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Data-driven coarse-grained modeling of polymers in solution with
structural and dynamic properties conserved

Shu Wang,a Zhan Ma,a and Wenxiao Pana∗

We present data-driven coarse-grained (CG) modeling for polymers in solution, which conserves the
dynamic as well as structural properties of the underlying atomistic system. The CG modeling is
built upon the framework of generalized Langevin equation (GLE). The key is to determine each term
in the GLE by directly linking it to atomistic data. In particular, we propose a two-stage Gaussian
process-based Bayesian optimization method to infer the non-Markovian memory kernel from the
data of velocity autocorrelation function (VACF). Considering that the long-time behaviors of VACF
and memory kernel for polymer solutions can exhibit hydrodynamic scaling (algebraic decay with
time), we further develop an active learning method to determine the emergence of hydrodynamic
scaling, which can accelerate the inference process of memory kernel. The proposed methods do not
rely on how the mean force or CG potential in the GLE is constructed. Thus, we also compare two
methods for constructing the CG potential: a deep learning method and the iterative Boltzmann
inversion method. With the memory kernel and CG potential determined, the GLE is mapped onto
an extended Markovian process to circumvent the expensive cost of directly solving the GLE. The
accuracy and computational efficiency of the proposed CG modeling are assessed in a model star-
polymer solution system at three representative concentrations. By comparing with the reference
atomistic simulation results, we demonstrate the proposed CG modeling can robustly and accurately
reproduce the dynamic and structural properties of polymers in solution.

1 Introduction

Atomistic simulations via, e.g., all-atom molecular dynamics
(MD), have been widely employed to simulate polymers and
biomolecules in solution. By tracking individual atoms of
molecules and solvent, these simulations are accurate yet expen-
sive. For large-scale polymer solution systems, the mesoscopic
properties and collective dynamics of polymers can be of more
importance. Thus, it may not be necessary to simulate all atom-
istic details of the system, but instead eliminate or average out
certain degrees of freedom (DOFs) properly to reduce simula-
tion cost. It is so-called coarse-grained (CG) modeling1–5. The
removal of highly-fluctuating atomic DOFs and the larger char-
acteristic length scale of CG coordinates permit to employ larger
time steps in CG simulations. For modeling polymers in solu-
tion, if not only the DOFs representing polymer molecules are
reduced but also the solvent DOFs are eliminated, it leads to
implicit-solvent CG modeling6–9. Significantly reduced DOFs and
larger time steps would enable CG simulations much more effi-

a Department of Mechanical Engineering, University of Wisconsin-Madison, Madison,
WI 53706.
∗ Corresponding author. E-mail: wpan9@wisc.edu

cient than full atomistic simulations, and hence more applicable
to simulating large-scale polymer solution systems in practical ap-
plications10–13. However, the challenge of CG modeling is to con-
serve both the structural and dynamic properties of polymers in
the coarse-graining process. In particular, if the solvent DOFs are
eliminated, the solvent-mediated dynamic effect must be properly
incorporated in CG modeling.

To conserve the structural properties (e.g., radial and angular
distribution functions), the CG potential must be correctly con-
structed. To this end, the existing methods in literature include
the iterative Boltzmann inversion (IBI) method14, inverse Monte
Carlo15, force matching method16, minimization of relative en-
tropy17,18, etc. These methods typically employ assumptions or
approximations for the CG potential; for example, assume a two-
body pairwise potential14,15 or augment the pairwise potential
with an additive function of local densities of CG sites17,18 to ap-
proximate the many-body interactions between CG coordinates.
In addition to these methods, machine learning techniques19–21

were also employed to determine the CG potential, which gener-
ally can avoid employing ad hoc assumptions or approximations
for the CG potential. All these efforts are limited to only conserv-
ing the structural properties of the underlying atomistic system.

