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Particle shape tunes fragility in hard polyhedron glass-formers†

Erin G. Teich,a‡ Greg van Anders,abc§ and Sharon C. Glotzer∗abcd

We demonstrate that fragility, a technologically relevant characteristic of glass formation, depends on
particle shape for glass-formers comprised of hard polyhedral particles. We find that hard polyhedron
glass-formers become stronger (less fragile) as particle shape becomes increasingly tetrahedral. We
correlate fragility with local structure, and show that stronger systems display a stronger preference
for a pairwise face-to-face motif that frustrates global periodic ordering and gives rise in most systems
studied to bond angle distributions that are peaked around the ideal tetrahedral bond angle. We
demonstrate through mean-field-like simulations of explicit particle pairs and surrounding baths of
“ghost" particles that the prevalence of this pairwise configuration can be explained via free volume
exchange and emergent entropic force arguments. Our study provides a clear and direct link between
the local geometry of fluid structure and the properties of glass formation, independent of interaction
potential or other non-geometric tuning parameters. We ultimately demonstrate that the engineering
of fragility in colloidal systems via slight changes to particle shape is possible.

1 Introduction
The transformation of a fluid to a glass as it is quenched beneath
its melting temperature or above its melting density remains yet
to be fully elucidated. Numerous theories1–6 on the thermody-
namics and nature of the glass transition compete for dominance
within the scientific community. Despite the ongoing debate re-
garding the underlying physical mechanism of the glass transi-
tion, however, glass is a material that has been used for thou-
sands of years7 to build tools ranging from vessels that carry wa-
ter to cables that carry light8. Increasingly technical applications
rely on the phase change between a crystal and quenched disor-
der for data storage and memory9,10. These applications benefit
greatly11 from advances in methods to precisely control glass-
former fragility12, a quantity that signifies how dramatically sys-
tems slow down on approach to the glass transition.

Glass-former fragility has been explored extensively over the
last few decades, with most studies agreeing that fragility is re-
lated to local structure. Richert and Angell13 were the first to
consider that fragility might be a consequence of changes to lo-
cal structure, and variation in fragility due to changes in local
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structure has been previously studied by means of tuning polydis-
persity14–17, isotropic pairwise potential shape18–21, local bond-
orientational ordering22, particle aspect ratio23, and tetrahedral-
ity in a modified Stillinger-Weber potential17,24. Recently, we
examined in detail the role that local structure plays generally
in crystallization avoidance and dynamical arrest in a family of
hard-particle glass-formers25. In these systems, where thermody-
namics away from infinite pressure is dictated by entropy maxi-
mization alone, competing local structures exist in glass-formers,
with each structure prevalent in crystals assembled by particles
of closely-related shapes. Thus, local structural competition pre-
vents these glass-forming systems from crystallizing. Because the
origin of this vitrification is due solely to local structural geome-
try, hard particle systems provide an ideal platform for examining
the role of geometry in fragility.

In this paper, using the same family of hard polyhedron glass-
formers25, we show via equilibrated Monte Carlo simulations that
changes to particle shape (and consequently local structure) not
only control whether or not glass formation occurs, but also in-
fluence glass-former fragility. We find that systems are less frag-
ile as particle shapes become increasingly tetrahedral, although
all systems remain in the fragile regime, as is typical for hard
particles26–28. Increasing tetrahedrality corresponds to an in-
creased preference in the system for facet-aligned pairwise mo-
tifs, explored thoroughly in Ref. 25. These motifs are character-
istic of the dodecagonal quasicrystal self-assembled from tetra-
hedra29–31. We perform additional simulations of explicit parti-
cle pairs in baths of “ghost particles" (that is, particles that can-
not overlap with the pair but may overlap with each other) of
the same size and shape as the particles comprising the pair, to
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show that preference for this pairwise configuration can be ex-
plained through free volume exchange between a particle pair
and a surrounding mean field of particles. Finally, we investigate
the three-body structural consequences of this pairwise prefer-
ence through calculation of triplet bond angle distributions in the
equilibrated Monte Carlo simulations. Our results are consistent
with theories32,33 that posit that stronger frustration against pe-
riodic ordering results in stronger glass-formers. In contrast to
other studies, however, here we demonstrate this connection in
a colloidal system of hard particles, permitting a clear demon-
stration of the link between particle geometry, local structure
and glass-forming fragility, independent of interaction potential
or other non-geometric parameters. Our results provide guidance
on engineering fragility in hard polyhedron systems via changes
to particle shape.

