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Light-triggered Explosion of Lipid Vesicles†

Vinit Kumar Malik,a Sangwoo Shin,b and Jie Feng∗a

Lipid vesicles have received considerable interest because of their applications to in vitro reductionist
cell membrane models as well as therapeutic delivery vehicles. In these contexts, the mechanical
response of vesicles in nonequilibrium environments plays a key role in determining the corresponding
dynamics. A common understanding of the response of lipid vesicles upon exposure to a hypotonic
solution is a characteristic pulsatile behavior. Recent experiments, however, have shown vesicles
exploding under an osmotic shock generated by photo-reactions, yet the explanatory mechanism is
unknown. Here we present a generalized biophysical model incorporating a stochastic account of
membrane rupture to describe both swell-burst-reseal cycling and exploding dynamics. This model
agrees well with experimental observations, and it unravels that the sudden osmotic shock strains
the vesicle at an extreme rate, driving the vesicle into buckling instabilities responsible for membrane
fragmentation, i.e. explosion. Our work not only advances the fundamental framework for non-
equilibrium vesicle dynamics under osmotic stress, but also offers design guidelines for programmable
vesicle-encapsulated substance release in therapeutic carriers.

1 Introduction
Giant unilamellar vesicles (GUVs) are commonly employed as a
simple representative system to study biological cell behaviors.
In addition, with the development of biological techniques and
use of bottom-up approaches, GUVs also serve as fundamental
building blocks to construct a cell-mimicking system1. Therefore,
GUVs are considered as an excellent tool for enhancing a funda-
mental understanding of lipid membranes and artificial cells rang-
ing from studying phase separation and lipid domain emergence2

to modeling physiological response of cells to their extracellu-
lar environment3,4. In these contexts, the mechanical response
of vesicles plays a key role in predicting shape transformation
of cells5, illuminating the origins of life6, and determining the
content release dynamics in targeted nanotherapeutics7; leaving
vesicle stability in nonequilibrium environments an indispensable
aspect of the dynamics. In particular, osmoregulatory has a signif-
icant effect on vesicle stability, sometimes leading to drastic out-
comes such as fusion and fission of cells and liposomes8,9. Hence,
vesicles response under osmotic stress has been a topic of inter-
est in the soft matter community for decades10–15. For instance,
as illustrated in Fig. 1a, a vesicle swollen due to hypotonicity
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will relax following initial bursting, subsequently resealing owing
to the excess pore edge energy. This cycle of swell-burst-reseal
continues until the osmotic gradient drops below a value that the
vesicle membrane can withstand.

Recently, light-induced osmotic shock has been used to trigger
catastrophic lysis of micro-scale vesicles, resulting in rapid release
of inner contents16,17 in contrast to continuous pulsatile behav-
ior18. During rupture under such conditions, formation of only a
single pore in the vesicle membrane has been observed17. We re-
fer this scenario as “exploding”, in which the vesicle becomes un-
stable, with the membrane fragmenting into daughter structures
as shown in Fig. 1b. It has been suggested that photo-chemical
reactions of encapsulated photoactive materials lead to a sudden
increase of osmotic imbalance, as an “active osmotic gradient”,
causing vesicle explosion16. Nonetheless, a general framework
that allows the bifurcation of vesicle dynamics into either swell-
burst-reseal cycling (Fig. 1a) or exploding (Fig. 1b) has not been
explicated so far (see Table S1 for a summary of previous litera-
tures). Such questions arise not only in vesicle osmoregulation,
but also in other important scenarios, such as osmosensing and
osmosignaling in living cells. In addition, the selective and rapid
release of entrapped species from various compartments in artifi-
cial cells is another example where such a framework can provide
guidelines in a soft matter system19.

