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Contact network changes in ordered and disordered disk packings
Philip J. Tuckman,a Kyle VanderWerf,a Ye Yuan,bc Shiyun Zhang,cd Jerry Zhang,c Mark D.
Shattuck,e and Corey S. O’Hernac f g

We investigate the mechanical response of packings of purely repulsive, frictionless disks to qua-
sistatic deformations. The deformations include simple shear strain at constant packing fraction
and at constant pressure, “polydispersity” strain (in which we change the particle size distribution)
at constant packing fraction and at constant pressure, and isotropic compression. For each defor-
mation, we show that there are two classes of changes in the interparticle contact networks: jump
changes and point changes. Jump changes occur when a contact network becomes mechanically
unstable, particles “rearrange”, and the potential energy (when the strain is applied at constant
packing fraction) or enthalpy (when the strain is applied at constant pressure) and all derivatives
are discontinuous. During point changes, a single contact is either added to or removed from the
contact network. For repulsive linear spring interactions, second- and higher-order derivatives of the
potential energy/enthalpy are discontinuous at a point change, while for Hertzian interactions, third-
and higher-order derivatives of the potential energy/enthalpy are discontinuous. We illustrate the
importance of point changes by studying the transition from a hexagonal crystal to a disordered
crystal induced by applying polydispersity strain. During this transition, the system only undergoes
point changes, with no jump changes. We emphasize that one must understand point changes, as
well as jump changes, to predict the mechanical properties of jammed packings.

1 Introduction
Granular materials, which are composed of macroscopic grains
that interact via frictional contact forces, are ubiquitous in the
natural world and industrial applications. Unless they are con-
tinuously driven, granular materials will come to rest and, when
confined, they exist in jammed, solid-like states1. The mechanical
response of jammed granular materials is highly nonlinear, which
gives rise to shear jamming2, intermittency and avalanches3,4,
shear banding5,6, and other collective behavior7.

Numerous theoretical and computational studies have focused
on simplified descriptions of dry granular media, where they are
modeled as packings of frictionless, purely repulsive spherical
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grains8,9. These studies have provided significant insights into
the jamming transition in packings of frictionless, spherical par-
ticles. Disordered packings of frictionless spherical particles are
typically isostatic at jamming onset10, i.e. they possess the same
number of interparticle contacts Nc as the number of non-trivial
degrees of freedom: Nc = Niso

c , where Niso
c = dN− d + 1 (for sys-

tems with periodic boundary conditions), N is the number of
(non-rattler11) grains, and d = 2, 3 is the spatial dimension. Or-
dered or compressed jammed packings can be hyperstatic with
Nc ≥ Niso

c
12. Each jammed packing exists in a local energy min-

imum in configuration space, and therefore possesses a perco-
lating network of non-zero interparticle forces and nonzero bulk
and shear moduli. In contrast, packings with fewer contacts than
the isostatic value, Nc < Niso

c , are unjammed and all interparti-
cle forces are zero13. Several studies have shown that isostatic
jammed packings possess unique structural and mechanical prop-
erties, such as an excess number of low-frequency vibrational
modes above the Debye prediction for the density of states14,15

and the power-law scaling of the shear modulus with increasing
pressure16.

In prior studies, we considered jammed packings of friction-
less, spherical particles undergoing quasistatic deformation (i.e.
steps of applied simple or pure shear strain with each step fol-
lowed by energy minimization)17. During quasistatic deforma-
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tion, grains in the packings undergo continuous motions along
"geometric families", in which the network of interparticle con-
tacts does not change18,19. The continuous geometric families are
punctuated by particle rearrangements, which cause the contact
networks to change. Such rearrangements determine the struc-
tural and mechanical properties of jammed packings. For exam-
ple, particle rearrangements control the power-law scaling of the
ensemble-averaged shear modulus as a function of pressure dur-
ing isotropic compression20. Prior studies of sheared particulate
materials have shown that there are two types of changes in the
contact networks21. We refer to these contact network changes
as 1) jump changes and 2) point changes. These previous studies
also found that the relative frequency of jump and point changes
is roughly constant with increasing system size.

In this work, we further investigate jump and point changes
in the contact network and show that these two types of con-
tact network changes occur during a wide range of quasistatic
deformations in model granular materials. We carry out discrete
element method simulations of purely repulsive, frictionless disks
in 2D, focusing on several types of quasistatic deformations: sim-
ple shear strain, changes in the size polydispersity of the grains,
and isotropic compression. For jump changes, jammed packings
become mechanically unstable during quasistatic deformation22,
the particles rearrange, and as a result, the total energy, pressure,
shear stress, and other thermodynamic quantities are discontinu-
ous at the strain where the particle rearrangement occurs23. At a
point change, a contact is added or removed from the interparticle
contact network at a given strain, but the particles do not move
significantly. The positions of the particles are continuous with
strain, but the derivatives of the particle positions with respect to
strain are discontinuous. As a result, for point changes, the po-
tential energy (in the case of strain applied at fixed packing frac-
tion) or enthalpy (in the case of strain applied at fixed pressure)
and their first derivatives are continuous as a function of strain24.
For repulsive linear spring interactions, second- and higher-order
derivatives of the potential energy/enthalpy are discontinuous at
a point change, while for Hertzian interactions, third- and higher-
order derivatives of the potential energy/enthalpy are discontin-
uous. We illustrate the importance of point changes by starting
with a perfectly ordered jammed disk packing, adding small in-
crements of size polydisperity to the system, and minimizing the
potential energy (at fixed packing fraction) or enthalpy (at fixed
pressure). This system undergoes a series of point changes as it
proceeds from a hyperstatic toward an isostatic state25,26.

The remainder of the article is organized as follows. In Sec. 2,
we describe the numerical methods that we use to generate disk
packings at jamming onset and that we use to deform the jammed
packings. In Sec. 3, we show results for the coordination number
(z = 2Nc/N), total potential energy, shear stress, pressure, and
other thermodynamic properties of jammed packings as a func-
tion of strain for each type of deformation, which allows us to
illustrate point and jump changes. These studies are performed
for both ordered packings of monodisperse disks and disordered
packings of polydisperse disks. In Sec. 4, we summarize the con-
clusions and provide several possible future research directions
including determining how point and jump changes separately

contribute to the power-law scaling of the shear modulus with
pressure during isotropic compression and investigating the ef-
fects of point changes in disk packings that interact via repulsive
Hertzian spring interactions27 and in jammed systems containing
frictional and non-spherical particles.

