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A model for 3D deformation and reconstruction of con-
tractile microtissues†

Jaemin Kim,a Erik Mailand,b Ida Ang,a Mahmut Selman Sakar,b and Nikolaos Bouklasa∗

Tissue morphogenesis and regeneration are essentially mechanical processes that involve coor-
dination of cellular forces, production and structural remodeling of extracellular matrix (ECM), and
cell migration. Discovering the principles of cell-ECM interactions and tissue-scale deformation in
mechanically-loaded tissues is instrumental to the development of novel regenerative therapies.
The combination of high-throughput three-dimensional (3D) culture systems and experimentally-
validated computational models accelerate the study of these principles. In our previous work
[E. Mailand et al., Biophysical Journal, 2019, 117, 975-986], we showed that prominent surface
stresses emerge in constrained fibroblast-populated collagen gels, driving the morphogenesis of
fibrous microtissues. Here, we introduce an active material model that allows the embodiment
of surface and bulk contractile stresses while maintaining the passive elasticity of the ECM in a
3D setting. Unlike existing models, the stresses are driven by mechanosensing and not by an
externally applied signal. The mechanosensing component is incorporated in the model through
a direct coupling of the local deformation state with the associated contractile force generation.
Further, we propose a finite element implementation to account for large deformations, nonlinear
active material response, and surface effects. Simulation results quantitatively capture complex
shape changes during tissue formation and as a response to surgical disruption of tissue bound-
aries, allowing precise calibration of the parameters of the 3D model. The results of this study
imply that in the organization of the extracellular matrix in the bulk of the tissue may not be a major
factor behind the morphogenesis of fibrous tissues at sub-millimeter length scales.

1 Introduction
Mesenchymal and epithelial cells residing inside or on the surface
of tissues apply traction forces to the matrix that they adhere to
which lead to the remodeling of the fiber connections, cell migra-
tion, and bulk tissue deformation.1–6 The physical interactions of
the cells with the 3D interwoven network of fibers, ECM, influ-
ence their force output through the activity of mechanosensitive
proteins.7–9 Understanding the principles behind the cell-ECM
interactions is important for various fields such as developmen-
tal biology and oncology, and controlling these interactions is in-
strumental for tissue engineering and regenerative medicine. Al-
though technological and conceptual advances in the last decade
built a solid foundation on epithelial tissue mechanics,10–12 a de-
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tailed accounting of the dynamic stresses and strains that control
the 3D architecture of fibrous tissues remain unclear.

The scientific impact and medical relevance of cell-ECM inter-
actions has inspired the development of a repertoire of analytical
and computational models where the focus has been recently on
cellular mechanosensing and cell migration.13–15 Physical models
of cells, spanning from subcellular to supracellular scales, can be
classified into three main categories: agent-based models, inter-
facial models, and continuum models.16–20 Agent-based formu-
lations such as vertex and Potts models have been widely used to
capture the morphogenesis of epithelial monolayers.21–24 Inter-
facial models including either sharp or diffuse formulations (e.g.
phase-field model), treat tissues as viscous fluids by considering
the energetics of internal and external interfaces. They are valid
for tissues where there is no 3D structure based on an underly-
ing ECM scaffold.25–29 Continuum models, on the other hand,
are better suited for 3D fibrous tissues because they describe the
tissue as a bulk active material with a phenomenological consti-
tutive law that enables the incorporation of cellular contractility
and nonlinear properties of collagen networks such as mechanical
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anisotropy and time-dependent behavior.30–36

The majority of the existing continuum models for ECM-rich
contractile microtissues are based on processing of signals as they
use Hill’s equations for contraction.37 These equations were orig-
inally derived by Archibald Vivian Hill to model skeletal muscle
contraction. Although cellular contractions triggered by neural
or other external signals can be accurately captured by this for-
mulation, tissue morphogenesis by fibroblasts or epithelial cells
does not fall into this category. Furthermore, almost all models
have simplified 2D geometries while cell residing in fibrous gels
generate 3D stress and deformation fields. Another limitation of
the existing models is that they do not capture the morphogenetic
effects of cell migration.

Microfabricated tissues provide a controllable environment for
investigating the effects of ECM mechanics, geometric constraints
and external loading on tissue mechanics and cell behavior.38–40

Data generated by these platforms have facilitated the develop-
ment and validation of new computational models.41–44 In our
previous works, using microfabricated tissues and robotic manip-
ulation, we showed that cell contractility at free surfaces is as
critical as bulk contractility in shaping of fibroblast-populated col-
lagen microtissues.36,45 Surface effects are prominent in liquids
but are often neglected in the continuum description of structural
solids as they pertain to length scales that are mostly not rele-
vant to engineered systems. In soft solids and gels, on the other
hand, surface effects can have a significant influence in the overall
mechanical response at physiologically relevant scales, and con-
tribute to several phenomena including adhesion, fracture, and
bulk deformation.46–48 Recent advances in the continuum de-
scriptions of surface effects in soft solids49–51 and the develop-
ment of corresponding numerical implementations in the finite
element (FE) framework52,53 have led to new insight in diverse
areas, from instabilities in soft elastomers,54 to diffusion kinet-
ics in hydrogel microspheres loaded with drugs.55 An implemen-
tation of surface elasticity at finite deformations is not directly
available in commercial FE platforms such as ABAQUS, ANSYS
and FEBio, thus, there is a demand for in-house implementa-
tions. Notably, elastocapillary effects arising from the interactions
of surface elasticity with bulk elasticity lead to smoothing of sharp
geometrical features in soft solids, a morphogenic event that can-
not be captured by bulk effects represented in the traditional FE
implementations.