Here we develop a general biophysical model for the osmotic
response of vesicles under the light-triggered osmotic shock, in-
tegrating stochastic poration of the membrane, continuum trans-
port and light-induced reactions. We first present a stochastic ac-
count of membrane poration in order to accommodate strain-rate-
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Fig. 1 Schematic for the dynamic response of a lipid vesicle under an active osmotic gradient. A vesicle may follows two experimentally observed
paths under an active osmotic gradient: (a) Pulsatile swell-burst-reseal cycling, in which the pore forms and reseals cyclically until the membrane can
withstand the residual osmotic pressure; (b) Exploding, in which the vesicle explodes along with the formation of smaller daughter structures.

dependent responses of the lipid membrane. Next, we develop
a vesicle model based on Helfrich’s curvature elasticity using a
Lagrangian framework to account for viscous dissipation, which
captures the essential quantitative features for pulsatile vesicle
dynamics. Then we account for light-triggered chemical reaction
and discuss vesicles explosion with our model. The model’s pre-
diction is in good agreement with experimental observations of
vesicle explosion. Finally, we discuss the bifurcation conditions
under which irreversible exploding is favorable.

2 Model
2.1 Stochastic approach for pore formation

Even in a relaxed state, lipid membranes spontaneously form pre-
pores (i.e. metastable hydrophilic defects) as a result of non-
uniform membrane lipid density due to thermal fluctuations. For
a prepore to become unstable and transition into a pore, it must
overcome two energy barriers: the nucleation energy barrier ∆En,
and the cavitation energy barrier ∆Ec

20,21. At low membrane
tension, ∆Ec dominates ∆En, and thus controls the distribution
of the membrane lytic tension, σl , under external stress. How-
ever, above the cross-over membrane tension, ∆En determines
the membrane failure rate. Only recently, a stochastic approach
has been considered for incorporating a strain-rate-dependant re-
sponse to osmotic stress, using the Langevin approach to model
pore formation15. However, that model has not included ∆En,
and hence is only suitable for small tension loading rates and
low membrane tension. Photo-assisted chemical reactions, in con-
trast, can induce a large osmotic gradient rapidly, causing a very
high loading rate, σ̇ .

To account for the strain-dependent response in both scenar-

ios, we propose a generalized model for pore formation. We de-
termine σl by introducing a semi-analytic technique of combining
the kinetics of membrane rupture with vesicle dynamics through a
Monte-Carlo sampling approach. Following Evans and Smith22,
the survival probability of the vesicle membrane S(σ) under a
constant σ̇ is formulated as

dS(σ)

dσ
=

−khole

σ̇
S(σ). (1)

Here, khole is the frequency of prepore occurrences which depends
on σ̇ , line tension γ, and the lateral membrane tension σ . The
dependence of membrane rupture probability on ∆En and ∆Ec is
inherently embedded in the expression of khole

22. To get a di-
rect relationship between survival probability S(σ) and σ , Eq. 1
is written in terms of σ through a variable change σ = σ̇t and
solved with the initial condition, S(0) = 1. Figures 2a and b illus-
trate a typical stochastic process of pore formation presenting the
probability density of rupture pr = −dS(σ)/dσ (solid red curve,
Fig. 2a), and the probability distributions of σl under different
loading rates (Fig. 2b). Importantly, these plots illustrate that
the most probable σl increases with σ̇ . To determine σl for each
swell-burst cycle, samples are drawn from the probability distri-
bution informed by σ̇ using a Monte-Carlo approach (100 draws,
for details see SI section II). We overlay a kernel density estima-
tion (KDE) of sampled σl with pr to show the underlying proba-
bility distribution (Fig. 2a). The good agreement between true
distribution and KDE confirms the feasibility of such an algorithm
to determine the membrane rupture events of vesicles under os-
motic stress.The probability distribution with respect to various
loading rates will be used to determine the most probable σl for
later discussion as well as the comparison with the experiments.
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Fig. 2 Stochastic kinetics of hole nucleation in a lipid membrane. (a) Probability density of membrane rupture. The red solid line represents a true
probability distribution obtained from the numerical solution of Eq. 1 (for σ̇ = 0.1 mN/m/s). The blue histogram shows samples drawn from the true
distribution (100 draws). The green dashed line shows a Gaussian kernel density estimation (KDE) of the drawn samples. (b) Probability density of
membrane rupture under different σ̇ . The distribution of membrane lytic tension shifts towards the right with increasing σ̇ . (c) Geometrical schematic
of the vesicle model. R is the instantaneous radius of a vesicle, and α is the angle subtended by the pore at the center. ∆p = pin − pout is the Laplace
pressure jump. The arrows show the mass transport in (qin) and out (qout) of the vesicle. (d) Model comparison with the pulsatile experiments 15.
(see Table S2 for the material properties used in the simulation)