2 Methods
We consider packings of N circular disks in rectangular cells with
area A = LxLy and periodic boundary conditions in both the x-
and y-directions. We study packings of monodisperse disks, for
which there is significant positional order, as well as disordered
packings of polydisperse disks. The monodisperse disk packings
possess jammed packing fractions near the value for the hexago-
nal lattice, φx = 0.907, whereas the disordered polydisperse disk
packings possess jammed packing fractions φJ ≈ 0.81-0.84.

The disks interact via the following purely repulsive pair poten-
tial:

U(ri j) =
ε

α

(
1−

ri j

σi j

)α

Θ

(
1−

ri j

σi j

)
, (1)

where ε is the characteristic energy scale of the repulsive interac-
tion potential, the exponent of the interaction potential α = 2 for
repulsive linear springs and α = 5/2 for "Hertzian" springs, ri j is
the center-to-center distance between disks i and j, r̂i j =~ri j/ri j,
σi j = (σi +σ j)/2 is the average diameter of disks i and j, and the
Heaviside function Θ(·) ensures that the interaction is nonzero
only when the disks overlap (ri j < σi j). The total potential en-
ergy is given by U = ∑

N
i=1 ∑

N
j>i U(ri j). The repulsive force on

disk i, arising from an overlap with disk j, is ~F(ri j) = ~∇ri jU =

ε

σi j

(
1− ri j

σi j

)α−1
Θ

(
1− ri j

σi j

)
r̂i j. Studies have shown that disks in-

teracting via the purely repulsive potential in Eq. 1 recapitulate
the structural and mechanical properties of hard-sphere systems
near jamming onset28.

Note that the Hertzian theory for the force between two con-
tacting elastic spherical particles depends on the spatial dimen-
sion. The theory gives an exponent of α = 5/2 for the interaction
energy between two elastic spheres in 3D and an exponent of
α = 2 for the interaction between two parallel cylinders29, which
can mimic interactions between elastic disks in 2D. Thus, for-
mally, “Hertzian” interactions between elastic disks should con-
sider α = 2 in 2D, not α = 5/2. However, our goal was to inves-
tigate the effect of variations of the power-law exponent in Eq. 1
on contact changes. Thus, we study both α = 2 and 5/2 for disk
packings in 2D, and refer to the 5/2 exponent as the “Hertzian"
value since this is value of the exponent in 3D8.

To generate jammed packings, we first randomly place N disks
in the simulation cell at small packing fraction φ0 ≈ 0.1. We set
the particle diameters to be σi = 〈σ〉+ηδi, where −0.5≤ δi/〈σ〉 ≤
0.5 is uniformly distributed, 〈δi〉 = 0, η〈σ〉/

√
12 is the standard

deviation of the disk diameters, and 〈σ〉= N−1
∑

N
i=1 σi defines the

average diameter. For disordered packings, we employ a square
box, whereas for crystalline packings, we employ a rectangular
box with aspect ratio

√
3/2, which allows a hexagonal packing of

contacting disks to fit in the simulation cell without any defects.
We isotropically compress the system in small packing fraction
steps, ∆φ , until the system develops a small nonzero pressure,
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p = A−1
∑

N
i=1 ∑

N
j>i

~fi j ·~ri j > 0. After each compression step, the
total potential energy is minimized using the FIRE algorithm30

until the magnitude of the total net force on the disks, ∑
N
i=1 |~fi|<

10−14. We study the coordination number, total potential energy,
pressure, shear stress, and elastic moduli in jammed packings as
a function of the packing fraction and strain. We measure energy,
stress, and force in units of ε, ε/〈σ〉2, and ε/〈σ〉, respectively.

To understand the effects of jump and point changes in the in-
terparticle contact networks, we consider jammed disk packings
undergoing several types of quasistatic deformations: 1) simple
shear at constant packing fraction, 2) simple shear at constant
pressure, 3) increments of increasing size polydispersity at con-
stant packing fraction, 4) increments of increasing size polydis-
persity at constant pressure, and 5) isotropic compression.

2.1 Simple shear strain at fixed packing fraction

For simple shear deformations, the particle positions are trans-
formed to (x′i,y

′
i) = (x0

i + γLxy0
i /Ly,y0

i ) consistent with Lees-
Edwards boundary conditions, where (x0

i ,y
0
i ) are the initial par-

ticle positions. After each simple shear strain step γ, we minimize
the total potential energy at constant packing fraction until the
system is in force balance, such that ∑

N
i=1 |~fi|< 10−14.

During the simple shear strain deformation, we calculate sev-
eral quantities as a function of γ including the shear stress,

Σγ =−
1
A

dU
dγ

=− 1
L2

y

N

∑
i=1

N

∑
j>i

Fyi jxi j, (2)

which becomes

Σγ =
ε

L2
y

N

∑
i=1

N

∑
j>i

xi jyi j

ri jσi j

(
1−

ri j

σi j

)
Θ

(
1−

ri j

σi j

)
(3)

for repulsive linear spring interactions (α = 2 in Eq.1) (where
yi j = yi−y j, xi j = xi−x j, and dxi j/dγ = yi jLx/Ly)31, and the shear
modulus,

Gγ ≡−
dΣγ

dγ
. (4)

The shear modulus can be decomposed into the affine and non-
affine contributions32, Gγ = Ga

γ +Gna
γ , respectively. To calculate

Ga
γ , we assume that all particles move according to the affine de-

formation, (x′i,y
′
i) = (x0

i +γLxy0
i /Ly,y0

i ). Gna
γ includes the nonaffine

particle motion in response to potential energy minimization at
fixed packing fraction and boundary strain. For repulsive linear
spring interactions (α = 2 in Eq.1), the affine contribution to the
shear modulus can be calculated analytically,

Ga
γ = ε

Lx

L3
y

N

∑
i=1

N

∑
j>i

(
x2

i jy
2
i j

σi jr3
i j
−

y2
i j

σi jri j

(
1−

ri j

σi j

))
Θ

(
1−

ri j

σi j

)
. (5)

We monitor U , Σγ , Gγ , and Ga
γ before and after jump and point

changes during the applied simple shear strain.