We have recently introduced a 2D computational model of con-
tractile tissues that couples passive elasticity of biological soft
matter with active bulk and surface contractility.36 The simula-
tion results highlighted the unique contribution of modeling sur-
face stresses for capturing tissue reconstruction upon external me-
chanical perturbations. However, 2D geometric representation re-
stricted the surface effects to a line around the periphery of the
tissue. Thus, the stresses on the top and bottom surfaces of the
tissues were ignored. In reality, surface effects have to be consid-
ered over a 2D manifold that covers the entire surface of the 3D
tissue to be accurately represented. To illustrate this deficiency,
we can think of the following example. When the microtissues
were detached from the constraining pillars, they contracted into
a ball within 12 hours. A 2D model cannot capture the structural

and morphological evolution of this event using planar stress and
strain approximations. Even for morphological changes that es-
sentially happen in a single plane, the comparison between ex-
perimental data and simulation results were restricted to qual-
itative assessment. It is instrumental to extend the theory and
finite element implementation to 3D, which requires the intro-
duction of more complex kinematics of surfaces. As surface and
bulk contractile stresses are acting on the soft and highly com-
pressible tissue, surface instabilities (e.g. wrinkling) may arise.
We significantly modified the model of the ECM to allow for high
compression without the emergence of surface instabilities.

In this work, we introduce an equilibrium continuum theory
and corresponding finite element implementation that captures
3D morphological states of contractile microtissues. The pro-
posed model is capable of reproducing complex 3D deformations
resulting from the formation of microtissues and as a response
to controlled mechanical loading as well as microsurgical opera-
tions. The model is not based on external signaling, and cell-ECM
interactions are captured purely through mechanosensing. The
mechanosensing component is incorporated in the model through
a direct coupling of the local deformation state with the associ-
ated contractile force generation. In Section 2, we summarize the
equilibrium theory capturing the interactions of cell and ECM in
the bulk and on the surface of the microtissues along with the
finite element implementation including the weak form and elas-
ticity tensors. Section 3 describes experimental protocols includ-
ing microtissue fabrication and robotic manipulation. Section 4
presents and discusses the simulations of tissue contraction and
reconstruction.

2 Continuum mechanics framework
Fibroblasts accumulate at the periphery of reconstituted collage-
nous microtissues, which leads to formation of a heterogeneous
architecture containing a collagen-rich core that is sparsely pop-
ulated by cells and a fibronectin-rich shell with high fibroblast
density.36,56,57 Furthermore, when tissues are engineered inside
rectangular wells, but subsequently released from the posts, they
compact and attain a spherical shape in time.36 The deviation
from the rectangular shape that is defined by the geometry of
the surrounding well is a clear indication that surface stresses
govern the compaction process. Based on these observations, we
postulated that the spatially heterogeneous force generation and
shape reconfiguration can be represented in the continuum scale
through the introduction of active surface stresses.36 The model
that we introduce in this section is based on mechanosensing of
the local deformation state of the tissue. It has the potential to
predict the stress distribution and the corresponding 3D deforma-
tion of microtissues by recapitulating the effects of multi-cellular
organization and contractility. The resulting framework is a first
step towards a model for ECM-rich active matter.

2.1 Key concepts in differential geometry

We briefly review key concepts of differential geometry required
to describe the kinematics and equilibrium bulk and surface re-
sponse. Hereafter, {•} and {•̂} denote bulk and surface quanti-
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ties, respectively, for a body occupying volume Ω0 bounded by
outer surface denoted as ∂Ω0. It is important to note that a sur-
face quantity to be introduced is not always equivalent with the
bulk quantity evaluated on the surface.

∂Ω0

∂Γ0

N

G1

N

Γ0

 

G2

N

Fig. 1 General basis on a surface.