2.2 Pore evolution

To model vesicle dynamics, we employ the Helfrich’s spontaneous
curvature-elasticity framework which allows us to include the ef-
fect of spontanesous curvature, Hs

23. The spontaneous (or intrin-
sic) curvature Hs is defined as the preferred curvature of the lipid
bilayer for which the bending energy is minimum24. For a sym-
metric lipid bilayer system, Hs = 0, although it can be non-zero
if the lipid bilayers are facing different solute species or concen-
trations25,26. The total energy, E, of the vesicle system can be
written as

E = 2πγRsinα +
σ2

2K
A0 +

1
2

kb

∫
A
(H −Hs)

2 dA

−
∫ R

R0

∆p 2πR2(1+ cosα)dR.

(2)

In writing Eq. 2, we assume a spherical geometry of the vesicle
with a single circular pore embedded in it (Fig. 2c). Here we
use the instantaneous radius, R, and the angle subtended by the
pore at the center, α, as our configuration space, while R0, A0,
A, K, and kb are the vesicle’s initial radius, initial area, instan-
taneous area, membrane compressibility coefficient, and bending
rigidity respectively. The total energy E in Eq. 2, is comprised
of energy contributions from the pore edge10, membrane stretch-
ing25 and bending23 as well as the work done by pressure due
to changes in the volume of the system. Differing forms of Eq. 2
have been used in the theoretical frameworks ranging from inter-
preting shape fluctuations in the spectra of microemulsions and

vesicles27 to understanding phase separation dynamics of vesi-
cles28–30.

As the membrane relaxes upon rupture, the energy is dissipated
by viscous forces in both the membrane12,13,31 and the surround-
ing fluid32,33. During the pore lifetime, we account for viscous
damping through a Rayleigh dissipation function as

Φ = πC1ηsRsinαR2α̇2 +2πC2ηmdR2α̇2, (3)

where C1 and C2 are geometric coefficients coming from a de-
tailed flowfield solution in a recent study34. ηs, ηm, and d are the
solvent viscosity, membrane viscosity, and membrane thickness
respectively. The first term on the right hand side of Eq. 3, rep-
resents the viscous losses due to a relaxing membrane imparting
motion to the surrounding fluid while the second term accounts
for the internal membrane viscous losses. In Eq. 3, the viscous
dissipation due to dilation, i.e. Ṙ, is neglected. We treat Eqs.
2 and 3 in the Langrangian framework with non-conservative
forces, while neglecting inertia, to obtain the governing equations
for evolution of vesicle system as

1
R

∂ E
∂α

=− ∂ Φ
∂ (Rα̇)

, (4a)

∂ E
∂R

=− ∂ Φ
∂ Ṙ

. (4b)

Equation 4a gives the governing equation for pore evolution as
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Fig. 3 Experimental data extraction for the light-triggered exploding of vesicles. (a) Experimental images from Zhu and Szostak 16. Vi is the ith

vesicle. (b) R̃ = R/R0 of the representative vesicles with respect to time. The lines passing through the symbols are a linear fit. (c) Total number of
moles generated inside the vesicles as a function of time. The lines passing through the symbols represent an exponential fit of the form A(1− e−kit),
where ki is the chemical reaction rate constant obtained for the ith vesicle.

simplified below(
C1Rsinα +2C2ηmd

)
α̇ =

(
− γcosα

R
−

2σR2
0

KR2
∂ σ
∂α

+
1
2

kb(H −Hs)
2sinα

)
.

