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Many-body interactions in systems of active matter can cause particles to move collectively and
self-organize into dynamic structures with long-range order. In cells, the self-assembly of cy-
toskeletal filaments is critical for cellular motility, structure, intracellular transport, and division.
Semiflexible cytoskeletal filaments driven by polymerization or motor-protein interactions on a
two-dimensional substrate, such as the cell cortex, can induce filament bending and curvature
leading to interesting collective behavior. For example, the bacterial cell-division filament FtsZ is
known to have intrinsic curvature that causes it to self-organize into rings and vortices, and recent
experiments reconstituting the collective motion of microtubules driven by motor proteins on a
surface have observed chiral symmetry breaking of the collective behavior due to motor-induced
curvature of the filaments. Previous work on the self-organization of driven filament systems have
not studied the effects of curvature and filament structure on collective behavior. In this work,
we present Brownian dynamics simulation results of driven semiflexible filaments with intrinsic
curvature and investigate how the interplay between filament rigidity and radius of curvature can
tune the self-organization behavior in homochiral systems and heterochiral mixtures. We find a
curvature-induced reorganization from polar flocks to self-sorted chiral clusters, which is modified
by filament flexibility. This transition changes filament transport from ballistic to diffusive at long
timescales.

1 Introduction
Active matter systems with particles that are driven can self-
organize into structures that exhibit emergent dynamical order
on length scales many times greater than the scale of a single
particle. In cells, the dynamic self-assembly of cytoskeletal fila-
ments driven by polymerization, motor proteins, and crosslink-
ers is necessary for the production of macromolecular assemblies,
such as the mitotic spindle1–4. Most previous theoretical studies
of cytoskeletal self-assembly have assumed rigid and straight fil-
aments, but recent experiments have identified self-organization
behavior due to filament curvature. Experiments reconstituted
collective self-assembly by driving filaments on a surface with
bound motor proteins5–11. Microtubules can undergo chiral sym-
metry breaking due to induced curvature mediated by motors,
causing the filaments to self-organize into a dynamic lattice of
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vortices9, or rotating polar streams11. In addition, in vivo ob-
servations of the bacterial cytoskeletal filament FtsZ found that
intrinsic curvature led to the formation of dynamic bundles of
curved rings and vortices12,13. These findings motivate further
study of the collective behavior of driven filaments with curva-
ture.

Previous theoretical studies of active systems with chirality
have also taken their inspiration from biological systems. Swim-
ming sperm cells14,15, confined bacteria16,17, and E. coli swim-
ming near a solid interface18,19 all exhibit chiral behavior. Brow-
nian dynamics simulations have been used to predict the collec-
tive behavior of chiral microswimmers, and found phase separa-
tion of particles into spatially-segregated clusters20–23, activity-
induced chiral self-sorting of heterochiral mixtures24,25, demix-
ing of differently-shaped particles26, and stable vortex arrays of
circle swimmers27,28. There have, however, been few theoretical
studies of active curved filaments. Previous work includes simu-
lations of FtsZ filaments with varying particle density and noise
strength29, and passive filaments in the presence of a swirling
flow30. FtsZ, microtubules, and f-actin each have different stiff-
ness and intrinsic or induced curvature. Therefore, this work fo-
cuses on self-organization of driven curved filaments over a range
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Fig. 1 Schematic of the model and forces acting on filaments. Filaments
are discretized wormlike chains composed of multiple rigid segments.
Filaments are subject to driving forces Fdr, a bending force Fbend, in-
teraction forces Fint, a tension force Ftension, and random forces Frand.
The polar driving forces are tangent to all filament segments and control
system activity. The bending force maintains an intrinsic curvature with
equilibrium angle φ0 between filament segments. The interaction forces
model steric repulsion between filaments. The tension force maintains
the rigid segment length constraints. The random thermal forces give
rise to Brownian motion of the filament.

of bending rigidity and radius of curvature.
In this work, we present results of Brownian dynamics simu-

lations of active semiflexible filaments. We study both homochi-
ral and heterochiral systems and vary filament bending rigidity,
radius of curvature, packing fraction, and aspect ratio. The col-
lective behavior depends strongly on filament flexibility and cur-
vature: as the curvature increases, there is a dramatic reorga-
nization of the phase behavior from polar flocking to self-sorted
chiral clusters. However, the transition is weakened or lost if the
filaments are too flexible.