To conserve the dynamic properties (e.g., velocity autocorrela-
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tion function (VACF) and diffusivity), the dynamic effect of unre-
solved DOFs (including solvent) must be properly accounted. To
this end, a non-Markovian dynamics must be introduced in the CG
modeling since elimination of DOFs results in a non-Markovian
memory in the dynamics of CG variables, as discussed in litera-
ture22–27 and also in our prior work28. Particularly in implicit-
solvent CG modeling, the non-Markovian memory can play an
important role in producing correct long-time dynamics26,28–30.
The generalized Langevin equation (GLE) provides a theoretically
sound framework for CG modeling to describe the non-Markovian
dynamics of CG variables. However, efforts must be taken to prop-
erly construct the memory kernel (function) in the GLE such that
the dynamics of the underlying atomistic system can be accurately
reproduced by the GLE. In this regard, there have been different
approaches developed in literature. Among them, most methods
are not applicable to polymers in solution. For example, some
methods23,31,32 only concern polymers in melt but cannot con-
sider the solvent-mediated effect on dynamics in polymer solu-
tions. Our prior work28 and some efforts in literature24,30,33 ne-
glect the CG potential (or mean force) in the GLE and hence can-
not reproduce the structural properties of the reference atomistic
system. Jung et al.26,34 proposed an inverse iterative procedure
to determine the memory kernel from the VACF data of atomistic
simulations, which was applied in the context of nanocolloids in
dilute solution. Given an appropriate initial guess, this method
is effective to find a memory kernel for the GLE to produce the
target VACF. However, the convergence of iterations can depend
on the choice of initial guess. Also, directly solving the GLE is ex-
pensive due to storage of historical information of CG variables,
numerical evaluation of convolution, and generation of colored
noise. This method cannot alleviate this expensive cost. Their
results only showed short-time dynamics reproduced by the GLE
with the constructed memory kernel.

In this paper, we propose a different approach to infer the mem-
ory kernel from the VACF data. The key idea is a two-stage Gaus-
sian process-based Bayesian optimization. The memory kernel is
approximated by a truncated expansion of exponentially damped
oscillators. The parameters in the expansion are optimized via the
two-stage Bayesian optimization with the objective function asso-
ciated with the VACF. The optimization process allows for efficient
use of data with maximum information gain via adaptive sam-
pling guided by Gaussian process. The memory kernel inferred
by such permits to map the GLE to a Markovian process extended
in a higher dimensional space, which is much cheaper to solve
than the GLE and hence leads to more efficient CG simulations.
In addition, we consider the fact that the long-time behaviors of
VACF and memory kernel for polymer solutions can exhibit hy-
drodynamic scaling or algebraic decay with time35–38. Thus, we
propose an active learning process to determine the emergence
of hydrodynamic scaling, which can accelerate the inference pro-
cess of memory kernel. These proposed methods should not rely
on how the CG potential is constructed. Thus, we employ two
different methods for constructing the CG potential to conserve
the structural properties of the underlying atomistic system: one
is a deep learning method , i.e. a deep neural networks (DNN)
method; and the other is the IBI method14 commonly employed

in CG modeling of polymers. Using a model polymer solution
system, we demonstrate the accuracy and efficiency of the pro-
posed CG modeling in reproducing both structural and dynamic
properties of polymers in solution, compared with the reference
atomistic simulation results.

The rest of the paper is organized as follows. In §2, we describe
the theoretical framework and GLE, based on which the CG mod-
eling is established. In §3.1, we briefly describe the DNN and
IBI methods employed for constructing the CG potential. §3.2 ex-
plains in detail the new method proposed for inference of memory
kernel from the data of VACF obtained in atomistic simulations,
which consists of the two-stage Bayesian optimization and an au-
tomated, active learning process for detection of algebraic decay
in VACF. The equivalence of the GLE and the extended Markovian
process is explained in §3.3. We present all results in §4, where
a benchmark, star-polymer solution system at different concen-
trations is studied to assess the accuracy and computational cost
of the CG simulations. Finally, we conclude and summarize our
main findings and contributions in §5.

2 Theoretical background
Without loss of generality, the atomistic system consists of n
atoms (beads) in polymer molecules, with coordinates r = {ri|i =
1,2, . . . ,n} and momenta p = {pi|i = 1,2, . . . ,n}. In coarse-
graining, n atoms are coarse-grained as N clusters (referred to
as CG particles), and each cluster contains nc atoms. The CG par-
ticles’ positions R = {RI |I = 1,2, . . . ,N} and momenta P = {PI |I =
1,2, . . . ,N} constitute an extensive set of CG variables of the N-
body CG system.

To be consistent in notation, we use the lowercase mi, ri, and pi

to represent the mass, position, and momentum of the i-th atom
in the atomistic system; and the uppercase MI , RI , and PI denote
the mass, position, and momentum of the I-th CG particle in the
CG system. The variables of the atomistic and CG systems are
related via:

MI =
nc

∑
i=1

mIi , RI =
1

MI

nc

∑
i=1

mIirIi , PI =
nc

∑
i=1

pIi , (1)

where mIi is the mass of the i-th atom in the I-th CG particle; and
RI and PI are defined as the center-of-mass (COM) position and
total momentum of the I-th cluster, respectively.