(5)

Additionally, from Eq. 4b, we obtain a relation governing the
excess pressure, ∆p = pin − pout , as

∆p =
γsinα

R2 (1+ cosα)
+

2σR2
0

KR2 (1+ cosα)

∂ σ
∂R

+ kb

(
H2

s
R

− 2Hs

R2

)
,

(6)

using H = 2/R for a sphere. To compute ∂σ/∂R and ∂σ/∂α ,
as presented in Rawicz et al.35, we use the constitutive relation
between area strain εa = A/A0−1 and membrane stress σ written
as

2πR2 (1+ cosα)−4πR0
2

4πR0
2 =

kBT
8πkb

ln
(

1+
σAs

24πkb

)
+

σ
K
. (7)

The term on the left hand side of Eq. 7 represents the area strain
εa, where we use the relation A = 2πR2 (1+ cosα) for instanta-
neous surface area of the vesicle and A0 = 4πR0

2 for the initial
vesicle surface area. The first term on the right-hand side of Eq. 7
represents flattening of soft thermal undulations, while the sec-
ond term takes account of the direct Hookean-like membrane
stretching. During initial stretching, the undulation term dom-
inates the membrane response, however the direct stretch term
will dominate once the undulations are flattened out.

To incorporate stochasticity of pore nucleation in a membrane,
we rewrite Eq. 5 to govern the nucleation and evolution of pore
as below(

C1Rsinα +2C2ηmd
)

α̇ =

(
− γcosα

R
−

2σR2
0

KR2
∂ σ
∂α

+
1
2

kb(H −Hs)
2sinα

)
θ(σ −σl).

(8)

We use the Heaviside step function, θ(σ −σl), such that α̇ = 0
for σ < σl . Here, we obtain σl by sampling from the probabil-
ity distribution (Fig. 2a) obtained by solving Eq. 1. Next, we
will develop the governing equations for the vesicle radius R and
osmotic difference across the membrane ∆c respectively.

2.3 Mass conservation for solvent

As shown in Fig. 2c, the solvent flows into the vesicle (qin) as
it experiences a hypotonic osmotic imbalance. At the same time,
the inner contents of the vesicle leak out (qout) through the pore
by the pressure jump, ∆p. We utilize the continuity principle for
the governing relation of R written as

dV
dt

= qinA−qoutAp, (9)

where V = π
3 R3

(
2+ 9

4 cosα − 1
4 cos3α

)
represents the volume of

the vesicle. Substituting the volume V in Eq. 9 and simplifying
using trigonometry identities, we obtain

(
A+Apcosα

)
Ṙ = qinA− (qout −Rα̇sinα)Ap. (10)
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Here, A = 2πR2 (1+ cosα) denotes the surface area of the vesicle,
and Ap = πR2sin2α represents the area of the circular pore (Fig.
2c). Assuming low Reynolds number regime, ∆p relates to the
leak-out flow qout as

qout =
∆pRsinα

Qηs
, (11)

where Q is a geometric coefficient that generalizes the Sampson
flow through a circular orifice embedded in a plane to a finite
spherical geometry of the vesicle34. Using the Starling hypothe-
sis36, we relate the solvent influx qin as

qin = Pνs

(
∆c− ∆p

RGT

)
, (12)

where P is the permeability coefficient of the lipid bilayer, ∆c is
the concentration difference across the membrane, νs is the sol-
vent molar volume, and RG is the universal gas constant. From
Eq. 11, the excess pressure ∆p built up inside the vesicle drives
the inner content out, thus helping the vesicle to fully relax. On
the other hand, from Eq. 12, ∆p opposes the solvent influx by
countering the concentration difference ∆c = cin − cout across the
membrane. cin and cout are the inner and outer solute concentra-
tions, respectively.