2 Model and simulation
Our Brownian dynamics simulations are two-dimensional with
periodic boundary conditions of N filaments with intrinsic cur-
vature. Following previous work31,32, the filaments in our simu-
lations are modeled as discretized wormlike chains33 composed
of n sites and n−1 rigid segments of fixed length a. We adopt the
algorithm of Montesi et. al34 for constrained Brownian dynamics
of bead-rod wormlike chains. The n site positions are updated
according to inertialess Langevin equation

ṙi = ζ
−1
i Fi, (1)

where ζ is an anisotropic friction tensor with parallel and perpen-
dicular components ζ⊥ = 2ζ‖, and site forces

Fi = Fdr
i +Fbend

i +Fint
i +Ftension

i +Frand
i , (2)

include driving forces Fdr, bending forces Fbend, filament-filament
interaction forces Fint, tension forces Ftension, and random ther-
mal forces Frand (Fig. 1).

Filament activity is induced by a polar driving force per unit

length fdr acting tangent to each of the filament segments, Fdr
i =

a fdrui. The activity of the system is measured by the Péclet num-
ber, the ratio of active to diffusive transport. For straight and
rigid filaments, the characteristic timescale for active transport is
the time required for the filament moving at velocity v to traverse
a distance equal its own length L, τA = L/v = ζ‖L/Fdr. The time
for a filament to diffuse its own length is τD = L2/D‖ = ζ‖L2/kBT ;
thus the Péclet number is Pe = τD/τA = fdrL2/kBT . In the case of
curved filaments, the mean-squared displacement and therefore
the effective active transport can differ, as discussed later. We con-
tinue to use this definition of the Péclet number for consistency.

Filament bending forces are derived from the bending poten-
tial of a continuous wormlike chain κ

2
∫ L

0 (R
−1(s)−R−1

0 )2 ds, where
R(s) is the local radius of curvature with respect to the contour
length s for a length L filament, and R0 is a radius of curva-
ture that corresponds to an intrinsic curvature per unit length
R−1

0 = dφ/ds. The persistence length of the filament is related to
the bending rigidity as LpkBT = κ. In a discrete wormlike chain
model, the bending potential is

Ubend =−κ

a

n−1

∑
i=2

cos(θi,i−1−φ0), (3)

where θi, j = arccos(ui ·u j) is the angle between segments i and
j, and φ0 = adφ/ds corresponds to the expected angle between
two segments of length a and intrinsic curvature per unit length
dφ/ds.

Steric repulsion between filaments Fint is modeled by a Weeks-
Chandler-Andersen (WCA) potential,

UWCA =
(

4ε
(
(

σ

ri j
)12− (

σ

ri j
)6)+ ε

)(
1−Θ(21/6

σ)
)
, (4)

where ri j is the minimum distance between two filaments, σ is
the filament diameter, ε = kBT is the energy scale and Θ is the
Heaviside step function.

To model the wormlike chain as an inextensibile filament with
rigid bonds, the model is subject to constraints for the segment
length |ri−ri−1|= a. A tension force is necessary to prevent exter-
nal forces from violating the constraints, restricting the dynamics
of the N filament sites to a constrained subspace35.

The random forces Frand applied to each site are due to thermal
contact with a heat bath at temperature T . The components of the
random forces F(k)

rand are delta-correlated random variables with

mean 〈F(k)
rand(t)〉= 0 and variance 〈F(k)

rand(t)F
(k)
rand(t

′)〉= 2kBT ζ δ (t−
t ′) as dictated by the fluctuation-dissipation theorem. The random
forces are then geometrically projected to prevent violation of the
segment length constraints (see ESI†).

The characteristic length and energy scales in our simulation
are the filament diameter σ and kBT . We use dimensionless
units: the dimensionless lengths for our system are the aspect ra-
tio L̃ = L/σ , the bending rigidity κ̃ = κ/LkBT = Lp/L, and radius
of curvature R̃ = R/L. The packing fraction φ = Afil/Asys, where
Afil is the combined area of all N filaments and Asys is the periodic
area of the system. In our simulations, we vary the bending rigid-
ity from κ̃ = 10–1000 and the radius of curvature from R̃ = 0.25–2,
as well as straight filaments with R̃ = ∞. We also examine two fil-
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Fig. 2 Simulation images depicting the collective behavior for heterochiral filaments of L̃ = 20 and φ = 0.25 for different values of filament stiffness κ̃

and radius of curvature R̃. The filaments are colored according to their orientation in the case of R̃ = ∞ and according to their handedness otherwise,
with orange and blue labeling curved filaments with right- and left-handed chirality respectively.

ament densities φ = 0.25 and 0.5, two aspect ratios L̃ = 10 and
20, and both homochiral systems and 1:1 heterochiral mixtures.
Simulations were run for 103−104τA. Further discussion of com-
putational details is available in the ESI†.