2 Methods

2.1 The 323 shape family

All systems studied in this paper are monatomic and consist of
hard, volume-excluding particles culled from a two-parameter
family of polyhedra that are interrelated via continuous trun-
cations. This family, the spheric triangle invariant 323 fam-
ily, contains polyhedra that result from truncating the vertices
and/or edges of a tetrahedron at varying radial distances from
its center. Densest packings34, assembly35,36 and glassy25 be-
havior, and even photonic properties37 of these systems have
been studied elsewhere. Following previous convention35, we
parameterize edge truncation with αa ∈ [0,1] and vertex trunca-
tion with αc ∈ [0,1] such that (αa,αc) = (0,1) and (1,0) both de-
note a tetrahedron, (αa,αc) = (0,0) denotes an octahedron, and
(αa,αc) = (1,1) denotes a cube. The 323 family is displayed in
Fig. 1A, with example polyhedra shown above their location in
this shape space. Note that the family is identical under reflection
across the line αa = αc due to the symmetry of the tetrahedron.

We focus on the glass-forming behavior of four particle shapes
in this family, marked with asterisks in Fig. 1A and shown in
Fig. 1B. These shapes, at (αa,αc) = (0.2,0.5), (0,0.5), (0,0.6),
and (0,0.7), showcase differing degrees of tetrahedral trunca-
tion. Two of them, (αa,αc) = (0.2,0.5) and (0,0.5), were previ-
ously found not to self-assemble into any crystal structure over
a range of densities between φ = 0.5 and φ = 0.6425. The oth-
ers, (αa,αc) = (0,0.6) and (0,0.7), self-assembled a dodecagonal
quasicrystal29,36,38 at φ = 0.6 and φ = 0.56 respectively25. In this
study, we focus on these systems at densities for which no self-
assembly was observed previously, to study their behavior un-
der super-cooled (or more accurately, “super-compressed") con-
ditions.

2.2 Simulations

We performed two types of simulations using the hard parti-
cle Monte Carlo (HPMC)39 extension of the open-source simu-
lation toolkit HOOMD-blue40,41. We first used isochoric Monte
Carlo sampling of one-component systems with constant maxi-
mum move sizes to evaluate dynamical and structural character-
istics of each glass-forming system. To perform sampling, random

trial translations and rotations were attempted and only rejected
if they resulted in particle overlaps. Our particular procedure
was detailed previously in Ref. 25. For each particle shape, we
ran simulations of 4096 particles in which we quenched the sys-
tem from low densities to final densities between φ = 0.3 and
φ = 0.64, equilibrated for approximately 50 million MC sweeps
(between 7.8 and 208,000 τα ) at the final density, and then col-
lected structural and dynamical data for approximately 100 mil-
lion MC sweeps (between 15.6 and 417,000 τα ) at that density.
Here, τα refers to the alpha relaxation time of each system; its
calculation is detailed in the next section and reported in the Re-
sults. Each trajectory length is many times the highest value of τα ,
implying that each system is in equilibrium at least with respect to
the quantities of interest in this paper, and is thus super-cooled (or
in the case of these hard particle systems, “super-compressed").
To perform the quench, we first initialized each system in a sparse
cubic array inside a large cubic box with periodic boundary con-
ditions, then randomized it via isochoric MC sampling for 10,000
MC sweeps, and finally rescaled box vectors by a scale factor of
0.9995 until the target density was reached. During equilibration
and data collection, maximum rotational and translational move
sizes were held fixed at values chosen to most efficiently struc-
turally relax a typical system at (αa,αc) = (0,0.5), φ = 0.6. We
chose a maximum rotational move size that gives a rotational ac-
ceptance ratio of approximately 0.3 in this system at φ = 0.6, and
a maximum translational move size that results in the smallest
relaxation time τα for this system at φ = 0.6, following work done
in other Monte Carlo studies of glass-formers27,42. The relaxation
time was determined through fitting a Kohlrausch-Williams-Watts
(KWW)43,44 function to the real part of the self-intermediate scat-
tering function Fs(k, t) explained in the next section.