2.4 Active osmotic gradient

In traditional osmotic stress experiments using GUVs, ∆c is pas-
sively controlled by the continuum mass transport processes of
the system. However, light-triggered reactions leverage chemical
decomposition to generate an osmotic imbalance in presence of
a photosensitizer. A photosensitizer absorbs photons, and thus
becomes excited to singlet form. However, such a form is very
short-lived, and it jumps to a triplet state which is stable enough
to transfer energy to dissolved oxygen for production of a singlet
oxygen37. The reactive oxygen species can further react in two
ways: with a specific substrate, (e.g, Na-bicine16) or the photo-
sensitizer itself17, which form new products inside the vesicle,
and in turn induce an osmotic shock rapidly. Such photoreac-
tions provide a “tunable” osmolar gradient in a spatio-temporally
manner, which allows for either swell-burst cycling12,13 or irre-
versible bursting16,17. Since osmolarity is a colligative property,
it is necessary to account for the generation of solute molecules
by light-triggered reactions.

When the deactivation constant of singlet oxygen via the sol-
vent dominates the rate constants of chemical and physical
quenching of singlet oxygen by the substrate, the rate of disap-
pearance of a specific substrate obeys the first-order kinetics38.
To account for solute molecule generation, we adopt a first-order
kinetics for the photo-chemical reaction as(

dcsub

dt

)∗
=−Iϕ

kr

kd
csub (13)

where csub is the substrate concentration, I is the intensity of the
absorbed light, ϕ is the quantum yield for singlet oxygen, kr is
the rate constant for chemical quenching by the substrate, and
kd is the deactivation coefficient by solvent molecules. Here we

neglect the mass transport in and out of the vesicle, and ∗ denotes
the concentration changes only due to the chemical reaction. The
concentration of the product, j, follows(

dc j

dt

)∗
=
(
Z j

p) Iϕ
kr

kd
csub. (14)

Here, Z j
p represents stoichiometric coefficients of jth product

while setting Zsub = 1. Therefore, from Eqs. 13-14, the rate of
total solute concentration due to the photo-chemical reaction is
expressed as (

dctotal

dt

)∗
=
(
∑Z j

p −1
)

Iϕ
kr

kd
csub. (15)

Along with the photo-chemical reaction, the concentration gradi-
ent, ∆c = cin − cout , across the membrane changes due to osmotic
influx, and leak-out of the inner content through pore. Taking all
the contribution into account and using principle of mass conser-
vation for the solutes, we obtain

d(V ∆c)
dt

=V
(

dctotal

dt

)∗
−qoutAp∆c− D

R
Ap∆c. (16)

Using Eqs. 9 and 15, the rate of change of the concentration dif-
ference is simplified as

d∆c
dt

=
(
∑Z j

p −1
)

kcsub −
∆c
V

(
qinA+

D
R

Ap

)
, (17)

where k = Iϕ kr
kd

is the effective rate constant for the substrate
degradation, as described in Gandin et al. depends on experi-
mental conditions38. Here, D is the solute diffusion coefficient.
In Eq. 17, the first term on the right hand side represents molec-
ular generation via the chemical reaction inside the vesicle, while
the second term accounts for the concentration changes due to
volume variation and diffusive contribution through pore leakage
of the inner vesicle contents.

The three coupled equations, Eqs. 8, 10, and 17, consti-
tute the continuum vesicle model with a stochastic approach to
vesicle rupture and incorporating light-triggered reactions. To
demonstrate the validity of our approach, we compare avail-
able experimental results, as reported in Chabanon et al., for
time periods of swell-burst-reseal cycles against our model pre-
dictions15. In the absence of chemical reactions, we set k = 0 and
Hs = −0.001 nm−1. As shown in Fig. 2d, our model predictions
are in good agreement with the experimental data. We note that
in the dilute limit of solute molecules, Hs is small and does not al-
ter the pulsatile behavior. However, as photo-chemical reactions
generate a very high ∆c, this assumption is no longer valid.