The dynamics of the CG system is governed by the GLE as:

ṖI = 〈FI〉−
∫ t

0
K(t− t ′)M−1

I PI(t ′)dt ′+ F̃I . (2)

In the right-hand side of Eq. (2), the first term 〈FI〉 = −∇RIU

is the ensemble-average mean force with U =
N
∑

I=1
UI , where UI

is the potential of mean force (PMF) or referred to as the CG
potential. The third term F̃I denotes the random force. The
second term (referred to as the dissipative force) has a mem-
ory kernel K(t − t ′), which is related to the random force by:
K(t) = (1/kBT )〈[F̃I(t)]ᵀ[F̃I(0)]〉 with Boltzmann constant kB and
thermodynamic temperature T to satisfy the second fluctuation-
dissipation theorem39. The dissipative and random forces com-
pensate for the lost atomic DOFs that result from coarse-graining.
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To conserve both structural and dynamic properties of the under-
lying atomistic system, the CG potential and memory kernel in
Eq. (2) must be directly linked to the atomistic system.

3 Methodology
In this section, we discuss how to construct the CG potential and
memory kernel from atomistic data.

3.1 Construction of CG potential

The structural properties of the CG system are mainly determined
by the CG potential that in general is nonlinear and can consist of
many-body interactions. Without ad hoc approximations such as
limiting the potential to two-body (or pairwise) contributions, a
DNN method can be employed to construct the CG potential. It is
adapted from the method proposed by Zhang et al.20, where the
CG coordinates are at one atom of water molecule. In this work,
the CG coordinates are at the COM of polymers. The performance
of the DNN method is compared with the IBI method14 commonly
employed in CG modeling of polymers.

3.1.1 Deep learning

In the deep learning method, a DNN representation UωI for the
CG potential (or PMF) UI(R) is sought with ω the network pa-
rameters. To ensure the output UωI preserves the translational,
rotational, and permutational symmetries of the CG free energy
surface, the input of the DNN is required to preserve the same
symmetries. To this end, the global coordinates R of the CG sys-
tem are transformed into a local descriptor matrix DI as the input
of DNN, which describes the configuration of neighbors of I-th CG
particle in its local Cartesian coordinates.

Following the work of Zhang et al.20,40, local coordinates of the
I-th CG particle are first constructed based on the positions of the
I-th CG particle and its first and second nearest neighbors. The
origin is set at RI . In the local coordinates, {x̄IJ , ȳIJ , z̄IJ} defines
the vector from I to J. Then, DI takes the following form:

DI = {DIJ |J ∈ {neighbors of I that satisfy RIJ ≤ Rcut}}

DIJ = {
1

RIJ
,

x̄IJ

R2
IJ
,

ȳIJ

R2
IJ
,

z̄IJ

R2
IJ
} ,

(3)

where Rcut is the cut-off radius; RIJ = |RIJ | with RIJ = RI −RJ;
and DIJ is sorted in DI with ascending RIJ .

With the input DI and output UI , the architecture of the DNN
is illustrated in Fig. 1. To train the DNN, the loss function used in
the training process is:

L(ω) =
1

ϒN

ϒ

∑
υ=1

N

∑
I=1
|FI(Rυ )+∇RIU

ω(Rυ )|2 , (4)

where υ is the υ-th configuration; ϒ is the total number of con-
figurations used in the training process; Uω(Rυ ) = ∑

N
I=1 UωI (Rυ );

and FI is the instantaneous total force on the I-th CG particle.
Here, we assume the CG particles I = 1,2, . . . ,N have the same
DNN model of CG potential. In this work, the local descriptor ma-
trix DI was generated through the DeePMD-kit package40, which
also provides the interface to TensorFlow for training the DNN

and calling the trained DNN model to calculate UωI (R).

Global Coordinates

Local Coordinates

Hidden Layers

R1 R2 · · · RN

Input DI

· · ·

· · · · · · · · ·

· · ·

Output Uω
I (R)

Fig. 1 Schematic of the feedforward DNN architecture to learn the CG
potential.

The specific architecture of the DNN for each system was de-
termined according to the following theoretical and empirical
rules41,42. 1) An inverted pyramid architecture with the num-
ber of nodes (or neurons) per hidden layer decreasing from the
inner layer to the outer layer is adopted to be compatible with the
fact that the number of inputs is much larger than the number of
outputs. In the present work, there are averagely 80 inputs and 1
output in all cases considered. 2) Since the training cost increases
as the numbers of nodes and layers increase, the neural network
with fewer nodes and layers is preferred. 3) Assuming the same
total number of nodes, having more hidden layers is more effec-
tive than putting more nodes per layer to represent a more com-
plex function between the outputs and inputs. 4) The number of
nodes per hidden layer should be between the numbers of inputs
and outputs. 5) When adding more nodes or a hidden layer can-
not further reduce the loss function, the architecture of the neural
network is considered optimal.