We also performed separate “ghost particle" simulations to iso-
late the effects of osmotic pressure on particle pairs. Simulations
consisted of only two particles in the presence of ghost particles
of the same size and shape as the particle pair. In these simula-
tions, we attempted trial moves for each member of the pair, and
rejected moves that resulted in any overlaps with a temporary
set of ghost particles randomly inserted into the free volume of
the old pair configuration. Trial moves were accepted otherwise.
Ghost particles are non-interacting with each other and a new
set (whose number depended on specified ghost particle volume
fraction) was randomly inserted at each trial move, only remain-
ing in memory for the duration of the move. We used the implicit
depletion algorithm developed in Ref. 45; further details can be
found in that reference. For each particle shape, we performed
10 replicate simulations, each of which swept through increas-
ing ghost particle volume fractions between 0 and 30. Note that
since ghost particles do not interact with each other, their volume
fraction can be larger than 1. Initially running the simulation
at a ghost particle volume fraction of 0, or equivalently without
ghost particles, thermalized each system prior to the introduction
of ghost particles at volume fractions greater than 0. We collected
data for 100,000 MC sweeps at each ghost particle volume frac-
tion, in intervals of 100 MC sweeps. We tuned move sizes during
these simulations to maintain move acceptance ratios around 0.2.
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Fig. 1 The systems of interest considered in this study. (A) The 323 shape family, with example polyhedra overlaid above their corresponding locations
in shape space. The particle shapes considered in this paper are denoted by asterisks in shape space, and drawn in (B). Colors of each particle shape
match the color of the corresponding asterisk in shape space.

2.3 Analysis

To characterize dynamics in the four systems studied in this pa-
per, we calculated the mean-squared displacement 〈∆r2(t)〉, the
real part of the self-intermediate scattering function Fs(k, t) (com-
puted at the k value associated with the first peak of the static
structure factor), the non-Gaussian parameter α(t)46, and the
self-part of the four-point susceptibility χSS

4 (t)47. The dynamics of
two of these systems, (αa,αc) = (0.2,0.5) and (0,0.5), were stud-
ied already in our previous work25; plots associated with these
systems are reproduced from Fig. 2 of that paper. For all sys-
tems, we broke each 100 million MC sweep trajectory into 10
windows of 10 million MC sweeps each, since alpha relaxation in
all systems occurred within 10 million MC sweeps. We then took
appropriate ensemble averages of all dynamical order parameters
over these windows. Error bars were determined through either
error propagation or jackknife resampling. The specifics of these
parameters and determination of their errors are thoroughly de-
tailed in Sections I.C and I.D of the Supplementary Information for
Ref. 25, and we refer the interested reader to that resource.

We calculated relaxation times τα (and their associated er-
ror bars) directly from the data by taking the mean (and stan-
dard error of the mean) of all values {t} for which |ReFs(k, t)−
ReFs(k,0)/e| < ∆, where ReFs(k, t) is the real part of the self-
intermediate scattering function and ∆ is a tolerance chosen
from the set {0.01,0.05,0.1}. We chose the ∆ value that gave
a relaxation time τα that produced the best fit of ReFs(k, t) to
a Kohlrausch-Williams-Watts (KWW)43,44 stretched exponential
functional form, Bexp[−(t/τα )

β ], at all densities. We varied B
and β as fitting parameters. Further detail regarding the fitting
procedure, as well as the fits themselves, can be found in the Sup-

plementary Information.

For each system, we scaled density by the factor φC and relax-
ation time by the factor κ to facilitate comparison of their relax-
ation times on a single plot. Density scaling accounts for possi-
ble variation in the onset of the glass transition among systems,
while relaxation time scaling accounts for the different length
scales (and thus different values of k – corresponding to the first
peak of the static structure factor – used to calculate the self-
intermediate scattering function and consequent relaxation time)
associated with each particle shape. κ is defined for each system
by κ−1 = τα (φ = 0.3). This scaling collapses the data for small
φ . Similar scaling has been performed elsewhere27,48,49. φC is
defined for each system as the density at which τV FT

α (φC) = 2
million MC sweeps. τV FT

α (φ) is the extrapolation of τα according
to its fit by a modified Vogel-Fulcher-Tammann (VFT) functional
form50:

τ
V FT
α (φ) = τ∞ exp

[
A

(φ0−φ)δ

]
(1)

We used δ = 2 because this form has been found to accurately
model relaxation times in other hard particle systems at high den-
sity27,48,51.

We quantified the fragility of each system by calculating the
slope s(φ/φC) ≡ ∂ logτα/∂ (φ/φC) directly from the relaxation
time data, rather than relying on any fits to this data. To calcu-
late this derivative at each value of φ/φC, we used second-order
accurate central differences for interior values of φ/φC and first-
order accurate differences at the boundary values of φ/φC via
NumPy’s gradient method52. We calculated the error associated
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with each slope by propagation of the errors associated with each
relaxation time. Specifically, we calculated the variance of each
slope as a first-order Taylor series expansion of the variances of
the relaxation times used to calculate that slope according to the
appropriate difference formula.