Let dR denote an arbitrary infinitesimal vector expressed by
general curvilinear coordinates, i.e., dR = dR(ξ 1,ξ 2,ξ 3) in bulk,
or dR = dR(ξ̂ 1, ξ̂ 2) on the surface. We can always associate the
general curvilinear coordinate with dual basis vectors by coordi-
nate transformation.52

Gi =
∂R
∂ξ i , Gi =

∂ξ i

∂R
with I = δ

i
j Gi⊗G j (1a)

Ĝα =
∂R

∂ ξ̂ α
, Ĝ

α
=

∂ ξ̂ α

∂R
with Î = δ

α

β
Ĝα ⊗ Ĝ

β
(1b)

where Gi (or Ĝi) and Gi (or Ĝ
i
) are covariant and contravariant

basis vectors, respectively. I is the unit tensor, and Î = I−N⊗N is
the mixed surface unit tensor, where N is the outward unit normal
vector. δ i

j = Gi ·G j and δ α

β
= Ĝ

α · Ĝβ are Kronecker deltas (i, j =
1,2,3, α,β = 1,2).

The dual basis vectors are connected following

Gi = Gi jG j and Gi = Gi jG j (2a)

Ĝα = Ĝαβ Ĝ
β

and Ĝ
α
= Ĝ

αβ
Ĝβ (2b)

where Gi j (or Ĝαβ ) and Gi j (or Ĝ
αβ

) are metric tensors. Note that
the mappings in Eq. 2 are inverse to each other, i.e. [Gi j] = [Gi j]−1

and [Ĝαβ ] = [Ĝ
αβ

]−1.
The gradient and divergence operators can be expressed in

terms of basis vectors in the bulk and on the surface,

Grad{•}= ∂{•}
∂ξ i ⊗Gi and Div{•}= ∂{•}

∂ξ i ·Gi (3a)

Ĝrad{•̂}= ∂{•̂}
∂ ξ̂ α

⊗ Ĝα and D̂iv{•̂}= ∂{•̂}
∂ ξ̂ α

· Ĝα (3b)

Let Γ0 be a sub-surface on ∂Ω0 in Figure 1 (Γ0 ∈ ∂Ω0), then the
divergence theorems are defined by49,58,59

∫
Ω0

Div{•}dV =
∫

∂Ω0

{•} ·NdS (4a)

∫
Γ0

D̂iv{•̂}dS =
∫

∂Γ0

{•̂} · N̂dL−
∫

Γ0

c{•̂} ·NdS (4b)

where N̂ is the unit outward binormal vectors on the sub-surface
boundary ∂Γ0, as seen in Figure 1. Note that c = −D̂iv N is total

Χ
xX x3, 3

Material description
(time t=0)

Spatial description
(time t)

N

dS

Ω0

∂Ω0

ds

n

∂Ωt

Ωt

χ

X x1, 1

X x2, 2

e3

e1
e2

Fig. 2 Configuration and motion of a continuum body.

curvature (twice the mean curvature, c = 2c̄).49,60

2.2 Kinematics

Let Ω0 be a fixed reference configuration of a continuum body
B. We use the notation χ : Ω0→ R3 for the deformation of body
B. A motion χ is the vector field of the mapping x = χ(X), of a
material point in the reference configuration X ∈Ω0 to a position
in the deformed configuration x ∈Ω.

The kinematics of a typical particle are described by

u(X, t) = x(X, t)−X (5)

where u(X, t) is the displacement vector field in the spatial de-
scription.

The kinematics of an infinitesimal bulk element are described
by

F(X, t) =
∂ χ(X, t)

∂X
= Gradx(X, t) = gi⊗Gi (6a)

F−1(x, t) =
∂ χ−1(x, t)

∂x
= GradX(x, t) = Gi⊗gi (6b)

where F(X, t) and F−1(x, t) are the deformation gradient and in-
verse deformation gradient, respectively. Gi (or Gi) and gi (or gi)
are general curvilinear bases in the material and spatial configu-
ration, respectively. Note that J(X, t) = dv/dV = detF(X, t) > 0 is
the Jacobian determinant defining the ratio of a volume element
between material and spatial configuration. We decompose the
deformation gradient into a volumetric and an isochoric part.61–63

F = (J1/3I)F (7)

where J1/3 I and F represent the volumetric and isochoric parts of
the deformation gradient F. Following, we utilize {•} to denote
quantities associated with the isochoric part of the deformation
gradient.
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We introduce following bulk strain measures as follows:

C = FT F = J−2/3 C = J−2/3gi jG
i⊗G j (8a)

b = FFT
= J−2/3 b = J−2/3Gi jgi⊗g j (8b)

I1 = tr(C) = tr(b) (8c)

where C and b are the modified right and left Cauchy-Green tensor,
and I1 is the modified first principal invariant.