3 Results
3.1 Formation of chiral clusters

Driven curved filaments undergo a dramatic reorganization from
polar flocks to chiral clusters, induced by filament curvature and
tuned by filament flexibility (see Fig. 2). Driven achiral filaments
(R̃ = ∞) form polar flocks or a swirling phase depending on fil-
ament rigidity and density. Chiral filaments with large radius of
curvature (R̃ = 2) form flocks of bent heterochiral filaments, lead-
ing to curved flock trajectories and buckling at higher densities.
At low radius of curvature (R̃ < 1), there is a transition from po-
lar heterochiral flocks to self-sorted homochiral clusters. Filament
flexibility delays the onset of chiral clustering as the radius of cur-
vature decreases.

In the absence of curvature, achiral driven filaments aggre-
gate into well-known polar flocks32,36–41, with structural order
that is dependent on filament bending rigidity, as shown in pre-
vious work32,42. Driven flexible filaments can form an active dis-
ordered phase of swirling defects17,43,44. Chiral filaments with
large radius of curvature (R̃ = 2) can form heterochiral flocks
composed of filaments with mixed handedness that are stable due
to the deformability of the filaments.

With decreasing radius of curvature, the system undergoes a
curvature-induced transition from polar flocks to chiral clusters.
The lower radius of curvature increases the bending energy re-
quired to deform filaments into stable heterochiral flocks, so ac-
tivity drives filaments into spatially-segregated domains of high

filament density (see Fig. 2, κ̃ = 100, R̃ = 0.5). Filaments of oppo-
site handedness are rarely colocalized due to frequent collisions
and fast decorrelation of their trajectories. Chiral self-sorting has
been reported in previous studies of active chiral systems with
spinning rotors24,45 and Vicsek-type models of chiral microswim-
mers25, where self-sorting occurs at a macroscopic scale. In our
model, steric repulsion between filaments and curved filament
shape cause filaments to self-organize into a disordered lattice of
self-sorted chiral vortices. Filament flexibility delays the onset of
the transition to chiral clusters because it allows greater deforma-
tion away from the preferred curvature. Filament bending rigidity
therefore tunes the long-range structural order of driven achiral
filaments and the self-sorting behavior of active curved filaments.

In the flocking phase, rigid filaments form giant flocking do-
mains that dominate the structure of the system, leading to strong
nematic alignment. Flexible filaments form coexisting flocks with
a distribution of sizes. The flocks are dynamic structures, with fil-
aments continuously joining and leaving the flocks, though giant
flocks are more stable and long-lived due to a large number of
kinetically-trapped filaments at the flock interior40,46–48. When
the radius of curvature is large, curved filaments of mixed hand-
edness can form heterochiral flocks due to the finite rigidity of
the filaments. Comoving filaments with opposite chirality deform
into internally jammed polar flocks. Filaments in the flock interior
have low curvature while deformed, and therefore stay aligned to
maintain stable giant flocks or nematic bands (see Fig. 2, κ̃ = 100,
R̃ = 2). However, more rigid filaments tend to form packed layers
(see Fig. 2, κ̃ = 1000, R̃ = 2) reminiscent of smectic liquid crys-
tals48–50. This packing reduces interweaving between filament
layers, and thereby decreases the stability of large flocks, even in
entirely homochiral systems (see ESI†). Therefore, filament cur-

Journal Name, [year], [vol.], 1–7 | 3

Page 3 of 7 Soft Matter



Fig. 3 A) Simulation images of collective behavior for different filament radius of curvature, with L̃ = 20, φ = 0.25, and κ̃ = 1000. B) Radial distribution
function g(r) for filaments corresponding to the simulation images in A. The distribution function is plotted as the total distribution between all filaments
(red), between homochiral filaments (blue), and between heterochiral filaments (orange). r is measured in units of the filament diameter, σ . C) Chiral
order parameter χ±(r) for homochiral (blue) and heterochiral (orange) filaments. The corresponding chiral sorting parameter ∆χ is included in the
bottom right of the figures. D) Domain radius rD versus R̃ plotted for L̃ = 20, φ = 0.25. E) Chiral sorting parameter ∆χ versus R̃ for L̃ = 20, φ = 0.25.

vature causes rigid filaments to have lower long-range structural
order than flexible filaments, a reversal of what has been previ-
ously reported for achiral semiflexible filament behavior32,42.