The glass transition limit of the slope s(φ/φC) is known as the
“fragility"53 or “steepness index"54. This parameter, denoted by
m in the literature, defines the slope of the (usually extrapolated)
relaxation curve at the glass transition, and is larger for more
fragile glass-formers. However, we have chosen to report the nu-
merical derivative s(φ/φC) at all densities, rather than the single
scalar m, to indicate the relaxation behavior of our systems on ap-
proach to the glass transition. As φ increases, there is a φ regime
in which a more fragile glass-former’s slope s(φ/φC) is larger than
the slope for a less fragile glass-former. Our choice is maximally
transparent, and most importantly, does not rely explicitly on any
fits to theoretical models. Our goal is not to locate the exact glass
transitions of our systems, but instead to investigate relative dif-
ferences in fragility on approach to the glass transition as particle
shape is changed.

3 Results and Discussion

3.1 Glassy dynamics

Fig. 2 shows four order parameters that characterize dynamics
associated with glass formation, each calculated for the four sys-
tems studied in this paper at a variety of densities. We find that
all quantities behave as expected for a fluid or liquid approaching
the glass transition. The top two rows of Fig. 2 show 〈∆r2(t)〉
and Re[Fs(k, t)], where we set k to be the value associated with
the first peak of the static structure factor for each system. Static
structure factors are shown in the Supplementary Information. For
all systems, plateaus develop in these parameters at intermediate
times and high densities, and plateaus persist for longer times
as density increases. These plateaus indicate caging in the sys-
tem, when particles on average are trapped by their surrounding
neighbors, and dynamics slow. Only at later times do particles
escape these cages, and dynamics become diffusive. The bottom
two rows of Fig. 2 show α(t) and χSS

4 (t). Peaks in these parame-
ters generally develop at later times and grow in height as density
increases. The time at which each peak occurs also matches, to
eye, the transition from a caged regime to a diffusive regime in
the corresponding 〈∆r2(t)〉 and Re[Fs(k, t)] signatures. Peaks in
α(t) and χSS

4 (t) indicate dynamical heterogeneity in the system;
that these parameters reach their maxima around the time when
〈∆r2(t)〉 and Re[Fs(k, t)] show a transition from a caged regime to
a diffusive regime implies that the relaxation events associated
with cage escape are dynamically heterogeneous, in agreement
with behavior reported in many other glass-formers55–60. Previ-
ous works have indicated that relaxation proceeds via cooperative
rearrangement57,58,61,62. We leave a more detailed study of spa-
tially heterogeneous dynamics in these systems to future work.

We note that the increase in α(t) as t→ 0 at short times is due
to the discrete nature of Monte Carlo sampling; this behavior is
in contrast to that for systems simulated via molecular dynamics
(for which α(t)→ 0 as t → 0, see e.g. 57,63) and may appear

unusual at first glance. We refer the interested reader to Ref. 25
for more detail regarding this point.

3.2 Fragility

Fig. 3A shows relaxation time τα for the four systems examined
in this paper. Error bars indicate standard deviations of the mean,
and are smaller than the marker size. Lines in Fig. 3A are VFT fits
to the relaxation data (see the Methods section for more detail).
For some systems, relaxation times at high φ fall off the trend lines
established by the VFT fits, in agreement with relaxation times
observed in systems of hard tetrahedra in Ref. 27. The authors
of that paper hypothesized that this deviation from the VFT fit
was due to higher order local structure formation in systems of
tetrahedra at high density. We do not speculate on the cause of
this peculiar behavior here, but merely note that as a result of
this behavior, we did not include some values of τα at high φ

when fitting the VFT functional form to our data. Were we to
include those values, the accuracy of the VFT fits would be greatly
reduced. Solid lines in the figure pass through the data points that
were actually fit, and dotted lines indicate continuations of the fit
function.