In Figure 2, a unit normal vector N in the material configu-
ration cannot be transformed into a unit normal vector n in the
spatial configuration via the deformation gradient F. This mo-
tivates us to develop the kinematics of an infinitesimal surface
element,49,64,65

F̂(X, t) =
∂ χ(X, t)

∂X
· Î = Ĝradx(X, t) = ĝα ⊗ Ĝ

α
(9a)

F̂
−1

(x, t) =
∂ χ−1(x, t)

∂x
· î = ĜradX(x, t) = Ĝα ⊗ ĝα (9b)

where F̂(X, t) and F̂
−1

(x, t) are the surface deformation gradient
and inverse surface deformation gradient, respectively. Ĝα (or
Ĝ

α
) and ĝα (or ĝα ) are general surface curvilinear bases in the

material and spatial configuration, respectively. î = i−n⊗n is
the mixed surface unit tensor in spatial configuration and i is the
unit tensor. It is important to note that F̂(X, t) is always a rank
deficient tensor, thus surface Jacobian determinant should be indi-
rectly obtained by Ĵ(X, t) = da/dA = |cof F ·N|> 0.49

We introduce the surface strain measures as follows:

Ĉ = F̂
T
F̂ = C : Î = ĝαβ Ĝ

α ⊗ Ĝ
β

(10a)

b̂ = F̂F̂
T
= b : Î = Ĝ

αβ
ĝα ⊗ ĝβ (10b)

where Ĉ and b̂ are surface right and left Cauchy-Green tensors.

2.3 Constitutive equations

In order to describe the equilibrium mechanical response of the
microtissue we need to consider the "passive" ECM response, and
the cell-induced "active" contraction which differs in the bulk and
on the surface of the body. Thus we postulate the existence of a
free-energy density function Ψ(F) and a surface excess free en-
ergy density function Ψ̂(F̂). Since we are developing an equilib-
rium theory, we postulate that the free energy density functions
only depend on kinematic variables, assuming that cellular forces
only depend on the affine deformations of the ECM.

We postulate that the free energy density can be decomposed
into the passive and active parts as Ψ(F) = Ψp(J, I1) + Ψa(J).
We assume that the ECM has a compressible hyperelastic re-
sponse, and we use an additive decomposition of the passive
free energy density into volumetric and isochoric contributions
as Ψp(J, I1) = Ψ

p
vol(J)+Ψ

p
iso(I1).64–66 The surface excess free en-

ergy density function is assumed be constant per unit area in the
spatial configuration, obtaining a fluid-like response.36? The two
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Fig. 3 Experimental model. (a) Schematic of initial (left), intermediate
(center) and final (right) shapes during the course of microtissue for-
mation. Microtissue evolution is shown from an in plane- (upper row)
and out of plane- (lower row) perspective. A suspension of fibroblasts
in collagen is spun down into rectangular microwells and allowed to gel,
which self-assembles into microtissues constrained between flexible can-
tilevers. b) Schematic of surgical operation using microscissors mounted
on the robotic system and subsequent microtissue shape evolution over
time. c) Representative images showing the tissue before (left), 2 hours
after (center), and 16 hours after the surgical operation.

expressions are

Ψ =
κ

2
(J−1)2 +

µ

2
(I1−3)+ηJ (11a)

Ψ̂ = γ Ĵ (11b)

in which κ and µ are the bulk and shear moduli for passive bulk
free energy density Ψp. The active bulk and surface free energy
densities Ψa (last term in Eq. 11a) and Ψ̂ account for cellular
contraction, where η and γ are the bulk and surface contractile
moduli.36,67

Following the standard Coleman-Noll procedure68,69 leads to
constitutive equations for the first Piola-Kirchhoff stress tensors P
in bulk and P̂ on surface, given as

P =
∂Ψ

∂F
= JpF−T + J−2/3F(P : S)+ηJ F−T (12a)

P̂ =
∂ Ψ̂

∂ F̂
= γ Ĵ F̂

−T
(12b)
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Fig. 4 3D images of simulated and experimentally-visualized microtissues. (a) Undeformed (left) and equilibrium configuration (middle) from the finite
element simulations along with the pre-surgery equilibrium shape of the microtissue (right). (b) Undeformed with the projected cut (left) and equilibrium
configuration (middle) from the finite element simulations along with the post-surgery equilibrium shape of the microtissue (right).

with the constitutive equations for the hydrostatic pressure p and
the fictitious second Piola-Kirchhoff stress S

p =
dΨvol

dJ
(12c)

S = 2
∂Ψiso

∂C
(12d)

where P= I− (1/3)C−1⊗C is a fourth order projection tensor.65

2.4 Equilibrium

The total potential energy functional I(χ) is defined as:

I(χ) =
∫

Ω0

Ψ(F,χ;X)dV+
∫

∂Ω0

Ψ̂(F̂,χ;X)dS (13)

−
∫

Ω0

B ·u(χ;X) dV−
∫

∂Ω0

T ·u(χ;X) dS

where B is the reference body force and T is the surface traction.
An equilibrated configuration is obtained by minimizing this func-
tional considering all admissible deformations δ χ.