2.2 Simple shear strain at fixed pressure

We also apply quasistatic simple shear strain as described in
Sec. 2.1, except at constant pressure. At each strain incre-
ment, we set the target pressure pt and minimize the enthalpy,

H = U + ptA. After each strain step, we terminate the minimiza-
tion when ∑

N
i=1 |~∇~ri,Lx H| < 10−13. Minimizing the enthalpy en-

sures that we can maintain constant pressure pt as the system is
strained. At each strain step, we measure the enthalpy and its
derivative dH/dγ with respect to shear strain, and monitor jump
and point changes in the interparticle contact network.

2.3 Polydispersity strain at fixed packing fraction

In this section, we describe simulations in which we start the sys-
tem with monodisperse (η = 0) or polydisperse disks (η〈σ〉 =
0.08), and increase η in small steps ∆η ∼ 10−5 to increase the
polydispersity of the disks. After each increment, ∆η , we reset
the packing fraction to its desired value and minimize the total
potential energy at constant packing fraction. We measure the
"polydispersity stress" as a function of η ,

Ση =− 1
A

dU
dη

, (6)

which becomes

Ση =− ε

LxLy

N

∑
i=1

N

∑
j>i

(
1− r

σi j

)
ri j

σ2
i j

δi +δ j

2
Θ

(
1−

ri j

σi j

)
, (7)

for the repulsive linear spring potential, and the associated elastic
modulus,

Gη =−
dΣη

dη
. (8)

As discussed for applied simple shear strain, Gη can also be
decomposed into the affine and nonaffine contributions: Gη =

Ga
η +Gna

η . For repulsive linear spring interactions, the affine con-
tribution can be calculated analytically, which becomes

Ga
η = ε

N

∑
i=1

N

∑
j>i

(
δi +δ j

2

)2 ri j

σ3
i j

(
3

ri j

σi j
−2
)

Θ

(
1−

ri j

σi j

)
. (9)

We measure U , Ση , Gη , and Ga
η as a function of η and identify

jump and point changes in the interparticle contact network.

2.4 Polydispersity strain at fixed pressure

To increase the polydispersity at fixed pressure, we take small
steps in η and minimize the enthalpy after each step until
∑

N
i=1 |~∇~ri,Lx H|< 10−13. During the applied strain, we measure the

enthalpy, its derivative dH/dη , and changes in the interparticle
contact network.

2.5 Isotropic compression

We also study the response of jammed packings to isotropic com-
pression. We compress the system by decreasing the box size in
both dimensions by −2∆L/L = ∆φ/φ . At the same time, we trans-
form the particle coordinates by x′i = x0

i ∆L/L and y′i = y0
i ∆L/L. Af-

ter each compression step, we minimize the total potential energy
until force balance is achieved. We measure the pressure,

p =−dU
dA

, (10)
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which becomes

p =
ε

2A

N

∑
i=1

N

∑
j>i

(
1−

ri j

σi j

)
ri j

σi j
Θ

(
1−

ri j

σi j

)
(11)

for repulsive linear spring interactions, and the bulk modulus,

B = φ
d p
dφ

. (12)

B can be decomposed into the affine and nonaffine contributions:
B = Ba+Bna, respectively. For repulsive linear spring interactions,
the affine contribution can be calculated analytically,

Ba = ε
2φ

πN〈σ2〉

N

∑
i=1

N

∑
j>i

r2
i j

σ2
i j

Θ

(
1−

ri j

σi j

)
. (13)

We calculate B and Ba as a function of packing fraction and moni-
tor changes in the contact network during isotropic compression.

3 Results

In this section, we present the results for the energy, stress,
and elastic moduli for the five applied deformations described
in Sec. 2. We first show that changes in the interparticle contact
networks during applied strain are either point changes or jump
changes. For a jump change, the positions of the particles are
discontinuous at the particular strain where the system becomes
mechanically unstable and a particle rearrangement occurs. In
contrast, for a point change, an interparticle contact either breaks
or a new contact forms as the particles move continuously during
the applied strain. We show that at a point change the derivative
of the particle motions with respect to strain are discontinuous
as are the derivatives of the potential energy/enthalpy, but at an
order that depends on the interparticle potential. At small, but
nonzero pressure, point changes occur in pairs over a range in
strain. The first point change involves the formation of a new
contact and the second involves the breaking of an existing con-
tact. The difference in strain between these point changes de-
creases with pressure, and thus the pair of point changes coin-
cide in the zero-pressure limit. To illustrate their importance, we
detect exclusively point changes as we add polydispersity to orig-
inally monodisperse, ordered disk packings. Lastly, we present
the statistics for jump and point changes for polydispersity strain
applied at fixed packing fraction.

3.1 Jump Changes

We define a jump change as a change in the interparticle con-
tact network for which the particle positions as a function of ap-
plied strain are discontinuous, i.e. the particles rearrange. The
origin of the discontinuous particle motion stems from strain-
induced changes in the energy or enthalpy landscape22,33 and
is illustrated in Fig. 1 for a disk packing undergoing polydis-
persity strain at fixed pressure (Sec. 2.4). In Fig. 1 (a)-(c), we
show the disk configurations before, during, and after a jump
change. The enthalpy H as a function of the polydispersity strain
η and the distance λ along the path from the initial state be-
fore the jump change to the final state after the jump change is

a b1

cb2

a. c.b.

d.

Fig. 1 An example of a jump change in a disordered packing of N = 6
polydisperse disks during applied polydispersity strain at fixed pressure
(Sec. 2.4). Panels (a)-(c) show the system, before, on both sides of,
and after the change in the contact network. In (a) and (c), the red
solid circles outline the particles, while the blue dashed lines represent
the interparticle contact network. The arrows give the direction of the
particle motion at the given value of strain. In (b), the blue solid cir-
cles (red dashed circles) represent the disk configuration and the blue
dotted lines (red dashed lines) give the contact network after (before)
the change. From the arrows and circles, we see that both the particle
positions and directions of motion are discontinuous at the jump change.
(d) The enthalpy H (increasing from blue to red) is plotted as a function
of the polydispersity η and distance λ along the path from the initial
to the final state. The system starts in the upper left of the enthalpy
landscape in the configuration in (a). At every η, the system can move
vertically as long as the enthalpy decreases. The system is strained (in-
creasing η) until it reaches point b1, corresponding to the configuration
in panel (b) with red dashed lines. After reaching b1, a path to b2 (the
configuration in panel (b) with blue solid lines) opens and the system
can reach a deeper local minimum without an increase in enthalpy dur-
ing the trajectory. λ parametrizes the distance along this path from b1
to b2. The system is then strained until point c, which corresponds to
the configuration in panel (c). The bold black lines with arrows indicate
the path taken.