Fig. 3B shows scaled relaxation time as a function of scaled
density for our sample systems (see the Methods section for more
detail). Error bars for each scaled relaxation time are the ap-
propriately scaled standard deviations of the mean, and remain
smaller than the marker size. Relaxation times for each particle
shape show different slopes (plotted in Fig. 3C as s(φ/φC)) on
approach to the glass transition, and thus different fragilities. Er-
ror bars are smaller than marker sizes, and were determined as
detailed in the Methods section. Fig. 3C shows generally that,
as particle shape increases in tetrahedrality, s(φ/φC) is smaller in
the high density regime. Thus, particle shapes with increasing
tetrahedrality are less fragile. Crucially, these systems’ drop in
s(φ/φC) occurs in the density regime for which their τα values
fall below the VFT fits, as mentioned previously and shown inset
in Fig. 3B. This apparent decrease in fragility at high density is
reminiscent of the fragile-to-strong crossover64 seen in molecular
tetrahedral systems at low temperature, including silicon65, sil-
ica66, water67, and confined water68. We do not have adequate
data to support claims of a similar crossover in our systems, so we
must instead conservatively say that all of our systems are frag-
ile, but that some are less fragile than others. The connection to
the fragile-to-strong crossover remains intriguing, however, and
emphasizes regardless the importance of determining fragility di-
rectly from the data in our systems, rather than relying on VFT
fitting procedures. Our result, that systems are less fragile as
their constituent particle shapes are increasingly tetrahedral, is
consistent with others18,20 that show a decrease in fragility with
an increase in some aspect of tetrahedrality in the system. It also
tracks with the more general common knowledge that tetrahe-
dral network glass-formers are strongest69. We note, however,
that all systems studied here are fragile glass-formers; each sys-
tem’s growth in relaxation time is super-Arrhenius over the entire
density range shown. Indeed, systems of hard particles of varying
shapes, experimental or computational, typically exhibit fragile
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Fig. 2 The mean-squared displacement 〈∆r2(t)〉, the real part of the self-intermediate scattering function Fs(k, t), the non-Gaussian parameter α(t),
and the four-point susceptibility χSS

4 (t), measured at a variety of densities for the indicated state points in our shape space. Signatures in all four order
parameters indicate that these systems are glass-formers. The increase in α(t) as t→ 0 is due to the discrete nature of our Monte Carlo sampling.

Journal Name, [year], [vol.],1–11 | 5

Page 5 of 12 Soft Matter



behavior26,28, and super-Arrhenius relaxation behavior was also
observed in a system of hard non-truncated tetrahedra studied
elsewhere27.

For completeness, we tabulate parameters associated with VFT
fits to our data in the Supplementary Information. However, we
note that due to the aforementioned discrepancies in τα at high
φ and our consequent ad hoc fitting procedure, these values may
not be especially informative.

Finally, we note that we have used φ as the control parame-
ter to indicate approach to the glass transition, in deference to
standards established by a wealth of literature on hard particle
glasses – including hard anisotropic ellipsoid and dimer particle
glasses23,28,70–72 – and due to the experimental accessibility of
volume fraction. However, recent work51 argues that the rele-
vant control parameter in hard particle systems is reduced pres-
sure (or compressibility factor) rather than density. We include an
analysis of our systems using reduced pressure rather than den-
sity in the Supplementary Information. Curiously, because of these
systems’ different particle shapes and thus different dependencies
of reduced pressure on density, Angell plots of τα with respect to
pressure look very different than those shown in Fig. 3B. Indeed,
systems of hard polyhedra of various geometries are known to
have varying equations of state73. As far as we know, our obser-
vation of a qualitative difference in a multi-system Angell plot as
a function of pressure rather than density, a consequence of the
systems’ differing equations of state, is the first reported for sys-
tems of hard anisotropic particles. The only other instance of this
phenomenon of which we are aware occurs for isotropic spheres;
in this case, curves of τα for systems of varying polydispersity col-
lapse when plotted against the compressibility factor Z, but do
not collapse when plotted against the density74. In our case, by
contrast, the shapes of the τα curves for different particle shapes
change when plotted against compressibility factor Z rather than
density, and collapse does not happen. Nevertheless, our general
finding that more tetrahedral particles are less fragile at high den-
sities (or high pressures) still holds, since these systems still have
smaller-than-expected relaxation times (with respect to a VFT ex-
trapolation) in the high pressure regime.

3.3 Local pairwise structure

To explicitly correlate structure and dynamics on approach to the
glass transition, we investigated local structure in our systems.
We first considered pairwise structural motifs, or arrangements
of every particle with respect to its nearest neighbor. In pre-
vious work25, we found that competition in pairwise structures
prevents crystallization and facilitates dynamical arrest. One of
these competing local structures, which we termed the “aligned"
motif, consists of two truncated tetrahedra that are face-to-face
such that their (truncated) vertices are aligned with each other.
An example of this arrangement is shown in the inset of Fig. 3D.
We found that this motif is dominant25 in the dodecagonal qua-
sicrystal that self-assembles from particles that are close to the
tetrahedron in shape space29–31,36,38.

