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Characterizing the Spatiotemporal Evolution of Paramagnetic Col-
loids in Time-Varying Magnetic Fields with Minkowski Functionals†

Elaa Hilou, Kedar Joshi, and Sibani Lisa Biswal∗a

Phase separation processes are widely utilized to assemble complex fluids into novel materials. These
separation processes can be thermodynamically driven due to changes in concentration, pressure, or
temperature. Phase separation can also be induced with external stimuli, such as magnetic fields,
resulting in novel nonequilibrium systems. However, how external stimuli influence the transition
pathways between phases has not been explored in detail. Here, we describe the phase separation
dynamics of superparamagnetic colloids in time-varying magnetic fields. An initially homogeneous
colloidal suspension can transition from a continuous colloidal phase with voids to discrete colloidal
clusters, through a bicontinuous phase formed via spinodal decomposition. The type of transition de-
pends on the particle concentration and magnitude of the applied magnetic field. The spatiotemporal
evolution of the microstructure during the nucleation and growth period is quantified by analyzing
the morphology using Minkowski functionals. The characteristic length of the colloidal systems was
determined to correlate with system variables such as magnetic field strength, particle concentra-
tion, and time in a power-law scaling relationship. Understanding the interplay between particle
concentration and applied magnetic field allows for better control of the phases observed in these
magnetically tunable colloidal systems.

1 Introduction
One of the most active areas in colloid assemblies is the pre-
cise control of interparticle interactions. Field-directed colloidal-
assemblies have a significant advantage over self-assembly pro-
cesses in that the external field can modulate the assembly dy-
namics1. Dipolar colloids are typically characterized by induced
directional interactions that result in head-to-tail ordering into
clusters and chains2. Recent attention has focused on the use of
rotating magnetic fields to generate colloids with a time-averaged
dipolar potential3–5. Much research has focused on the genera-
tion of interesting equilibrium condensed phases of these systems,
but the non-equilibrium dynamics of these dipolar systems are not
well-characterized.

Investigating the non-equilibrium phase space of systems has
demonstrated importance in the development of advanced mate-
rials6–8. However, most phase diagrams describe systems at their
equilibrium or quasi-equilibrium states9,10. Quantifying the tem-
poral changes of microstates is essential in achieving desired ma-
terial properties11. Recently, it has been shown that the dynamics
of binary systems such as emulsions12, polymer mixtures13,14, bi-
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ological systems15, and active fluids16–20 exhibit novel processes.
Complex morphology is associated with polymer mixtures assem-
bling into lamella and gyroid phases, which can be explored us-
ing a tunable phase separating system21,22. Here, we investigate
the pathways and transitions in a 2D colloidal system consisting
of spherical superparamagnetic colloids in a time-varying mag-
netic field that resemble phase-separating systems23. The phase
separation process usually consists of two mechanisms: rapid nu-
cleation or decomposition of an initially homogeneous dispersion
into domains of high and low densities, followed by the coars-
ening of these domains24–26. Additionally, from the two-phase
region, phase inversion can occur via a complex connected spin-
odal phase.

The classic approach used to characterize the coarsening dy-
namics of most systems is to monitor the growth in the domain
size over time, which has been shown via experiments and simu-
lations to follow a power law behavior21,27. These dynamic scal-
ing methods examine statistical measurements such as the struc-
ture factor and pair correlation functions28,29. What is missing is
an understanding of how the connectivity of the system evolves
as a function of the governing variables16,30. We correlate the
nonequilibrium dynamics of our 2D dipolar fluid as a function of
magnetic field strength and particle concentration to the charac-
teristic lengths and quantify the changes in the microphase by uti-
lizing Minkowski functionals, which identify changes in the area,
A, boundary length, P, and the Euler characteristic, X , which indi-
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cate the connectivity of the colloidal microphases over time. The
equivalent functionals for a 3D system are area, volume, the Eu-
ler characteristic, and integral mean curvature. This methodology
has been previously employed to characterize 2D polymer sys-
tems undergoing spinodal decomposition30, which generally ex-
hibit complex geometrical structures, but has not been applied to
colloidal systems with discrete particles. This study evaluates the
transitions between various microstates and presents scaling laws
that correlate the dynamic length scale to magnetic field strength
and particle concentration. The dynamical scaling coefficients are
characteristic of a self-similar domain growth for colloids driven
by time-varying magnetic fields.