3 Model predictions and discussion

To determine ∆c in the case of an active osmotic gradient, we need
the effective rate constant k to account for the photo-chemical
reactions. To this end, we use experimental images of Fig. 3a
to extract R as plotted in Fig. 3b, corresponding to each of the
vesicles. Before the pore opens (i.e. α = 0 from Fig. 2c), Eqs.
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Fig. 4 Model predictions of the pathway to vesicles explosion. (a) Simulation results for R̃ = R/R0. The sudden drop of the area strain indicates
lipid membrane rupture. Inset is ∆c predicted by the model accounting for the chemical reaction. The osmotic gradient rises rapidly and remains
constant until the membrane rupture. (b) Evolution of pore size under an active osmotic gradient. The simulations were performed for each of five
vesicles. The model predicts a very large pore opening, α ≈ 50◦. Note that the time axis has been shifted to the initiation of the membrane rupture.
(c) Dynamical paths followed by two vesicles rupturing at two different εa values: 80% (red cubes) and 20% (green spheres) plotted over the energy
surface. Schematics of vesicle dynamics are shown at each stage. The black arrows are guides to the eyes. The vesicle rupturing at lower strain forms
a loop indicative of pulsatile behavior (green spheres). However, the vesicle rupturing at higher strain jumps into the buckling regime, ultimately
fragmenting into smaller daughter structures (red cubes). (d) Energy curves and dynamical paths in a 2D plane. Inset is a zoomed-in view of the
shaded part to reveal the energy gradient at the maximum pore growth. A vesicle having a smaller pore faces adverse energy gradient (green circles),
leading it to reseal. In the other case, a vesicle with a larger pore faces a favorable energy gradient (red squares), leading it to a buckling instability
and ultimately exploding.

10-12 imply

Ṙ = Pνs

(
∆c− ∆p

RGT

)
, (18)

which can be reverted to obtain total moles generated Mg as

Mg =

(
Ṙ

Pνs
+

∆p
RGT

)(
4
3

πR3
)
. (19)

Using experimental data (Fig. 3b) and computing ∆p from Eq.
6, we plot Mg against time (Fig. 3c). For α = 0 before the mem-
brane ruptures, using Eqs. 9 and 17 we express the rate of change
of the substrate concentration as

dcsub

dt
=−kcsub −

csub

V
dV
dt

. (20)

Simplifying Eq. 20 with further algebraic manipulations, we ob-
tain

Ṁsub =−kMsub. (21)

From Eq. 21, the total substrate moles are Msub = M0e−kt , where
M0 are the initial moles of the encapsulated substrate. Therefore,
the total moles of substrate converted into the products follows
M0(1− e−kt). Furthermore, by multiplying the stoichiometric fac-
tor, ΣZ j

p − 1, the total number of moles generated, Mg, inside a
vesicle is written as

Mg =
(
∑Z j

p −1
)

M0

(
1− e−kt

)
, (22)

We then fit the total moles generated to an exponential form
A
(

1− e−kt
)

, as predicted by Eq. 22, to extract the effective rate
constant k (Fig. 3c).

After extracting the active osmotic gradient, we use our model
to predict the vesicle dynamics, as shown in Figs. 4a, b. Figure
4a shows the evolution of the normalized vesicle radius R̃ = R/R0.
We note that the evolution of R̃ in Fig. 4a is smooth since there
is only one instance of membrane rupture before disintegrating
into several daughter structures. However, the stochasticity will
be evident in a pulsatile regime with a series of swell-burst-reseal
cycles. The sudden plunge in vesicle radius marks the instant
of lipid membrane rupture. In simulations, we choose values of
R/R0 at rupture similar to that obtained from experiments (Fig.
3b). The concentration difference ∆c is shown in the inset of
Fig. 4a. Note that the maximum ∆c achieved here is ≈ 2 M, an
order of magnitude higher than O(0.1) M in traditional passive
osmotic gradient experiments15,18. For such a large osmotic gra-
dient, the loading rate is in the range of 200−400 mN/m/s. This
fact is corroborated by the rapid swelling in the experiments (Fig.
3a). Such a high σ̇ is the key why a high strain, εa ≈ 60− 80%,
is allowed before rupture (Figs. 3b and 4a)20,22. Under these
conditions, we expect the pore must grow very large. Indeed, as
in Fig. 4b, simulations show a huge pore growth (α ≈ 50◦). For
a passive osmotic gradient, εa at rupture remains in the range
of ≈ 4−10%11,12,18,31, and therefore relatively smaller pores are
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formed given the smaller loading rates ≈ 1 mN/m/s.
To add further insights into why a large pore under an ac-