Here we find that this motif becomes more prevalent as density
(and relaxation time) increases in all four systems considered in

this paper. Less fragile glass-formers with increasingly tetrahedral
constituent particle shape are increasingly dominated by particle
pairs in the aligned configuration at all densities. Regardless of
fragility, the fraction of particles participating in the aligned mo-
tif increases as relaxation time increases, although less drastically
for the more fragile systems due to the presence of other pair-
wise motifs. Fig. 3D shows these trends. It displays the fraction
of aligned pairwise motifs in each system as a function of den-
sity scaled by φC. Aligned motifs were identified by their con-
nection type (face-to-face) and relative rigid body misorientation
(θ ∼ 70◦); further detail can be found in Ref. 25. Aligned mo-
tif fractions were calculated in frames separated by 1 million MC
sweeps. Motif fractions were collected over groups of 10 frames
each, and the mean values are plotted in Fig. 3D with error bars
associated with the standard deviation of the mean. Error bars
are smaller than marker sizes in all cases.

3.4 Preferred pairwise configurations due to free volume ex-
change in a mean field

To further explore the observed preference for the pairwise
aligned motif at increasing density and particle tetrahedrality in
our systems, we performed simulations of only two particles in
the presence of ghost particles of the same size and shape as the
particle pair. Simulation details can be found in the Methods sec-
tion. These simulations represent reduced systems that isolate the
local packing preferences for only a pair of particles with respect
to a surrounding mean field of particles. At a specified ghost parti-
cle volume fraction, the simulations agnostically produce pairwise
particle configurations that maximize system entropy as mediated
by free volume exchange between the pair and the surrounding
bath of ghost particles. This is in contrast to the other hard par-
ticle Monte Carlo simulations reported in this work, in which all
particles are explicit and local packing preferences of groups of
more than two particles may influence local structure and global
behavior.

We find that the aligned pairwise motif emerges in these sim-
ulations, and its emergence behaves qualitatively similarly to the
emergence of the aligned pairwise motif in our full glass-former
simulations: aligned pairwise motif prevalence increases with in-
creasing ghost particle density and increasing particle tetrahedral-
ity. Fig. 4 shows these results: for each particle shape at varying
ghost particle volume fractions, we plot the fraction of pair mem-
bers observed to adopt the aligned motif with their neighbor. To
calculate these fractions, we identified whether each pair member
adopted the aligned motif with its neighbor in each simulation
snapshot at a particular ghost particle volume fraction, then com-
puted the fraction of aligned motif instances over all pair mem-
bers and all snapshots. We then averaged aligned motif fraction
over all replicate simulations at each ghost particle volume frac-
tion. Error bars show the standard deviation over all replicates.

Our results suggest two conclusions. The first is that the con-
sideration of pairwise interactions in a mean field of surround-
ing particles, as theoretically explored by van Anders et al.75, is
enough to explain the local structure of our hard particle systems
even though higher-order interactions may be present in the sys-
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Fig. 3 Glass-forming systems exhibit a range of fragilities, with systems becoming “stronger" (less fragile) as particle shapes become increasingly
tetrahedral, indicated by increasingly red color. (A) An Angell plot of relaxation time as a function of density. Relaxation time is in units of 10 MC
sweeps. Lines through the data points are VFT fits to relaxation time. Error bars are smaller than the marker size. (B) A scaled Angell plot, where
density is scaled by φC and relaxation time is scaled by κ, both defined in the main text. Error bars are scaled appropriately and remain smaller
than the marker size. Inset is a zoom of the same plot at high density, showing that measured relaxation times in several systems fall well below the
extrapolated VFT fit. (C) Slope of the log of relaxation time, s(φ/φC)≡ ∂ logτα/∂ (φ/φC), as a function of scaled density. Systems of more tetrahedral
particle shapes tend to be stronger. Error bars are smaller than the marker size. (D) Fractions of particles in the aligned pairwise motif as a function
of scaled density. An example of this motif for the particle shape (αa,αc) = (0,0.5) is inset. Error bars are smaller than the marker size.

tem. The second is that tetrahedral particles adopt the aligned
motif at high enough volume fraction because this pairwise con-
figuration gives more free volume to the surrounding particle bath
than any other pairwise arrangement, and as particles become in-
creasingly tetrahedral, the free volume advantage of the aligned
motif only increases. Thus, as particles increase in tetrahedrality,
they are more likely to adopt the aligned motif at lower volume
fractions. Emergent entropic forces in the system, in other words,
increasingly bias pairs of particles towards the aligned configura-
tion as particles increase in tetrahedrality.