shown in Fig. 1 (d). To calculate H(η ,λ ), we define a vector ~ξ =

(Lx,x1, . . . ,xN ,y1, . . . ,yN) that contains all of the degrees of free-
dom of the packing. If the path that the system takes from point
b1 to b2 in Fig. 1 (d) is given by ~ξ (η∗,λ ), where the jump change
occurs at η∗, 0 < λ < 1, and ∆~ξ (η) = ~ξ (η ,1)− ~ξ (η ,0), then
~ξ (η ,λ ) = ∆~ξ (η)((~ξ (η∗,λ )−~ξ (η∗,0))/∆~ξ (η∗). λ parametrizes
the path that the system takes in configuration space during en-
thalpy minimization from the initial state at b1 (λ = 0) to the
final state at b2 (λ = 1). The system is strained by increasing η

in small steps (moving from left to right), followed by enthalpy
minimization (moving vertically). The system begins in the upper
left region of the landscape (point a), moves to the right (increas-
ing η), and is initially prevented from moving toward the deeper
minimum at the bottom of the enthalpy landscape by a barrier. As
the system is further strained, the enthalpy barrier shrinks until
the system reaches point b1, where the barrier disappears, and
the system evolves toward point b2 with lower enthalpy. The dis-
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appearance of the enthalpy barrier at a given strain gives rise to
the discontinuous change in the particle positions. We then con-
tinue straining the system until it reaches point c. We find similar
behavior for jump changes in the enthalpy landscape for systems
undergoing simple shear strain at fixed pressure and in the energy
landscape for systems undergoing simple shear strain or polydis-
persity strain at fixed packing fraction.

3.2 Point Changes

We define a point change as the addition or removal of an inter-
particle contact at a given strain without discontinuous motion of
the particles. The origin of a point change is that the positions
of all particles for two or more distinct interparticle contact net-
works are the same at a given strain. In Fig. 2, we illustrate two
successive point changes for a disordered disk packing undergo-
ing polydispersity strain at fixed pressure (Sec. 2.4). In panels
(a) and (b), we show the disk configurations corresponding to a
point change from an isostatic packing to a hyperstatic packing
with one additional contact, and in panels (b) and (c), we show
the disk configurations corresponding to a point change from the
same hyperstatic packing to a different isostatic packing. The ar-
rows indicate the direction of motion of the particles, which show
that the directions of the particle motion are not continuous over
a point change. In Fig. 2 (d), we show the enthlapy of the con-
figurations in panels (a)-(c) as a function of strain η for target
pressure pt = 10−4. We assume that (in the absence of changes in
the contact network) the direction of the particle motion is con-
stant with strain to extrapolate H for the contact networks that
are not enthalpy minima.

At small η , the isostatic network in Fig. 2 (a) has the lowest
enthalpy of the three contact networks. At 1.190 < η∗1 < 1.191, H
of the configuration in (b) becomes less than that of the configu-
ration in (a), and the system becomes hyperstatic with an addi-
tional interparticle contact. At a higher strain 1.191 < η∗2 < 1.192,
H for the configuration in (c) becomes less than that of the con-
figuration in (b), and the system transitions to a different iso-
static contact network. Most importantly, the particle positions do
not change discontinuously during each point change. In other
words, the contact change happens between two energy mini-
mized configurations. In contrast, for jump changes, as shown in
Fig. 1 (d), the contact change occurs between a non-minimized
configuration (point b1) and a minimized configuration (point
b2).

The changes of the particle trajectories in Fig. 2 (a)-(c) demon-
strate the importance of point changes. If contact 2 did not form
in panel (b), the two particles that form that contact would con-
tinue to move towards each other as they do in panel (a). These
particle trajectories would cause a dramatic increase in enthalpy,
as shown by H(η) for the first isostatic contact network in panel
(d). However, due to the formation of the new contact, the par-
ticle trajectories are altered following the point change as shown
in panel (c). Despite the continuous particle motion that occurs
during point changes, the particle trajectories are significantly al-
tered with further strain.

Fig. 3 displays the values of the polydispersity strain η∗1 (η∗2 )

Isostatic Hyperstatic Isostatic

d.

a. b. c.

1

2

1

2

*1 *2

Fig. 2 An example of an N = 8 polydisperse disk packing undergoing two
successive point changes during applied polydispersity strain η at fixed
pressure. Panels (a) and (b) illustrate the first point change from an
isostatic packing to a hyperstatic packing (with one extra contact) and
(b) and (c) illustrate the second point change from the same hyperstatic
packing to a different isostatic packing. All three packings are at target
pressure pt = 10−4. The arrows indicate the directions of particle motion
at each strain. The number 1 (2) labels the interparticle contact that is
removed (added) during the two point changes. (d) Enthalpy H plotted
versus η for the isostatic (hyperstatic) contact networks indicated by
solid (dashed) lines. η∗1 (η∗2 ) labels the strain at which a contact is
added (removed) from the contact network.

at which several example polydisperse N = 8 packings transition
from an isostatic packing to a hyperstatic packing (and from the
same hyperstatic packing to an isostatic packing) as a function of
the target pressure pt . For each packing, we find that both η∗1
and η∗2 are linear in pt with vertical intercept η0 = η∗1,2(pt = 0).
In Fig. 3, we show that the values of η∗1,2, corresponding to when
the packing either gains a contact or loses a contact, possess the
same η0. Thus, the width of the strain region over which the
system is hyperstatic between the two successive point changes
(first from an isostatic packing to a hyperstatic packing and then
from the same hyperstatic packing to another isostatic packing)
tends to zero in the zero-pressure limit. We find similar behavior
for disk packings undergoing simple shear strain, as well as for
larger system sizes.