3.2 Chiral self-sorting

To better understand how filament curvature and bending rigid-
ity affect the self-organization of chiral clusters, we quantified the
structure and sorting in our systems by measuring the radial dis-
tribution function. The radial distribution function g(r) is defined
for a 2D system with particle density ρ such that 〈2πrdr〉ρg(r)
is the number of particles in a circular annulus of width dr at a
distance r from a reference particle, averaged over the particle
ensemble:

g(r) =
2π

Nρ

N

∑
i=1

∫ r+dr′

r
∑
j 6=i

δ
(
r′− (rj− ri)

)
r′ dr′, (5)

where δ (x) is the Dirac delta function. The radial distribution
functions for homochiral and heterochiral particles, g+(r) and
g−(r), were also calculated by adding the factor δ±χiχ j in the sec-
ond sum in Eqn. 5, where δi j is the Kronecker delta function and
χ =±1 for right- and left-handed chiral particles, respectively.

Activity drives an increase in local particle density due to flock-
ing and clustering behavior, indicated by a peak in g(r) for r ≈ σ

(Fig. 3B). In the chiral cluster phase, the peak is largely composed
of homochiral filaments due to chiral sorting. The local density
of heterochiral particles is suppressed below a length scale that
specifies the sorted domain size, which depends on the radius of
curvature and flexibility.

To quantify chiral sorting, we define a chiral structural or-

der parameter χ±(r) = g±(r)/g(r) that measures the average
homo/heterochiral sorting as function of distance r from a ref-
erence particle. For a sorted system, χ+(r) is strictly greater than
χ−(r) for r < rD, where rD is the sorted domain radius, defined
to be the first point at which χ+(r) = χ−(r). The extent of chi-
ral sorting within the domain is given by the chiral sorting order
parameter

∆χ =

∫ rD
0
(
g+(r)−g−(r)

)
r dr∫ rD

0 g(r)r dr
, (6)

which is the fraction of homochiral particles within the sorted
domain, and varies from 0–1 due to the definition of rD. Thus rD

measures the typical size of sorted domains and ∆χ the degree of
sorting within a domain.

The domain radius rD is largest near the transition between het-
erochiral flocking behavior and chiral self-sorting due to the large
R̃ of filaments within the sorted cluster. rD typically decreases
as R̃ decreases, as one would expect due to filament trajectories
following smaller circular paths (Fig. 3D). Interestingly, the de-
gree of chiral sorting increases with decreasing R̃ (Fig. 3E). This
is due to smaller domains having more efficient packing within
the system, and therefore fewer collisions between clusters result
in fewer opportunities for filaments to intermix between sorted
domains. Filament flexibility weakens chiral sorting due to fil-
ament deformation, consistent with our observations that flexi-
bility weakens structural order in systems of driven filaments32.
Flexible filaments collide and form heterochiral flocks, which per-
turb chiral clusters with collisions, increasing mixing. In addi-
tion, the transition between phases of heterochiral flocking and
chiral clusters is sharper for rigid filaments, whereas flexible fil-
aments exhibit coexistence between the two states, and only be-
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Fig. 4 Top: simulation images of filament clusters for different filament
radius of curvature. Clusters are labeled by color. Unclustered filaments
are shown in white. Bottom left: time-averaged cluster filament fraction
〈F〉, which is the average number of filaments per cluster normalized by
the number of filaments in the simulation, and plotted as a function of fila-
ment radius of curvature. Bottom right: mean cluster radius of curvature
〈R̃〉 as a function of filament radius of curvature R̃.

come sorted at the smallest radius of curvature examined here.

3.3 Cluster dynamics and filament transport
To better understand the dynamical behavior of filament clusters,
we developed a method to identify clustered filaments. Filaments
were clustered by their centers of curvature rc(t), determined
from the filaments’ instantaneous radius of curvature R(t) aver-
aged over the contour length of the filament (Fig. 4). Cluster
positions are the average of their constituent filament centers of
curvature, rC(t) = 1

n ∑
n
i r(i)c (t), and the cluster radius is defined

to be the average of the constituent filament radius of curvature
Rc(t) = 1

n ∑
n
i Ri(t). Unclustered filaments can join an existing clus-

ter when |r(i)c (t)−rC(t)| ≤Rc(t) for a time interval of τA (see ESI†).
The mean cluster radius 〈R̃〉 decreases with radius of curvature

as expected. The mean number of filaments in an average cluster
also decreases with cluster size, since steric effects put an upper
limit on the filament density within small clustered domains. Fil-
ament number is reported as a fraction of filaments in the system
per cluster on average 〈F〉, with brackets 〈...〉 denoting a time and
ensemble average. Only clusters with lifetimes longer than τA are
considered in our analysis to ensure a low false discovery rate.