Following the derivation presented in Javili et al. (2010),? we
can finally arrive at a set of localized force balance equations.
Neglecting the inertial effect, the local form of linear and angular
momentum balances for bulk64,65 and surface49,60 are defined
by

DivP+B = 0 and FPT = PFT in Ω (14a)

D̂iv P̂+T−PN = 0 and F̂P̂
T
= P̂F̂

T
on ∂Ω (14b)

Note that a Neumann-type boundary condition is also defined
on boundary curves ∂Γ0 as, JP̂ · N̂K = 0, where the double
bracket indicates summation over surfaces intersecting on bound-
ary curves.52 The standard Neumann boundary condition can be
obtained if the term involving surface stress is neglected. In this
work we assume that the surface excess free energy does not de-
pend on the orientation of the surface itself, namely there is no

functional dependence of Ψ̂ on the normal vector N on the surface
∂Ω.

2.5 Elasticity tensors

Iterative solution techniques are employed to solve the proposed
nonlinear problem.70 We here present the analytical expression of
the elasticity tensors for the linearization of the constitutive equa-
tions. The elasticity tensors C = Cp

vol +Cp
iso +Ca in the bulk and

Ĉ on the surface are defined by

Cp
vol =Jp̃C−1⊗C−1−2JpC−1�C−1 (15a)

Cp
iso =P : C : PT +

2
3

Tr(J−2/3S)P̃

− 2
3
(C−1⊗Siso +Siso⊗C−1) (15b)

Ca =JηC−1⊗C−1−2JηC−1�C−1 (15c)

Ĉ=ĴγĈ
−1⊗ Ĉ

−1−2ĴγĈ
−1� Ĉ

−1
(15d)

where the symbols are introduced for short-hand notations,65

p̃ = p+ J
dp
dJ

, C= 4J−4/3 ∂ 2Ψiso

∂C∂C
, Siso =

∂Ψiso

∂C
(16a)

C−1�C−1 =−∂C−1

∂C
, Ĉ

−1� Ĉ
−1

=−∂ Ĉ
−1

∂ Ĉ
(16b)

P̃= C−1�C−1− 1
3

C−1⊗C−1, Tr(•) = (•) : C (16c)

2.6 Weak form

For the finite element implementation, we need to obtain the
weak form for our problem.71 By adding the constraint that the
first variation of the total potential energy must be equal to zero
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Fig. 5 Error analysis. Relative error for the equilibrium tissue dimensions between simulated values and experimental data as a function of bulk (left)
and surface contractile moduli (middle), and Poisson’s ratio (right)
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δ I(χ) = 0, we obtain a weak form statement as

G =
∫

Ω0

P : Gradδu dV+
∫

∂Ω0

P̂ : Ĝradδu dS

−
∫

Ω0

B ·δu dV−
∫

∂Ω0

T ·δu dS = 0 ∀ δu (17)

where δu is the admissible deformation field. Note that the first
and second lines of Eq. 17 are related with internal and external
virtual work, respectively.

We employed the open-source platform FEniCS,72,73 to imple-

ment the finite element simulation. We used the Scalable Non-
linear Equations Solvers (SNES) from the open-source toolkit
PETSc,74 which provides numerical computations of a Newton-
type iterative procedure to solve the nonlinear variational prob-
lem. Note that the values of η and γ should be ramped from zero
to their prescribed values for numerical stability.

3 Experiment method
3.1 Cell culture
NIH-3T3 fibroblasts (Sigma-Aldrich) were cultured in Dulbecco’s
modified Eagle’s medium GlutaMAX (Life Technologies, Carlsbad,
CA) supplemented with 10% fetal bovine serum (Life Technolo-
gies) and 1% penicillin-streptomycin (Life Technologies). Cells
were passaged every 2-3 days using Trypsin 0.25% EDTA (Life
Technologies) up to 20 times. All experiments were done with
cells that tested negative for mycoplasma.

3.2 Microtissue model
Microtissue devices were fabricated as described elsewhere.41,45

Briefly, Polydimethylsiloxane (PDMS, Sylgard 184, Dow-Corning)
substrates were moulded from SU-8 masters. Prior to cell seed-
ing, devices were treated with Pluronic-F127 (Sigma-Aldrich) for
15 minutes at room temperature to prevent adhesion. One mil-
lion cells were suspended in 2 mgml-1 collagen type I from rat
tail (Corning BV Life Sciences) and the suspension was added
into the microfabricated device. The assembly was centrifuged to
drive cells into the microwells containing the cantilevers. After
removal of excess solution, the device was centrifuged once more
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Fig. 7 Comparison between experimental data and simulation results for the (a) pre-surgery and (b) post-surgery equilibrium states. Top view (top)
and cross-sectional views (bottom) are presented for each state. Cross-sections are equally spaced by 100µm from the center of the tissue. Contour
plots from simulations show the volume ratio J, which is proportional to the inverse of the density of the tissue.

but upside down to drive cells to the height of the cantilever caps.
A few hours after polymerisation, the collagen matrix compacted
due to cellular contractility while the cantilevers constrain the di-
rection of compaction.