tive osmotic gradient can lead to exploding, we examine the en-
ergy evolution of the vesicle system. We overlay the dynamical
paths of two vesicles rupturing at two different strains, namely
εa = 20% (green spheres), and εa = 80% (red cubes), on the en-
ergy surface of a vesicle system (Fig. 4c) considering all the con-
figurations excluding the cases where the buckling instability oc-
curs, i.e. σ < −24πkb/A0. Therefore, the bottom edge of the
energy surface marks the buckling instability where the growth
of the first mode of thermal undulations becomes unbounded39.
As shown in Fig. 4c (green spheres), the vesicle rupturing at a
small strain forms a closed loop, an implication of the charac-
teristic swell-burst-reseal cycle. The vesicle rupturing at higher
strain, however, shows an exploding behavior (red cubes).

Additionally, we show the energy curves with the dynamical
paths in a 2D plane (Fig. 4d). As mentioned earlier, for the vesicle
rupturing at smaller strain, the pore grows smaller than the case
for the vesicle rupturing at larger strain. The inset of Fig. 4d
displays the zoomed-in view of the shaded region of this plot.
It shows that the vesicle rupturing at smaller strain (and thus
smaller pore sizes) faces an adverse energy gradient at the end
of the pore growth stage, helping vesicles to reseal (green circles,
Fig. 4d). For the larger pore size, the energy gradient is favorable,
transitioning the vesicle into the buckling regime (red squares,
Fig. 4d). Consequently, as the undulations amplitude grows, the
vesicle disintegrates into smaller daughter structures, showing an
exploding behavior40–43.

We note that Hs = −0.011 nm−1 in our simulations for Fig. 4,
which agrees well with the exploding experiments. Such a value
is also consistent with the typical order of magnitude observed in
the literature26. The spontaneous curvature develops as the lipid
bilayer faces a large concentration difference across the mem-
brane26. After the membrane ruptures, the vesicle is in a relaxed
state, i.e. σ ≈ 0, therefore leaving only the pore edge energy, to
compete with the bending energy. Large negative Hs contributes
to the excess bending energy, which dominates the pore edge en-
ergy at large pore sizes. Therefore, the vesicle prefers to unfold,
driving it to the buckling instability and ultimately to its disinte-
gration.

4 Conclusions
In this study, we have developed a semi-analytic approach to de-
scribe the mechanical response of semipermeable vesicles under
the osmotic stress, integrating both pulsatile and exploding be-
haviors into a unified model. We have taken into account the
stochastic nature of membrane rupture, as well as a variable os-
motic gradient driven by chemical reactions. The considerations
of the rate-dependent response of lipid bilayers and the sponta-
neous curvature are critical for explaining vesicle explosion. We
have discussed different scenarios under hypo-osmotic shock con-
ditions. In addition, our model could be potentially used in a
hyper-osmotic environment as vesicles shrink to reach a buckling
instability, in which the spontaneous curvature comes into play.

Photolytic chemical reactions provide an alternative to create
hypotonic environments leading to membrane rupture regardless

of the physiological conditions of tissue. Tuning the chemical re-
action, for example by choosing an appropriate chemical rate con-
stant, can allow active manipulation of release mechanisms such
as a slow and continuous release or an instant release of the en-
capsulated molecules on demand. Additionally, we could choose
appropriate lipids to form vesicles to achieve a desired release
rate, according to the pharmacokinetics of the therapeutics. Fur-
ther experimental investigations are required to understand how
membrane material properties and the chemical rate constant im-
pact the optimal vesicle size range in which exploding might be
possible.

In summary, our model advances the fundamental understand-
ing of the bifurcation in vesicle dynamics. By being able to predict
the conditions for different regimes, we have shown a new avenue
toward the precise design of vesicle-based biomedical systems for
many potential applications, such as localized delivery of cyto-
toxic drugs to target tumors with reduced systemic toxicity, or
controlled deposition of functional nanoparticles in microfluidic
devices for biomedical detection.
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