The circular motion of clustered filaments drastically alters
the transport of filaments compared to the ballistic motion of
flocks, and we find that clusters of different sizes have differ-
ent transport behavior. The transport of filaments is measured
by the mean-squared displacement (MSD) 〈

(
r(t)− r(0)

)2〉. At
short times, the MSD for clustered filaments is subdiffusive, and
approaches the diffusive regime at late times (Fig. 5). We ex-
tracted a diffusion constant from the MSD using the relationship
〈
(
r(t)− r(0)

)2〉 ∝ Dtα with α = 1 indicating diffusive transport,
and superdiffusive and subdiffusive transport being indicated for
α > 1 and α < 1 respectively. The activity of curved filaments
leads to circular trajectories and subdiffusive transport at short
timescales, and diffusive dynamics at long timescales as filaments
are able to escape the confinement of their clusters.

The MSD of individual active filaments is superdiffusive for
achiral filaments, and diffusive at long timescales for curved fila-
ments (see ESI†). This result is analogous to previous studies of
diffusive behavior for circle swimmers51,52, where particle torque
plays a similar role as filament curvature. In collective systems,
curved and achiral filaments that form flocks (R̃ > 1) have su-
perdiffusive transport due to the ballistic motion of flocks. Curved
filaments that form clusters are subdiffusive at short times, with a
rotational periodicity of the MSD that dampens over time, while
their long-time behavior is diffusive. When the radius of curva-
ture is small (R̃ ≤ 0.5), the filaments become entangled with a
small number of particles47 and are kinetically trapped for long
times, causing infrequent intermixing of filaments between clus-
ters and increasing cluster stability and lifetime. Comparing the
clustering structure and dynamics for homochiral and heterochi-
ral systems, we did not find significant deviations in clustering
behavior for the range of parameters examined here (see ESI†).

Even at late times, the diffusivity of active filaments is lower
than that of passive filaments, indicating that activity leads to an
effective freezing of the system dynamics53. Flexible filaments
with R̃ = 0.25 remain subdiffusive even at long times, likely due
to the filaments self-interacting and coiling into spirals (see ESI†),
which alters the filament MSD compared to clusters of more rigid
filaments. The formation of spirals by driven filaments due to
self-interactions have been observed in experiments, even for stiff
microtubules7,8.

4 Conclusions

The patterns of clusters in our simulations are similar to those of
previous experiments that observed the formation of a lattice of
vortices7,9. In our simulations, the size and stability of the vor-
tices vary depending on filament curvature and bending rigidity,
and are chirally self-sorted for systems of heterochiral filaments.
Unlike previous work with active spinning rotors24,45 or active
Brownian particles with Vicsek-type alignment interactions20,25,
we do not see evidence of macroscopic sorting of clusters into
large homochiral domains. Our analysis of the arrangement of
the clusters found that the arrangement did not vary significantly
from random (see ESI†), implying that chiral self-sorting of ac-
tive curved filaments only occurs at length scales on the order
of the filament radius of curvature. This is because the cluster
shapes examined here are approximately convex and experience
low friction between neighboring domains of opposite chirality.
Together with the slow dynamics of filaments with small radius
of curvature, macroscopic sorting is unfavorable in these systems.

The results of our Brownian dynamics simulations show that
the self-organization of driven semiflexible filaments can undergo
a transition between polar flocks and chiral clusters that is tuned
by filament curvature and bending rigidity. Our model predicts
the collective behavior of future filament gliding experiments for
filaments of different persistence lengths that may have intrin-
sic or induced curvature, and may also have applications for the
study of transport behavior for self-assembled curved biopolymers
such as FtsZ.
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Fig. 5 Left: mean-squared displacement (MSD) for active filaments of length L̃ = 10, filament density φ = 0.25, and stiffness κ̃ = 1000 for different
values of radius of curvature. The time axis t is measured in units of τA. The average MSD is subdiffusive at short timescales and becomes diffusive at
longer timescales. Center: Effective diffusion constants Dactive extracted from the final 20τA of accessible simulation time assuming linear time scaling.
The effective diffusion constant is normalized by diffusion constant of inactive filaments D0 for otherwise identical simulation parameters (see ESI†).
Right: time scaling exponent α extracted from the late-time MSD used to calculated Dactive. The transport of filaments that form smaller flocks and
clusters approach diffusive transport at late times, while the ballistic motion of giant flocks produces superdiffusive behavior (α > 1).
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