3.3 Robotic micromanipulation

Surgical operations75,76 were performed as described previ-
ously.36 Briefly, microscissors (Alcon) were attached to a teleop-
erated robot that consists of six piezoelectric stick-slip actuators
for each translation and rotation axis, and a 3D-printed tool adap-
tor. The robot was mounted on a motorized inverted microscope
(Nikon Ti Eclipse) microscope for visualization. A stepper motor
(Haydon Kerk Pittman) controlled by an Arduino microprocessor
actuates the tools.

3.4 Microscopy and quantitative image analysis

Wide field imaging was done on a motorized inverted microscope
(Nikon Ti Eclipse) microscope equipped with a live-cell incuba-
tor (Life Imaging Services). Phase-contrast images were captured
with an ORCA-Flash4.0 digital CMOS camera (Hamamatsu) and
a Plan Fluor 10x objective. For 3D imaging, microtissues were
fixed with 4% formaldehyde and permeabilized with 0.2% Tri-
ton X-100, Immunostatining was performed for the nuclei and
F-actin with Hoechst 33342 (Thermo Fisher Scientific) and Phal-
loidin, respectively. Labelled microtissues were imaged using a
laser scanning confocal microscope (LSM 700, Zeiss) equipped
with a 20x objective. 3D reconstruction of acquired images was
done in ImageJ (NIH). The dimensions of the tissues were mea-
sured from the confocal images using an image processing script
written in ImageJ.

4 Results and discussion

We engineered arrays of microtissues from fibroblasts suspended
in reconstituted collagen solution using a high-throughput micro-
fabricated device. Elastomer pillars located in each well constrain
the microtissues, enabling long-term recording and repeatable
robotic micromanipulation. The configuration of the tissues right
after crosslinking of the cell-ECM suspension inside the wells (Fig-
ure 3a, left) was taken as the reference (undeformed) state for
the material model. Over the course of 24 hours, forces applied
by the encapsulated fibroblasts compacted the gel until reaching
an equilibrium state. (Figure 3a, right). It is worth noting that the
tissues continued to contract after the first 24 hours but with a sig-
nificantly lower rate. We operated on a subset of microtissues that
were in their equilibrium state, which we call pre-surgery equi-
librium to avoid confusion, using a robotic micromanipulation
system. The operation generated a clean cut with well-defined
length and position on one of the longer sides of the microtissues
(Figure 3b). The cut leaves two convex edges due to the disrup-
tion of collagen fibers at the surgery site. In the following hours,
the damaged contour gradually transformed into a smooth con-
cave edge, with a single curvature that was higher than that of the
opposing side of the tissue. The reconstruction process resulted
in a new equilibrium state after 16 hours (Figure 3c), which we
call post-surgery equilibrium. The geometrical dimensions are il-
lustrated in Figure 3.

We acquired stacks of images of fluorescently labeled microtis-
sues using confocal microscopy to quantify their 3D shape. The
cells cover all the space including the surfaces, therefore stain-
ing filamentous actin and nuclei were sufficient to capture the
overall shape. The high-throughput device provides almost iden-
tical boundary conditions for every tissue. However, the wells
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Width (µm) Thickness (µm)

Experiment Simulation Experiment Simulation

1 420 433 37 38

2 384 384 37 37

3 371 370 37 36

4 385 385 37 37

5 436 433 37 38

(a) pre-surgery equilibrium

Width (µm) Thickness (µm)

Experiment Simulation Experiment Simulation

1 293 312 38 37

2 224 244 40 40

3 196 208 44 45

4 218 244 41 40

5 295 312 38 37

(b) post-surgery equilibrium

Table 1 Measured and calculated values of the width and thickness of the microtissue shown in Figure 7 for the pre-surgery and post-surgery equilibrium
states
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Fig. 8 Finite element simulations of the normal components of the first Piola-Kirchhoff stress tensor for (a) the pre-surgery and (b) the post-surgery
equilibrium states. Top view (top) and sectional views (bottom) are presented for each state. Cross-sections are equally spaced by 100µm from the
center of the tissue.

are small enough to observe macroscopic differences in tissue
shape due to statistical deviations in the initial conditions such
as cell number, distribution of cells inside the gel, and gel compo-
sition. As a result, the cross-sectional area of the microtissues at
their equilibrium states varied by 10±2%. This variation is in ac-
cordance with published work on microtissues engineered using
similar devices.56,77 The cell-laden collagen gel compacted sig-
nificantly until reaching the equilibrium shape. The surface area
(width x length) of the tissues at the pre-surgery equilibrium state
was ≈ 25% of their reference state. Notably, out-of-plane defor-
mation was even higher reaching ≈ 90% in cross-sectional area
(thickness x width), reinforcing the necessity of 3D modelling.