2 Experimental

The experimental setup consists of paramagnetic particles dis-
persed in an aqueous solution and exposed to an external mag-
netic field. The cross-linked superparamagnetic polystyrene par-
ticles are 1.1 ± 0.08 µm in diameter and coated with a carboxylic
acid group, making the surface negatively charged. They were ac-
quired from ThermoFisher Scientific (Dynabeads R© MyOne). The
particles are diluted in a 10 mM NaCl solution at different densi-
ties ranging from 10 mg/ml to 0.67 mg/ml. The particle density
is 1.8 g/cm3, making it easy for them to settle to the bottom of
the chamber. The chamber is composed of two plasma-cleaned
cover slips (Ted Pella, Inc.) and a Paraffin film that is placed be-
tween the glass slips to act as a spacer and allow particles to flow
in. The chamber is then sealed with epoxy followed by a layer of
NOA 81 (Norland Optical Adhesive).

The magnetic field is generated by running a periodic current
through two pairs of solenoids with a phase angle of 90 degrees
resulting in a horizontally isotropic magnetic field23. Once the
sample is placed between the four coils and a current is applied,
the resulting rotational field produces an anharmonic interaction
between the particles, which we can quantify theoretically and ex-
perimentally. A custom built inverted microscope is placed in the
coil setup and used to image colloidal phase transitions. Time-
lapse microscopy images are captured on a QICAM Fast cam-
era with the software SimplePCI and a 4X magnification objec-
tive (Olympus Plan). This results in an image resolution of 0.44
pixels/µm. Image conversion and analysis were conducted using
Matlab, using particle tracking packages23.

3 Results and Discussion

3.1 Phase separating particles

Colloidal particles aggregate isotropically when placed in a high-
frequency rotating magnetic field [see Fig.1(A)]. The variables
that govern the resulting phases are the amplitude of the applied
magnetic field, B, and the concentration of particles, φ , which is
defined by the area fraction covered by particles. We have iden-
tified various microstates, which include voids, clusters, and a bi-
continuous microphase, as shown in Fig.1(B). The φ range varied
from 0.12 - 0.35. For a homogeneous colloidal system with high
φ values, small gas pockets nucleate and ripen into larger voids
within the colloidal matrix. At low φ values, the colloids nucle-
ate into small clusters that coarsen over time. At intermediate φ

values, the colloids form a labyrinth-like pattern. This pattern,
characteristic of a bicontinuous phase, is metastable and appears
during spinodal decomposition. This microstate may transition to
isolated clusters, characteristic of a microstate observed at low φ

values.

Fig. 1 Paramagnetic particles under the influence of a time-varying mag-
netic field. A) A schematic representing the setup of the coils used to
drive the colloids to undergo phase transitions. B) Optical microscopy
images of paramagnetic colloidal particles undergoing phase separation.
Various microstates of interest are observed: clusters, spinodal, and voids.
In these images, the particle concentration increases from the bottom to
top image, while the applied magnetic field strength remains 9 Gauss.
The black scale bar is 300 µm. The inset shows the particles under higher
magnification. The white scale bar is 25 µm.

The pair interaction potential between these superparamag-
netic colloids exhibits a long-range attractive interaction, de-
scribed by Upair(r) ∼ Ar−3, and a short-range Yukawa repulsion,
which has similarities to the classic Lennard-Jones potential. De-
tailed description of this interaction can be found in our previous
studies23,31. This potential energy is normalized by thermal en-
ergy, kbT , which can be tuned by adjusting the magnitude of the
magnetic field, as shown in Fig. 2(A). Recent simulations have
provided a phase diagram for this system using colloids that varies
the magnitude of the Yukawa repulsion32. We replot their results
for hard-disks as a function of the minimum interparticle inter-
action energy, Umin, versus φ , and superimpose our experimental
data, as shown in Fig.2(B). The critical point for their hard-disk
model was determined to be φ = 0.32. Our results compare well
to their hard-disk model due to the short-range repulsion in our
system. Note that our experimental limit for φ is 0.35, after which
the system transitions from 2D to a multilayer 3D system.

