝜕𝜕𝑙𝑙𝜕𝜕𝑅𝑅𝑖𝑖∗
𝜕𝜕𝑙𝑙𝜕𝜕𝐶𝐶𝑎𝑎

→ 𝑎𝑎1
𝑅𝑅0

 in the 

limit as 𝐶𝐶a
𝐶𝐶s
→ 0. Hence, eqs 31–35 and B.1–B.3 combine to give, 

𝐷𝐷aa
𝐷𝐷0 = 1 + 𝐾𝐾′𝜙𝜙 (𝐵𝐵. 4) 

𝐷𝐷as = 0 (𝐵𝐵. 5) 

𝐷𝐷sa
𝐷𝐷0 = −

𝑎𝑎1
𝑅𝑅0

(1 + 𝛾𝛾𝜙𝜙) + (𝛽𝛽 + 𝐾𝐾′′) �
𝑉𝑉a

𝑉𝑉s + 𝑛𝑛H𝑉𝑉w
�𝜙𝜙 (𝐵𝐵. 6) 

𝐷𝐷ss
𝐷𝐷0 = 1 + (𝛽𝛽 + 𝑆𝑆)𝜙𝜙 . (B. 7) 
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