The computational model is derived from an equilibrium the-
ory and therefore it cannot capture the transient states of the mor-
phogenetic process. The parameters were calibrated with respect
to the experimental measurements of a representative microtis-
sue at its pre-surgery equilibrium. Using these calibrated param-
eters, we validated our model by comparing simulation results

with the empirical data coming from post-surgery equilibrium
state of the same representative microtissue. Bulk and surface
contractile moduli, η and γ, drive the contractile response in the
simulations while no external mechanical force was applied to the
system. The only other forces acting on the tissue were the reac-
tion forces generated at the cantilevers, where frictionless contact
was assumed for the simulation. Therefore, when η and γ are set
to zero, the material is considered to be in a stress-free state, as
shown in Figure 4a(left) and b(left). In this undeformed state,
which corresponds to the reference state in the experiments, bulk
and surface free energy are equal to zero. For numerical stabil-
ity reasons, the values of η and γ were gradually increased from
zero to their prescribed values during the incremental nonlinear
analysis. When the contractile moduli η and γ reach their pre-
scribed values, the material is considered to be at an equilibrium
state Figure 4a(middle) and b(middle). Experimentally, this cor-
responds to the equilibrium state of the microtissues, shown in
Figure 4a(right) and b(right), respectively. To obtain the post-
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surgery equilibrium from the finite element simulation a cut has
to be introduced in the domain fig. 3b(left), which can be mapped
back to the undeformed state Figure 4b(left) in a straightforward
way that will be explained in Section 4.2.

4.1 Calibration of material properties

The parameters of the model are the bulk and shear moduli, κ and
µ, and bulk and surface contractile moduli, η and γ. Following
the literature36 we set the value of shear modulus at µ = 8 kPa.
There is a unique relationship between µ, κ, and Poisson’s ratio
ν , allowing to interchangeably use ν in place of κ for the cali-
bration procedure. We calibrated ν , η and γ through an error
analysis between the simulation and experimental results on the
pre-surgery equilibrium (Figure 5a) using the tissue dimensions
defined in Figure 3 as the metric.

We selected the set of parameters that minimized the error
for the length, width and thickness at the pre-surgery equilib-
rium, setting ν = 0.09 (κ = 7 kPa), η = 104.28 kPa and γ =

1.04 mN/mm. The corresponding Young’s modulus was calcu-
lated as E = 17.38 kPa, which is within the range of values re-
ported on similar experimental models of microtissues.41,78 We
performed a similar calibration on the 2D model of the micro-
tissue elsewhere.36 Notably, while the value of γ is close to the
reported one, η is an order of magnitude larger compared to the
results of the 2D calibration. As a matter of fact, active bulk con-
traction was the main driver for the out-of-plane tissue deforma-
tion as seen in Figure 5a. The large 3D compaction, that our
model captured, resulted in a ν value from the calibration proce-
dure that indicates compressibility of the collagen matrix higher
than previously assumed in computational models.41,78

Parameter values were validated through a second set of er-
ror analysis, this time taking the post-surgery equilibrium state as
the output. The results of the error analysis are presented in Fig-
ure 5b. We obtained a deviation less than 10% for all the tissue
dimensions. While the calibrated values of η and γ also minimize
the error, the calibrated value of ν did not provide optimal results
for the post-surgery equilibrium. We hypothesize that this devia-
tion is due to the changes in the local tissue composition during
the reconstruction process, since surgical manipulation creates a
new boundary around which cells can migrate and tow ECM com-
ponents.36

4.2 Recapitulating the surgical cut in the model

The length of the microsurgical cut at the pre-surgery equilib-
rium in Figure 3b(left) state must be projected to the reference
state to perform simulations of the post-surgery equilibrium re-
sponse. This projection resulted in a referential cut length of
Figure 4b(left) 450 µm, which is utilized to prescribe a cut in
the geometry discretized for the finite element simulation Fig-
ure 4b(middle). A series of simulations were performed for
the post-surgery equilibrium response at different reference cut
lengths to test the sensitivity of the results. As shown in Figure 6,
deviation curves in both length and width cross at a point near
450 µm, which is consistent with the initial calculation based on
the empirical data.

4.3 3D deformation and reconstruction

The proposed model recapitulates the extreme deformations of
3D microtissues in both pre-surgery and post-surgery equilib-
ria, as shown in Figure 7. Accurate predictions for the cross-
sectional shapes were obtained at all positions and in both equi-
librium states. A one-to-one quantitative comparison of the cross-
sectional dimensions are shown in Table 1. The highest discrep-
ancy was observed at the post-surgery equilibrium state in the
middle cross-sectional view (Figure 7b), as the experimental pro-
file is not symmetric about the x2 axis, which could be due an
asymmetric microsurgical cut.

The theoretical formulation predicts that the bulk and surface
contractile moduli lead to i) minimization of body volume and
ii) reduction of surface area and smoothing of features with high
curvatures, respectively. These deformations will be resisted by
the bulk passive elasticity. However, the geometrical constraints,
induce a conflict between the bulk contraction and surface effects
during the shape evolution. This occurs as bulk contraction cre-
ates four concave sides as seen in the top-view in fig. 7a(top), but
surface stresses oppose this trying to minimize curvature.