The various phase separation pathways produce unique col-
loidal morphology’s that depends on B and φ . Fig.2(C) shows
a schematic illustrating four distinct pathways that are observed
with this system. Clusters that coarsen over time can be observed
in a system with low concentration relative to the critical point.
As the concentration increases, the transition will pass through a
bicontinuous phase, which can eventually break-up into clusters
or maintain its bicontinuous structure within our time frame of
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Fig. 2 Applying a high-frequency rotating magnetic field to a homoge-
neous dispersion of paramagnetic colloidal particles. A) The interaction
potential energy (normalized by kbT ) between a particle pair due to long-
range dipolar attraction and short-range Yukawa repulsion23. B) Exper-
imental data points (in black) overlapping a phase diagram reproduced
from ref.32, showing that the transition between homogeneous to phase
separated microstates depends on B and φ . C) A schematic of the vari-
ous morphological pathways that can be experimentally observed in our
system during phase separation. The four different colors represent the
four different pathways that are further characterized in Fig.4 and Fig.5.

interest. Finally, a homogeneous system forms voids that coarsen
over time at the highest concentration studied. In the following
sections, we analyze the aforementioned structures using image
processing techniques to visualize changes in the system morphol-
ogy over time. We also show how the system transitions from
one morphological state to another as it coarsens. In some cases,
crossover occurs through all three states (voids, spinodal, and iso-
lated clusters) before reaching a quasi-steady-state morphology
within our experimental time frame.

3.2 Using Minkowski functionals to identify the morpholog-
ical states

Minkowski functionals identify spatial patterns using integral ge-
ometry (described in detail in Ref.30). For example, in a dilute
solution of monodispersed particles, the total boundary length,
P, is the perimeter of a particle as observed experimentally, multi-
plied by the total number of particles present in that frame, while
the total area, A, is the area of a single particle multiplied by
the total number of particles. However, when using an objec-
tive with low magnification, the particles become indistinguish-
able from the background, especially at a high φ (see Fig.3(A)).
Once the magnetic field is applied and the particles begin to ag-
gregate, the system evolves from a single homogeneous gray do-
main to a combination of dark, colloid-rich domains and light
colloid-poor domains, which represent areas with high and low
particle concentrations, respectively. A detailed description of the
threshold method used can be found in the supplementary infor-
mation. As the system begins to phase-separate and well-defined
domains become evident, the length of the interfacial boundary

and the total area (in this case the area of the dark domains) can
be determined. Due to coarsening, the measured colloid-rich area
and its boundary will decrease over time and plateau, as shown
in Fig.3(G) and Fig.3(H), respectively.

The Euler characteristic, X , is calculated by subtracting the
number of voids from the number of clusters. A positive value of
X corresponds to when clusters dominate the morphology in the
sample, while a negative value indicates that the voids outnum-
ber the clusters. The strength of the interaction between the par-
ticles, which is controlled via the applied time-varying magnetic
field, governs the pathway of the phase separation. At higher
magnetic fields, the system quickly forms a percolating colloidal
network that segregates into colloidal-rich domains, which is why
the values of A and P decrease as the magnetic field increases. Al-
ternatively, a system can initially form voids that undergo an Ost-
wald ripening like process to form larger voids. Another observed
transition is that a system initially consisting of voids undergoes
phase inversion to eventually become a system of clusters.

At low magnetic field strengths, the dynamics of the phase tran-
sition becomes relatively slow. Previously, we demonstrated that
at low magnetic field strengths, the magnitude of the line tension
is on the order of thermal fluctuations31. Thermal fluctuations
are thought to play a role in coarsening of binary fluids by driv-
ing coalescence33,34. This in turn, allows for a higher probability
of capturing a system undergoing spinodal decomposition at low
magnetic fields, where the line tension is small and comparable to
thermal fluctuations. At low line tensions, the interface prefers to
remain relatively flat, allowing the spinodal decomposition phase
to exist as a quasi-equilibrium microstate.

3.3 Implementation of the Minkowski functionals

We use the Minkowski measurements to show the evolution in
the morphological changes of a system under the same magnetic
field but at different φ values. The dynamics are then analyzed
from the initial field-on time until a quasi-equilibrium state is re-
alized. Optical microscopy images of the nucleation to voids or
clusters are depicted in Fig.4, which show how coarsening occurs
over time at different φ values at a relatively low magnetic field
of 7.5 Gauss. These particular experiments demonstrate the four
specific pathways depicted in the schematic shown in Fig.2 (D).
At this particular magnetic field and φ values of 35% and 20%,
it is evident in Fig.4 that the system results in voids and clusters,
respectively. However, the intermediate packing densities (28%
and 22%) require a more quantitative measure of their morpho-
logical state. Using the Euler characteristic not only quantifies the
connectivity, but also captures cases where phase inversion may
occur. For example, a system might initially phase-separate into
voids but form clusters later on as it coarsens.