3.3 Generalization of Jump and Point Changes to Other
Strains

While the illustrations of jump and point changes in Secs. 3.1
and 3.2 considered polydispersity strain at constant pressure, all
interparticle contact changes that occur during the applied strains
that we consider (i.e. simple shear strain at constant packing frac-
tion and at constant pressure, polydispersity strain at constant
packing fraction and at constant pressure, and isotropic com-
pression) can be classified as jump or point changes. Further,
we find that a point change at a given strain gives rise to con-
tinuous potential energy/enthalpy and its first derivatives, but
causes discontinuities in the second derivatives of the potential
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Fig. 3 For three sample polydisperse N = 8 packings, we measure the
polydispersity strain values at which the system transitions from an iso-
static to a hyperstatic packing (η∗1 ) and from the same hyperstatic pack-
ing to another isostatic packing (η∗2 ) as shown in Fig. 2, at 10 target
pressures pt . We plot η∗1,2−η0, where η0 = η∗1,2(pt = 0), versus pt for
each contact change in each packing. The strain at which the packings
transition from isostatic to hyperstatic, (i.e. between Fig. 2 (a) and (b)),
are represented by blue diamonds, red rightward triangles, and green
downward triangles. The strains at which the packings transition from
hyperstatic to isostatic, (i.e. between Fig. 2 (b) and (c)) are represented
by blue squares, red leftward triangles, and green upward triangles. Since
all of the lines meet at η∗1,2 = η0, the width of the hyperstatic strain
region tends to zero in the pt = 0 limit.

energy/enthalpy at the given strain. The fact that the second
derivatives of the potential energy/enthalpy are discontinuous
(Eq. 5) is related to the repulsive linear spring interparticle poten-
tial that we employ; results for other finite-range repulsive poten-
tials are discussed in Sec. 3.5. In contrast, all jump changes give
rise to discontinuities in the potential energy/enthalpy, as well as
all of its derivatives, independent of the interparticle potential.

As an example, in Fig. 4, we show the enthalpy H as a function
of simple shear strain γ− γ∗ for an N = 8 packing (with repulsive
linear spring interactions) undergoing simple shear at fixed pres-
sure. For the jump change at γ∗, H is discontinuous. For the point
change at γ∗, H and dH/dγ (in the inset) are both continuous,
but d2H/dγ2 is discontinuous. The fact that the second deriva-
tive of the enthalpy, Gγ + pt(d2V/dγ2), is discontinuous at a point
change can be illustrated by analyzing the affine contribution of
the shear modulus, Ga

γ in Eq. 5, when contacts with zero over-
lap, ri j→ σi j, are added to or removed from the contact network.
For the same reason, point changes give rise to discontinuities
in the second derivatives with respect to strain of the potential
energy/enthalpy for disk packings with repulsive linear spring in-
teractions undergoing other applied strains.

3.4 Packing fraction-Strain Landscapes
We refer to jammed disk packings with the same contact network
as geometrical families (continuous regions) in the packing frac-
tion and applied strain plane19. One can then consider contours
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Fig. 4 The enthalpy HJ (left vertical axis) and HP (right vertical axis)
for a N = 16 disk packing versus simple shear strain γ − γ∗ at constant
pressure (p = 10−4) for a jump change (blue downward triangles) and a
point change (red upward triangles) in the contact network at γ∗. For the
jump change, there is a discontinuity in H at γ∗. For the point change,
both the enthalpy and its first derivative dH/dγ (inset) are continuous
at γ∗. However, the slope of dH/dγ changes at γ∗, which indicates that
d2H/dγ2 is discontinuous.

of constant stress in the packing fraction and strain plane for each
distinct contact network, and identify point and jump changes
by calculating derivatives of the stress. In this section, we study
the packing fraction and strain landscapes for both simple shear
strain and polydispersity strain. To construct these landscapes, we
first generate a series of unjammed packings (with φ ≈ 0.8) over
a range of strains. We find similar results using other packing
fractions φ . φJ . We then isotropically compress these packings
(quasistatically) at each strain to packing fractions above jam-
ming onset. For the disk packings at each packing fraction and
strain, we measure the contact network, coordination number,
and stress. This protocol ensures that we can sample packings
with both signs of the shear stress17. For clarity, we show only a
small portion of the strain-packing fraction landscape.

In Fig. 5, we visualize polydisperse N = 8 disk packings in the
packing fraction φ and simple shear strain γ plane. The color of a
region indicates the type of contact network: regions that are red
indicate isostatic contact networks and regions that are green in-
dicate hyperstatic contact networks. Regions with different hues
of red and green correspond to different contact networks. The
white regions represent unjammed states. The lines provide con-
tours of constant shear stress Σγ . Σγ is discontinuous at jump
changes, whereas it is continuous at point changes.

The φ -γ landscape in Fig. 5 has two lines of point changes,
which can be traversed by compressing or decompressing the
packing at fixed γ, by applying simple shear strain at fixed φ , or
by a combination of changes in φ and γ. The packing undergoes a
point change when a contact is added (i.e. transitioning from an
isostatic packing to a hyperstatic packing) or a contact is removed
(i.e. transitioning from a hyperstatic packing to an isostatic pack-
ing). As discussed in Sec. 3.2, the two lines of point changes
merge into a single point near (0.04, 0.81) in the zero-pressure
limit. Traversing a point change in the forward direction leads to
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Fig. 5 An example landscape in the packing fraction φ and simple shear
strain γ plane for polydisperse N = 8 disk packings. We first apply sim-
ple shear strain (quasistatically) at φ = 0.79 (below jamming onset) to
generate a series of unjammed packings over a range of γ with step size
∆γ = 10−4. We then apply isotropic compression (quasistatically) with
step size ∆φ = 10−4) to these packings at each strain to packing frac-
tions above jamming onset. For each φ and γ, we show the contact net-
work (color) and shear stress Σγ , where the lines are contours of constant
Σγ and the difference between adjacent lines is ∆Σγ ≈ 7× 10−5. Jump
changes can be identified by discontinuities in Σγ , and point changes by
discontinuities in the derivative of Σγ . Red regions indicate isostatic con-
tact networks, green regions indicate hyperstatic contact networks, and
white regions indicate unjammed systems. Each region with a distinct
red or green hue indicates packings with the same contact networks.

the same behavior as traversing it in the reverse direction.
Lines of jump changes in Fig. 5 occur when moving from an

isostatic jammed region to an unjammed region. As we found
for point changes, jump changes can be induced by compressing
the packing at fixed γ, by applying simple shear strain at fixed φ ,
or by a combination of changes in φ and γ. When undergoing a
jump change to an unjammed state, the total potential energy and
shear stress drop discontinuously from a finite value to zero. In
Fig. 5, there is also a line of jump changes between two different
isostatic packings near (0.015, 0.81).

Note that in Fig. 5, the system can transition from a jammed
packing to unjammed packing through isotropic compression. In-
deed, in recent computational studies, we showed that “compres-
sion unjamming” occurs frequently near jamming onset. We also
showed that the probability for compression unjamming (aver-
aged over a finite range of strain) approaches a finite value in
the large-system limit, and thus compression unjamming occurs
in the large-system limit20.