3.5 Higher-order structure
We additionally investigated the higher-order structural implica-
tions of preferred pairwise configurations in our systems. We
measured bond angle distributions to examine three-body struc-
tural signatures and to place our work in the context of other com-
putational studies of quenched liquids of varying tetrahedral bond
strength and flexibility17,24,76–79. Some of these studies76,78,79

used distributions of triplet bond angles to demonstrate the struc-
tural effects of changes to imposed bond strength or flexibility:
they found that as tetrahedral bond strength increases or bond
flexibility decreases, triplet bond angle distributions become in-
creasingly peaked around the ideal tetrahedral angle ∼ 109.5◦.

Our results, shown in Fig. 5, are in general agreement with
that result. We found the nearest four neighbors of each particle
in our systems, then calculated bond angles between that particle
and all possible two-neighbor subsets. We define bond angle to be

the angle between the vectors pointing from the center of mass
of the particle to the centers of mass of its two specified neigh-
bors. We accumulated histograms of bond angles over windows
of 10 frames separated by 1 million MC sweeps, then ensemble-
averaged these histogram bin values over 10 such windows in
each trajectory. Error bars are standard deviations of the mean.

We will address the behaviors of the system at (αa,αc) =

(0.2,0.5) and the systems with no edge truncation at (αa,αc) =

(0,0.5), (0,0.6), and (0,0.7) separately. For the systems with no
edge truncation, we see an increasing peak around the ideal tetra-
hedral angle ∼ 109.5◦ (shown as a dotted vertical line in Fig. 5)
with increasing density and as particle shape becomes increas-
ingly tetrahedral, from (αa,αc) = (0,0.5) to (0,0.7). Effects due to
subtle changes in particle shape are subtle, but they can especially
be seen for packing fractions below φ = 0.62. To quantify these
effects, we calculated the full width at half-maximum (FWHM)
of the bond angle distributions for (αa,αc) = (0,0.5), (0,0.6), and
(0,0.7) at all measured values of φ . Bond angle FWHM values are
shown in the Supplementary Information. We find that the bond
angle FWHM decreases with increasing density, and is lower for
more tetrahedral particles at almost all measured values of φ . The
behavior of the tetrahedral bond angle peak as a function of den-
sity and particle shape tracks the behavior of the aligned pairwise
motif fraction, shown in Fig. 3D; thus, it seems that the aligned
pairwise motif is an indicator of tetrahedral network structure at
least on a three-body level. The small peak around 45◦ that re-
mains consistently present at densities φ ≥ 0.5, upon inspection by
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Fig. 4 Results of ghost particle simulations of particle pairs, showing that as particle shape becomes increasingly tetrahedral and as ghost particle
density grows, particle pairs are more often in the aligned configuration. Aligned motif fraction is plotted as a function of ghost particle density for
all particle shapes, drawn in corresponding colors to the right of the plot. The inset shows an example of the aligned pairwise motif. Error bars were
calculated at all ghost particle densities via methods explained in the main text.

eye, seems to indicate the acute bond angle between one tetrahe-
dron and two of its neighbors that are aligned face-to-face with
each other. An example snapshot of this type of motif is shown in
the Supplementary Information.

The bond angle distribution for (αa,αc) = (0.2,0.5) becomes in-
creasingly bimodal with increasing density: its peak at ∼ 116.6◦

(consistent with an icosahedral local environment) remains con-
sistent with increasing density, while its other peak moves from
∼ 63.4◦ (also consistent with an icosahedral local environment)
at the lowest density shown to ∼ 70.9◦ at the highest density
shown. These peaks are distributed over bond angle values closer
to those found in the close-packed structures of bcc, fcc, and γ-
brass. Bond angles for these crystals are calculated and shown
in the Supplementary Information, along with a plot showing the
bond angle distributions for (αa,αc) = (0.2,0.5) at all densities
simultaneously. In Ref. 25, we found that the glass-former at
(αa,αc) = (0.2,0.5), close in shape space to systems that crystal-
lize into bcc, fcc, and γ-brass, contains pairwise motifs from some
of those structures. Thus, the similarity found in this work be-
tween the glass-former and these crystals on a three-body struc-
tural level seems reasonable.