We begin by examining the Euler characteristics of the packing
densities mentioned and plotting them in Fig.5(A). At a high φ

(35%), the particles condense rapidly to form many voids repre-
sented by the negative values of X , which then coarsen via a com-
bination of Ostwald ripening and coalescence. The figure shows
a rapid increase in the absolute value of X followed by a steady
decrease over the span of 60 min. Within the same time frame
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Fig. 3 Dynamics of Phase Separation (A) through (C) show initial snapshots of the paramagnetic particle system at 6.5 Gauss, 7.5 Gauss, and 9.5
Gauss, while (D) through (F) show the same samples undergoing phase separating into colloid-rich and colloid-poor regions at a later time. Scale
bar 100 µm. (G) through (I) are plots of the three Minkowski functionals, A, P, and X , respectively as a function of time at different magnetic field
strengths ranging from 6.5 Gauss (dark blue) to 11.5 Gauss (dark red). The values are normalized by the total number of pixels, Npix, in an image.

and at a slightly lower concentration of 28%, the system begins
to approach the spinodal regime and may qualitatively look like it
has reached it; however, X is still negative, indicating the voids re-
main dominate. It is at 22% where the Euler characteristic crosses
the zero mark soon after the external field is applied. At φ = 20%
the Euler characteristic begins with a positive X from early stage
decomposition to the late stage as shown in the bottom left plot of
Fig.5. This indicates a nucleation of many disconnected particles
into clusters.

A physical interpretation of this phenomenon can be achieved
by correlating P and X , which corresponds to the total curvature
of the system. A system generally increases its curvature initially
and then decreases that curvature over time. The increase is due
to the formation of the domains with a total curvature of X/P as
the system attempts to minimize its local energy; this is the main
reason why decomposition occurs before coarsening. A decrease
in the number of total domains as the system coarsens to reach
its most energetically favorable state leads to a lower curvature
over time as shown in Fig.5(B). However, this is generally the
case for clusters and voids because they tend to have higher cur-

vatures until the system enters the spinodal regime. In the case of
φ ∼ 28%, where the system is approaching a spinodal phase but is
not quite there, the system exhibits a faster decrease of curvature
that plateaus within the same time frame compared to φ=35%
and φ=20%. A more complex case would be a suspension with a
packing density of 22%, where clusters begin to form soon after
the aggregation passes through the spinodal regime, but unlike
φ=20%, X plateaus at a positive value close to zero, while P con-
tinues to decrease, leading to a slight increase in curvature over
time. This is because the percolating network is easily disrupted,
forming clusters that tend to coalesce with neighboring domains,
thereby reducing interfacial length.

3.4 Length scale correlation

The dimensions of the colloidal features can be obtained by tak-
ing a Fast Fourier Transform (FFT) of the microscopy images.
We measure the characteristic length scale, L, by finding the
wavenumber, k, from the peak of the FFT radial average. The
wave vector is inversely correlated to the length scale as k = 2π/L.
Previous research21,35,36 has shown that the characteristic length
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Fig. 4 Optical microscopy images of the time evolution of paramagnetic particles undergoing phase separation at various densities. Snapshots are
taken after 2 min, 20 min, 40 min, and 60 minutes of applying the field. B = 7.5 Gauss. Scale bar 500 µm.

scale in the aggregation of dipolar systems typically exhbit a
power law dependence with time, L∼ tm. The value of m depends
on the interactions and dimensions of the system. We aim to find
a more comprehensive equation for L that will account for both
the magnetic field and concentration of the system, L = f{t,B,φ}.
The Hamiltonian of such systems is homogeneous, so we assume
that all parameters t, B, and φ are not strongly interdependent
and for the most part, we can write L = ft(t) fB(B) fφ (φ). This sep-
aration of variables works well for slowly driven systems, which
is true for weak magnetic fields. However, at strong fields (where
Upair >> kbT ) and higher concentrations, this assumption may
not hold true. We analyze L as a function of time for different
fields and concentrations. The data can be scaled to tm, where
m = 0.35−0.4 (see Fig.6(A)). The m values are shown by the inset
plot for varying fields and concentrations. This has been shown
previously for 2-D structures35; thus, ft(t) ∼ t0.4. To understand
the relationship between the length scale and magnetic field,

we conducted experiments at different magnetic fields strengths
while keeping the particle concentration fixed. The experiments
were performed on the same sample by allowing the system to
redisperse uniformly after each experiment. When considering
the energy of the system under a rotating magnetic field, the
length scale (∼