In Fig. 6, we show a portion of the packing fraction and polydis-
persity strain landscape for N = 8 disk packings. The lines provide
contours of constant polydispersity stress Ση . Ση is discontinuous
at jump changes, whereas it is continuous at point changes. In
Fig. 6, there are two lines of point changes, which can be tra-
versed by compressing or decompressing the packing at fixed η ,
by applying polydispersity strain at fixed φ , or by a combination
of changes in φ and η . Again, the two lines of point changes
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Point Change

Fig. 6 An example landscape in the packing fraction φ and polydisper-
sity strain η plane for N = 8 disk packings. We first apply polydispersity
strain (quasistatically) at φ = 0.81 (below jamming onset) to generate
unjammed packings over a range of η with step size ∆η = 5×10−5. We
then apply isotropic compression (with successive steps ∆φ10−5 followed
by energy minimization) to these packings at each strain to packing frac-
tions above jamming onset. For each φ and η, we show the contact
network (color) and stress Ση , where the lines are contours of constant
Ση and the difference between adjacent lines is ∆Ση ≈ 2.5×10−4. Jump
changes can be identified by discontinuities in Ση , and point changes by
discontinuities in the derivative of Ση . Red regions indicate isostatic con-
tact networks, green regions indicate hyperstatic contact networks, and
white regions indicate unjammed systems. Each region with a distinct
red or green hue indicates packings with the same contact networks.

merge into a single point near (0.135, 0.815) in the zero-pressure
limit. We find one line of jump changes in Fig. 6 that can cause a
transition between two isostatic packings, between a hyperstatic
and an isostatic packing, and between two hyperstatic packings.

3.5 Hertzian Spring Interactions
In this section, we show preliminary results for frictionless disk
packings that interact via repulsive Hertzian spring interactions
(α = 5/2 in Eq. 1) undergoing simple shear strain at fixed pack-
ing fraction. In Fig. 7, we plot Gγ versus γ for a N = 16 disk
packing with repulsive Hertzian spring interactions across a point
change. Gγ is continuous across the point change, but dGγ/dγ

is discontinuous. This result can be anticipated by analyzing the
affine contribution to the shear modulus for repulsive Hertzian
spring interactions,

Ga
γ = ε

Lx

L3
y

N

∑
i=1

N

∑
j>i

√
1−

ri j

σi j

(
x2

i jy
2
i j

σi jr3
i j

(
1+

ri j

2σi j

)
−

y2
i j

σi jri j

(
1−

ri j

σi j

))
.

(14)
Ga

γ for repulsive Hertzian spring interactions is similar to that for
repulsive linear spring interactions (Eq. 5), but it has an addi-
tional factor of

√
1− ri j/σi j. Thus, when a new contact is added

to or removed from the contact network (at ri j = σi j) during the
applied strain, we expect that Gγ will be continuous. If we take
an additional derivative of Ga

γ with respect to γ, the factor of√
1− ri j/σi j moves to the denominator, and thus we expect that
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Fig. 7 Shear modulus Gγ as a function of simple shear strain γ (blue
solid line) at fixed packing fraction φ = 0.88 for a N = 8 disk packing
with repulsive Hertzian spring interactions. The point change in the
contact network (vertical dotted black line at γ∗ ≈ 0.24) does not cause
a discontinuity in Gγ , but does cause a discontinuity in dGγ/dγ.

dGγ/dγ will be discontinuous across point changes, as shown in
Fig. 7.

3.6 Transition from a Hexagonal Crystal to a Disordered
Crystal

To illustrate the importance of point changes, we investigate the
transition from a hexagonal crystal to a disordered crystal25,26,34

as a function of applied polydispersity strain in disk packings with
repulsive linear spring interactions. The disordered crystal has
properties in common with a hexagonal crystal (such as the disk
positions and packing fraction), whereas other properties, such as
the coordination number, stress, and elastic moduli, are similar to
disordered, isostatic packings. Here, we show that the transition
from the hexagonal crystal to the disordered crystal can be un-
derstood as series of point changes as a function of polydispersity
strain, with no jump changes. We note that the transition to the
disordered crystal can also be induced by simple shear and other
applied strains.

In Fig. 8, we plot the ensemble-averaged excess coordination
number 〈z− ziso〉, where ziso = 2Niso

c /N, as a function of polydis-
persity strain η at fixed pt . 〈z− ziso〉 ≈ 2 at small η , and then
begins to decrease toward zero at a characteristic ηc. As shown
in the inset to Fig. 8, ηc ∼ pt since 〈z− ziso〉 collapses when plot-
ted versus η/pt . Thus, in the zero-pressure limit, the hexagonal
crystal at φ = φx becomes isostatic with z = ziso in the limit of zero
applied strain.

We find similar behavior for the transition from a hexagonal
crystal to a disordered crystal when we apply polydispersity strain
at fixed packing fraction. In Fig. 9, we plot the total potential en-
ergy U and elastic modulus Gη versus η at fixed φ for an N = 16
packing initialized in a hexagonal crystal. We show that at each
change in the contact network U is continuous, but Gη is discon-
tinuous, which signals that the changes in the contact network
are point changes. In Fig. 10, we show the φ -η landscape for
an N = 16 packing initialized in a hexagonal crystal. There are
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Fig. 8 The ensemble-averaged coordination number 〈z− ziso〉 versus the
polydispersity strain η at constant pressure pt for N = 64 packings at
pt = 10−4.5 (red solid line), 10−4.25 (green dashed line), 10−4 (blue dot-
dashed line), and 10−3.75 (black dotted line). The system was initialized
in a hexagonal crystal at η = 0. The inset shows that 〈z− ziso〉 can be
collapsed by plotting it against η/pt . The data was averaged over 10
packings for each pressure.
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Fig. 9 The total potential energyU (left vertical axis) and elastic modulus
Gη (right vertical axis) versus polydispersity strain η at fixed packing
fraction for a N = 16 packing initialized in a hexagonal crystal at pressure
p = 10−4. At each change in the contact network (black dashed vertical
lines), U (blue upward triangles) is continuous, while Gη (red downward
triangles) is discontinuous.

many contact networks near the hexagaonal crystal, which are
separated by point changes since there are no discontinuities in
the polydispersity stress Ση . In the zero-pressure limit, all of the
point changes coincide and the system transitions from a hexago-
nal network to an isostatic network at zero strain.