The model reports mechanical stresses throughout the tissues
at their equilibrium states, as shown in Figure 8. The in-plane
stresses calculated for the pre-surgery equilibrium state are qual-
itatively comparable with the predictions of analogous 2D mod-
els,36,41 including the alignment of the principal stress and the
generation of large gradients of intratissue stresses that originate
from the cantilevers. The relatively high compressive values of in-
plane normal stresses (P11 and P22 in Figure 8) correlate with ar-
eas of high cell density in Figure 7 (top), an observation that must
be quantitatively evaluated in the future. In-plane normal stresses
are more prominent around the cantilevers and in the periphery
of the tissue. These observations suggest that the elongated cells
at the tissue boundaries, which were shown to align along the
principal stretch direction, exhibit high contractility. The stress
redistribution in the post-surgery equilibrium state is intrinsically
coupled with the processes of forming a smooth continuous con-
cave edge. In the case where surface active elasticity was not
considered, the edges of the cut would remain sharp as shown in
our previous work.36 Significant stress redistribution is also ob-
served in the cross-sectional views along the x2x3 plane (P11 and
P33 in Figure 8) where a symmetric profile seen in the pre-surgery
equilibrium changes to an asymmetric shape at the post-surgery
equilibrium.

4.4 Mechanical response

We estimated the contractile force of 3D microtissues at the pre-
surgery equilibrium state by measuring the reaction forces on the
cantilevers using the same material parameters as described in
Section 4.1. The total reaction force on the four cantilevers were
calculated to be 18.4 µN, which is on the same order of magni-
tude as experimentally reported values.44,77,79,80 In these stud-
ies, the contractile forces were measured using cantilever deflec-
tion and linear beam theory, and the reported values were be-
tween 15 µN and 35 µN.

Unlike models that follow Hill’s contractility law or models pre-
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sented in81 and14, our model is based on an equilibrium the-
ory and does not consider the transient response with an explicit
dynamic reciprocity between cells and the surrounding ECM.
This inherent difference allows our model to directly capture the
steady state that results from the mechanosensing feedback loop.
The contributions of active bulk and surface contraction to the
potential energy in Eq. 11 are ηJ and γ Ĵ. These terms act to
minimize J and Ĵ, which represent the activity of the cells in the
bulk and on the surface, respectively. This activity counteracts the
tendency of the ECM, represented by the passive part of the bulk
free energy, to maintain the undeformed shape of the tissue (i.e.
J = 1 and Ĵ = 1). The equilibrium between the active and passive
terms represents the steady state that is a manifestation of the
mechanosensing feedback loop.

5 Conclusions

Building on our previous work,36 which demonstrated that the
active surface effects are essential for modeling the complex de-
formation patterns in 2D microtissue shaping and response to in-
jury, we presented a continuum-based model for 3D deformation
and reconstruction of fibrous tissues that implemented distinct
cell-ECM interactions in the bulk and on the surface of the mate-
rial. This model provides a theoretical and computational frame-
work in which the tissue-level mechanical response is governed
by a set of constitutive and governing equations. 3D simulation
results closely match the complex shape changes of microtissues
in response to surgical manipulation, an operation that resem-
bles fracture. The 3D model was calibrated against the afore-
mentioned experiments leading to a set of physically meaningful
parameters increasing the fidelity of the simulation results com-
pared to the less physically meaningful 2D approximation.

Our results show that the the combination of bulk and surface
contraction are sufficient for predicting the equilibrium shapes
for tissue formation and reconfiguration. Notably, quantification
of the material properties and reaction forces suggest that cells
display non-uniform contractile responses during the reconstruc-
tion process. Current calibration process is based on the initial
cell density and does not explicitly considers the spatial variation
of cells due to migration.

Active surface effects may arise from a number of microscopic
events that influence cell/ECM interactions, including cell migra-
tion, near-surface ECM remodeling, and changes in the cellu-
lar architecture due to geometry (e.g., stress fiber formation in
cells spreading on surfaces). The accuracy of our simulation re-
sults demonstrates that incorporating active surface effects in the
model is sufficient to capture the 3D tissue morphogenesis in our
in vitro model. The current version of the computational model
considers isotropic passive and active contributions, neglecting
the effect of fiber remodeling and ECM plasticity, topics that have
been extensively studied in the literature. The accuracy of our
predictions alludes to the fact that these processes may be sec-
ondary in the bulk shaping and reconstruction processes at the
given length scales, with "active" elastocapillary effects being the
dominating factor. Structural changes inside and around the tis-
sue may play an important role in the build up of the surface

stresses, an important question that will be explored in our future
work. Notably, surface effects are size dependent, thus, they are
expected to play a much lesser role at larger length scales.

It would be also interesting to extend the model to consider
changes in the initial cell density and adapt the functional forms
of the surface and bulk contractile moduli to react to changes
in cell density. The authors also plan to incorporate fiber re-
alignment and network reconfiguration/plasticity into the model.
Ultimately, we plan to model cell migration as a continuum field
by deriving a mechanosensitive cell kinetics law.
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