3.6 Frustration

A periodic crystal consisting of all particles forming aligned pair-
wise motifs with each of their tetrahedrally coordinated neighbors
is impossible due to the frustration inherent in perfect polytetra-
hedral ordering80; thus, the aligned motif is indicative of a locally
preferred structure that globally frustrates against periodic order-
ing, but may give rise to quasiperiodic ordering (in the form of a
dodecagonal quasicrystal) when higher-order rearrangements of
groups of face-to-face aligned particles occur29. We find that sys-
tems become less fragile as frustration against periodic ordering
increases, in agreement with results14,15,22 supporting a crystal-
lization/frustration competition theory32,33. Our study puts this
idea into a concrete, geometrical context: systems of hard poly-
hedra grow less fragile as they move closer to the tetrahedron in

shape space.

4 Conclusions
We have shown that hard polyhedral glass-formers with particle
shapes culled from a two-dimensional shape space have glass-
forming properties that are related to and dependent upon their
position in this space. We found a range of fragilities over a
small range of particle shapes related to the regular tetrahe-
dron. Stronger (i.e. less fragile) glass-formers result when par-
ticle shape is less truncated and thus more tetrahedral. We em-
phasize, however, that all systems remain in the fragile regime, as
is expected for hard particles.

We took advantage of the purely geometric nature of our hard
particle model to isolate the influence of local structure on sys-
tem fragility, and found that glass-forming strength corresponds
to an increased preference for a pairwise aligned motif– locally
preferred but globally impossible– at all densities. Via simulations
of explicit pairs of particles surrounded by a field of ghost parti-
cles, we verified that this preference for the aligned motif could be
explained by considering free volume exchange between particle
pairs and a surrounding mean particle field. We also investigated
three-body structural effects in our systems via the calculation
of triplet bond angles, and found that systems with only vertex
truncation show a more pronounced peak around the tetrahedral
bond angle with increasing prevalence of the aligned pairwise
motif. The system with both edge and vertex truncation contains
bond angles more associated with close-packed structures at all
densities.

We note that in this paper we have focused on translational re-
laxation only, and left the study of rotational relaxation in these
systems to future work. Investigations regarding rotational relax-
ation and its relationship to translational relaxation are numer-
ous in molecular81 and colloidal82 systems, and a recent study
found an apparent orientational glass transition in a plastic crys-
tal consisting of hard polyhedral particles83. We look forward
to studying in the future the relationship between rotational and
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Fig. 5 Bond angle distributions for the four particle shapes studied in this paper and drawn in the lower right plot. Distributions for all particle shapes
at varying densities are overlaid in each plot, with the density specified in the upper right corner. Colors of the distributions identify the particle shape
of each system. Error bars were calculated via methods defined in the main text. The ideal tetrahedral bond angle, ∼ 109.5◦, is drawn as a dotted line
in each plot. For the particle shapes with vertex truncation only, peaks around the ideal tetrahedral angle become more pronounced with increasing
density and as particle shape becomes more tetrahedral. For the particle shape with edge and vertex truncation, bond angles more closely match those
found in close-packed structures.
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translational relaxation in the hard particle systems investigated
in our paper.

In sum, we have demonstrated a new means of tuning fragility
via the tuning of particle shape and consequent local struc-
ture. We have found, in agreement with other studies32,33, that
stronger frustration against periodic ordering results in stronger
(less fragile) glass-formers. The truncated tetrahedral particle
shapes we have investigated are accessible experimentally84,85,
in addition to a host of other polyhedral nanoparticle geome-
tries86. Truncated tetrahedral nanoparticles, in particular, were
found to self-assemble into quasicrystalline84 and other super-
structures85 also characterized by preferred face-to-face align-
ment; thus our work may help guide the engineering of glass-
formers in related experimental systems. More broadly, our
results represent a link between pure geometry and fragility,
and thus our conclusions may apply generically to systems in
which more complicated interaction potentials or other non-
geometric considerations might otherwise obscure the physics
governing glass-former fragility, such as chalcogenide compounds
whose heat-induced switching between amorphous and crys-
talline phases enables phase-change memory devices9,10 and is
affected by system fragility11.
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More tetrahedral particle shapes make less fragile hard particle glass-formers, as evidenced by the 
density-dependent slope of the log of relaxation time, .𝑠(𝜙 𝜙𝐶) ≡ ∂log 𝜏𝛼/ ∂(𝜙 𝜙𝐶)
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