3.7 Distinguishing Point and Jump Contact Changes

In this section, we discuss the changes in the total potential en-
ergy and elastic moduli that occur at point and jump changes
for packings undergoing polydispersity strain at constant pack-
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Fig. 10 The packing fraction φ and polydispersity strain η landscape for
a N = 16 packing initialized in a hexagonal crystal. The color indicates the
coordination number, ranging from isostatic with ziso ∼ 4 to crystalline
with z= 6 (from blue to red). The white region corresponds to unjammed
systems. The lines represent contours of constant polydispersity stress Ση

and the difference between adjacent lines is approximately ∆Ση = 2×10−4.
All of the changes in the contact networks are point changes, since there
are no discontinuities in Ση .

ing fraction. In Fig. 11, we show a scatter plot of the absolute
values of the changes in total potential energy |∆U | and polydis-
persity modulus |∆Gη | at polydispersity strains that correspond to
changes in the contact network. We also compare these values of
|∆U | and |∆Gη | to those obtained from successive polydispersity
strains where there is no change in the contact network. We find
three distinct clusters of points: jump changes (with |∆U |> 10−9

and large values of |∆Gη |), point changes (with |∆Gη |> 10−6 and
small values of |∆U |), and points with small values of |∆U | and
|∆Gη | where there are no changes in the contact network. This
last set of points shifts to lower values of |∆U | and |∆Gη | with
decreasing ∆η and improved force balance. All changes in the
contact network during applied polydispersity strain can be clas-
sified as either point or jump changes. We find similar results
for simple shear strain applied at fixed packing fraction and pres-
sure, polydispersity strain applied at fixed pressure, and isotropic
compression.

In principle, one can also use particle displacements (i.e. non-
affine particle motion) to identify changes in the contact net-
works35. For example, one could apply polydispersity strain from
η1 to η2 yielding particle positions ~r(η1) and ~r(η2), and then re-
verse the strain from η2 to η1 to measure the new particle posi-
tions~r′(η1). The particle displacements ∆r = |~r(η1)−~r′(η1)| from
this process will be large when there is a jump change between
η1 and η2, whereas ∆r→ 0 (in the small strain limit) for strain
intervals where there is no jump change. Thus, measuring non-
affine particle motions cannot be used to identify point changes.
For this reason, we recommend measurements of ∆G and ∆U to
identify point and jump changes in particulate media.

4 Conclusions and future directions
In this article, we studied quasistatic deformations of jammed
frictionless disk packings that interact via purely repulsive poten-
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Fig. 11 A scatter plot of the absolute values of changes in the potential
energy |∆U | and shear modulus |∆Gη | between successive polydispersity
strain steps ∆η at constant packing fraction φ = 0.88 for 50 N = 16 pack-
ings. After every strain step, U and Gη were measured, and the difference
between the values at the current step and the previous step was calcu-
lated to yield ∆U and ∆Gη . The red triangles indicate a change in the
contact network, whereas the black circles indicate strains where there
was no change in the contact network.

tials as models of dense granular materials. The deformations
included simple shear strain at fixed packing fraction and at fixed
pressure, polydispersity strain at fixed packing fraction and at
fixed pressure, and isotropic compression. We showed that there
are two types of changes in the interparticle contact networks that
occur during quasistatic deformation: point changes and jump
changes. Jump changes involve changes in the contact network
that are accompanied by discontinuous motion of the particles
from one strain step to the next, whereas point changes involve
small, continuous motion of the particles. It has been previously
shown21 that the relative frequency of these two types of events
is constant with increasing system size. Both types strongly af-
fect the structural and mechanical properties of quasistatically de-
formed jammed granular systems. For jump changes, the total po-
tential energy (when the deformation is applied at constant pack-
ing fraction), or the enthalpy (when the deformation is applied at
fixed pressure), as well as their derivatives with respect to strain
are discontinuous. In contrast, point changes give rise to discon-
tinuities in higher-order derivatives with respect to strain of the
potential energy/enthalpy. For example, for disk packings with
repulsive linear spring interactions, point changes cause discon-
tinuities in the elastic moduli, which are proportional to second-
order derivatives with respect to strain of the potential energy
(when the deformation is applied at constant packing fraction) or
the enthalpy (when the deformation is applied at constant pres-
sure). We then illustrated the important features of jump and
point changes by showing contours of constant stress in the pack-
ing fraction and strain landscapes for the simple shear and poly-
dispersity strain deformations. As a specific example of a physical
phenomenon where point changes are dominant, we showed that
the transition from a hexagonal crystal to a disordered crystal,
which can possess an isostatic number of contacts, is caused by a
series of point changes.
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The fact that point changes cause discontinuities with respect
to strain in the second derivative of the potential energy/enthalpy
(for disk packings with repulsive linear spring interactions) stems
from the shape of the interparticle potential energy (Eq. 1). The
purely repulsive linear spring potential has a discontinuity in
d2U/dr2

i j across a point change, and thus the elastic moduli, Gγ ,
Gη , and B, are discontinuous across a point change. For the
purely repulsive Hertzian spring potential with α = 5/2 in Eq. 1,
d3U/dr3

i j is discontinuous across a point change, and thus the
derivatives of the elastic moduli with respect to strain (not the
moduli themselves) are discontinuous. The discontinuities caused
by point changes will occur in higher-order derivatives of the po-
tential energy (when the strain is applied at constant packing frac-
tion) if higher-order derivatives of the interparticle potential are
continuous. Similar results are found for the derivatives of the
enthalpy when the strain is applied at fixed pressure.

These results raise several important questions for future re-
search. First, how do jammed packings behave when the applied
strain is reversed36–38 after point and jump changes occur in the
interparticle contact networks? Point changes are completely re-
versible, since the particle motions are continuous during a point
change. Jump changes, however, are not reversible in this way. As
shown in Fig. 1, the packing immediately after the jump change
has a lower potential energy (in the case of applied strain at con-
stant packing fraction) than the packing immediately before the
jump change. Thus, when the strain is reversed after the jump
change, the system will follow a different path in the energy land-
scape (than the one followed during the forward strain). How-
ever, it is possible that the system can undergo a series of point
changes or another jump change during the reversed strain and
return to the path in the energy landscape that was traversed dur-
ing the forward strain. This behavior was termed “loop reversibil-
ity" in Ref.39 and “limit cycle" behavior in Ref.40, both of which
studied systems undergoing cyclic simple shear strain.