√
size) is expected to evolve proportionally to the

strength of the magnetic field, B, assuming an isotropic distribu-
tion. We performed the experiments at different magnetic fields
and scaled L with t0.4. The value of Lt0.4 exhibits a linear relation-
ship with B as shown in Fig.6 (B) for different values of φ . Thus,
ft(t) = B. Unlike the magnetic field, L is not a trivial function of
the particle concentration. For a higher magnetic field, the line
tension is greater and thus the system quickly adopts a cluster or
void dominant morphology, followed by coarsening. Cluster and
void growth follow the aggregation kinetics shown in previous
studies36. On the other hand, for a lower magnetic field (lower
line tension), the system goes from a homogeneous system to a
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Fig. 5 Effect of particle density on the Minkowski measurements at B
= 7.5 Gauss. (A) The Euler characteristic and boundary length as a
function of time. (B) The absolute value of Euler over boundary length;
which represents the curvature in 2D. Note how the “curvature” decreases
over time to reach a more energetically favorable boundary, but in the
case of φ = 22%, the system goes through a curvature of zero after
approximately 5 min, implying that the system passes through a spinodal
structure that coarsens and then breaks up into clusters.

spinodal state, which then coarsens into clusters over time. The
low magnetic field strength allows for a slightly longer time for
a system to remain in a meta-stable state, since the rearrange-
ment is driven by the energy of the interface. We performed ex-
periments with varying particle concentrations while keeping the
field strength constant. Trends are shown in the internal figure in
Fig. 6 (C). A typical aggregation kinetics for a 2D system35 shows
a φ 0.4 dependency on the length scale dynamics. This assumes a
uniform size and growth rate. The power observed is different
for each field and averages approximately to 0.4, which we have
used to propose a time-evolving equation for understanding the
length scale dynamics: l = cB(φ t)0.4. Here, c is a constant that
mainly depends on the properties of the suspending fluid. Fig.
6 (C) shows L vs. B(φ t)0.4 for different concentrations and mag-
netic fields. The data follow a linear trend. The expected L values
at a lower magnetic field (approximately 7.5G) are slightly lower,
as discussed above. The results from the Minkowski functionals,
combined with the length scale of the system, are shown in Fig.7.
The average length scale is the equivalent of the total perime-
ter divided by the Euler characteristic30. The more regular the
shapes are, such as voids and clusters, the better this assumption
applies. For a homogeneous system (clusters or voids), [P/X ] and

Fig. 6 Length scale correlation with system parameters: time, field, and
concentration. A) Power law relation between length scale and time,
which corresponds to L∼ t0.4. Inset shows the value of m for each data set.
B) Linear proportionality between the scaled length scale and magnetic
field. C) Master plot that incorporates all conditions that will help predict
L as a function of t at any B and φ . Inset shows the power law dependence
on concentration.

L are correlated. Here, the morphology results in highly curved
interfaces. Thus, the value of [P/X ]/L remains constant over a
coarsening process. This is clearly observed in Fig. 7 (φ = 35%
voids and φ= 20% cluster). For φ= 28%, the overall perimeter
is slowly increasing, keeping X and L constant. Since the over-
all structure is voids (X<0), and the [P/X ]/L remains negative.
Given additional time, the system may have undergone spinodal
decomposition. For φ = 22%, the system passes through the spin-
odal regime and changes the sign of X . This transition is distinctly
reflected in [P/X ]/L. Lastly, for φ= 20%, the spinodal decomposi-
tion occurs very quickly and then the [P/X ]/L settles to a constant
positive value, resulting in clusters. This analysis shows a simple
and efficient method for detecting the spinodal regime and un-
derstanding the near spinodal dynamics by combining the length
scale and Minkowski parameters in active fluids.
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Fig. 7 Correlation between Minkowski functionals and the length scale
of the system. Note that this correlation can identify the time at which
phase inversion occurs. B = 7.5 Gauss

4 Conclusion
In summary, we implement the Minkowski functionals on a sys-
tem of paramagnetic particles under a rotational magnetic field.
We demonstrate how correlating the Minkowski parameters with
the length scale of the system will result in a much more cohe-
sive representation of phase separation dynamics. Under differ-
ent conditions, such as particle concentration and field strength,
the system will experience different phase separation pathways.
We capture the morphological states of a system and explore the
dynamics and how they coarsen over time. This was achieved
by plotting the time evolution of the Minkowski parameters, cur-
vature, and the characteristic length scale over time. Whether
this can be used as a model system to study the phase separation
of confined polymers and lipid bilayers, or for its wide range of
applicability in other 2D materials, a better understanding of the
phase transitions and the associated scaling dynamics can be used
to control active fluid systems.
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