In recent studies20, we found that changes in the contact net-
work during isotropic compression of jammed packings give rise
to the power-law scaling of the shear modulus with pressure, i.e.
Gγ ∼ p1/2 for repulsive linear spring interactions in d = 2 and
3. Since both point and jump changes cause jumps in the shear
modulus, ∆Gγ , an interesting question is to determine whether
point changes, jump changes, or both contribute significantly to
the increase in the shear modulus during isotropic compression.
In addition, Gγ ∼ p2/3 for Hertzian spring interactions undergo-
ing isotropic compression in d = 2 and 38. In future studies, we
will investigate how jump and point changes give rise to this be-
havior, given that point changes do not cause discontinuities in
Gγ for Hertzian interactions.

To understand the mechanical response of jammed packings to
applied strain, one must be able to predict the potential energy
(and other physical quantities that depend on the particle posi-
tions) as the system evolves along geometrical families, as well
as across point and jump changes. We emphasize that it is still
important to study point changes in packings undergoing qua-
sistatic deformation even if the interparticle potential does not
possess discontinuities in its derivatives. Even if there are no dis-
continuities in the interparticle potential, the particle trajectories

change directions when the system undergoes each point change,
which influences the evolution of the potential energy, stress, and
elastic moduli as a function of strain.

Another possible extension of the current studies is to investi-
gate how point changes behave in packings of non-spherical parti-
cles. For example, in packings of circulo-lines in 2D, two particles
with an “end-end" contact behave differently than two particles
with an “end-middle" contact41. It will be interesting to study
packings of circulo-lines that transition between these two types
of contacts and determine whether this process can be described
as a generalized point change, even though the interparticle con-
tact network does not change.

A similar effect can occur in packings of spherical particles with
frictional interactions. Numerous studies have shown that in ad-
dition to the number of contacts per particle, the ratio of the tan-
gential to the normal force, ζi j, at each contact between particles
i and j, plays an important role in determining the mechanical
stability of frictional packings42. Thus, it is possible that effective
“point changes” can occur if ζi j varies significantly during strain
even though particles i and j remain in contact.
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Appendix I: Isotropic compression

In this Appendix, we show that the results for isotropic compres-
sion are similar to the results for the other strains that we stud-
ied. In Fig. 12, we show a scatter plot of the absolute values
of the changes in total potential energy |∆U | and bulk modulus
|∆B| at compression values that correspond to changes in the con-
tact network. We also compare these values of |∆U | and |∆B| to
those obtained from successive compression steps where there is
no change in the contact network. We find three distinct clusters
of points: jump changes (with |∆U | > 10−7 and large values of
|∆B|), point changes (with |∆B|> 10−4 and small values of |∆U |),
and points with small values of |∆U | and |∆B| where there are no
changes in the contact network. This last set of points shifts to
lower values of |∆U | and |∆B| with decreasing compression step
size and improved force balance. (See Appendix II.) All changes
in the contact network during applied compression can be classi-
fied as either point or jump changes.
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Fig. 12 A scatter plot of the absolute values of changes in the potential
energy |∆U | and bulk modulus |∆B| between successive compression steps
∆φ for 50 N = 16 packings. After every strain step, U and B were mea-
sured, and the difference between the values of the potential energy and
bulk modulus at the current step and the previous step was calculated
to yield ∆U and ∆B. The red triangles indicate a change in the contact
network, whereas the black circles indicate strains where there was no
change in the contact network.

Appendix II: System Size Dependence
In this Appendix, we show that the presence of point and jump
changes and our method for distinguishing between them do not
change with increasing system size. For most of the results in this
article, we used small systems with N = 6 to 16 disks with periodic
boundary conditions in the x- and y-directions. Since point and
jump changes have not been described before in the literature,
the main goal of this article is to illustrate the theoretical founda-
tions of point and jump contact changes, not to provide statistics
of point and jump changes in the large-system limit. In previous
studies, it has been shown that the length of geometrical fami-
lies decreases strongly with increasing system size18, and thus it
makes sense to illustrate point and jump changes using small sys-
tems, where one can clearly see the beginning and end of each
family. Further, the threshold required on force balance on each
particle necessary to identify point and jump changes decreases
toward zero with increasing system size, and thus it is much less
computationally costly to study point and jump changes in small
systems.

Nevertheless, in Fig 13, we show similar data as in Fig. 11,
except for packings of N = 64, 128, and 256 disks undergoing sim-
ple shear (with step size ∆γ = 7×10−13) at fixed packing fraction
φ = 0.88. Again, we observe that there are three clusters of data
points: one for jump changes (large |∆U |/N and large |∆Gγ |), one
for point changes (small |∆U |/N and large |∆Gγ |), and one for the
control group (small |∆U |/N and small |∆Gγ |), for which point
and jump changes do not occur. More importantly, we find that
the location and spread of each of the three clusters remain the
same for the three system sizes.

In Fig. 14, we show the same plot as in Fig. 13 for the three
system sizes N = 64, 128, and 256, except using a larger shear
strain step size ∆γ = 10−11. The data points for |∆Gγ | and |∆U |/N
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Fig. 13 A scatter plot of the absolute values of changes in the potential
energy per particle |∆U |/N and shear modulus |∆Gγ | between successive
shear steps ∆γ = 7× 10−13 for N = 64 (red upward triangles and black
circles), N = 128 (green downward triangles and dark gray dots), and N =

256 (blue rightward triangles and light gray squares) packings. After every
shear strain step, U and Gγ were measured, and the differences between
the values at the current step and the previous step were calculated. The
red, green, and blue triangles indicate a change in the contact network,
whereas the black/gray points indicate strains where there was no change
in the contact network.

corresponding to jump changes remain the same for the two shear
strain step sizes. For the data points that correspond to point
changes, the values of |∆U |/N change with the shear strain step
size, but the values of |∆Gγ | do not. In addition, for the points that
do not correspond to changes in the contact network, both |∆U |/N
and |∆Gγ | shift to larger values with the larger shear strain step
size. Thus, |∆U |/N→ 0 and |∆Gγ | → 0 in the limit ∆γ→ 0 for data
points that do not correspond to changes in the contact network.
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There are two ways to transition between different contact networks, point and jump changes, 
as shown in a packing fraction-strain landscape.
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