3.1.2 Iterative Boltzmann inversion

The IBI method assumes the CG potential is pairwise: U =

∑
I,J

U(RIJ), and constructs the pair potential U(RIJ) via an inverse

iterative process by reproducing the RDF of the reference atom-
istic system14. The iteration follows14,43:

U i+1(RIJ) =U i(RIJ)−ηkBT ln

(
RDFi

CG(RIJ)

RDFA(RIJ)

)
, (5)

where the superscript i denotes the i-th iteration; η < 1 is a scal-
ing factor that helps improve the convergence and stability of the
iteration process43; and RDFA(RIJ) is the RDF of the reference
atomistic system. The initial guess for the iteration in Eq. (5) is
given by14:

U0(RIJ) =−kBT ln [RDFA(RIJ)] . (6)

The iteration in Eq. (5) is terminated once ‖RDFCG(RIJ)−RDFA(RIJ)‖2
‖RDFA(RIJ)‖2

is no greater than a tolerance, which was set as 0.02 in this work.
Here, ‖ · ‖2 denotes the l-2 norm of discrete data. The VOTCA
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package44 was employed to implement the IBI method in the
present work.

3.2 Inference of memory kernel

To conserve the dynamics of the underlying atomistic system in
CG modeling, the memory kernel K in Eq. (2) must be properly
determined. In general cases of N-body (N > 1) CG systems, the
total force on each body has contributions from others. To re-
produce the structural properties, we need to consider the mean
force 〈FI〉 in Eq. (2) as a function of R, as discussed in §3.1. If
we regard R = {R1,R2, ...,RN} as a point in the CG phase space,
〈FI〉 is associated with the normalized partition function of all
atomistic configurations at phase point R. As a result, if using
a forward approach to determine the memory kernel, as in our
prior work28 or others’ work27,30, the memory kernel must be
also a function of R. However, how the memory kernel depends
on R cannot be assumed a priori. Determining the memory kernel
as a function of both t and R is challenging. Thus, previous work
either only considered one-body CG system27, or neglected to re-
produce the structural properties by regarding 〈FI〉 as the average
over all phase points and hence taking 〈FI〉= 0 in the GLE28,30, or
assumed t and R were separable and the function of R was only
dependent on RIJ (pairwise contributions from neighbors)23.

To alleviate the difficulty in determining the memory kernel in
the meanwhile being able to reproduce the structural properties,
we propose in this work a new approach. First, the memory ker-
nel in Eq. (2) is constructed as the average over all phase points
and hence is only a function of time t. The memory kernel K(t) is
then inferred via an inverse optimization process from the atom-
istic data of VACF. This approach does not rely on what the mean
force (or CG potential) is and how it is constructed. To proceed,
K(t) is first approximated by an asymptotic expansion as:

K(t) =
N

∑
l=1

exp(−al

2
t)[bl cos(qlt)+ cl sin(qlt)] , (7)

where {al ,bl ,cl ,ql} ∈ λ (parameter space). Given Eq. (7) trun-
cated to finite terms, an optimization problem in λ space can be
framed to determine the parameters {al ,bl ,cl ,ql} ∈ λ that min-
imize the difference on VACF(t) = 〈V (t)V (0)〉 of the CG system
with respect to the reference atomistic system:

λ∗ = argmin
λ

Π(λ) , (8)

where Π(λ) is the objective function and defined as:

Π(λ) =
‖〈VACFCG(λ)〉−〈VACFA〉‖2

‖〈VACFA〉‖2
. (9)

Here, the VACF is chosen for optimization because the behaviors
of VACF imply all dynamic properties of the system45. The data
of VACFCG(λ) and VACFA are attained from the CG and atomistic
simulations, respectively. We aim to determine K(t) up to t ≤
tcut since for t > tcut, |VACF(t)/VACF(0)| ≤ 10−3, and the dynamic
properties are considered nearly invariant.

3.2.1 Gaussian process (GP)-based Bayesian optimization

Solving the optimization problem in Eq. (8) is challenging due
to: i) the objective Π is a black box for which no closed form
is known nor its gradient and Hessian; ii) Π is expensive to
evaluate; iii) evaluations of Π are noisy; and, iv) λ is high-
dimensional. Thus, we propose to employ the GP-based Bayesian
optimization46–48 for solving Eq. (8), which can effectively
tackle the above challenges. Start with Eq. (7) truncated to
N terms, e.g., N = 3 and correspondingly, λ is 12-dimensional:
(a1,b1,c1,q1,a2,b2,c2,q2,a3,b3,c3,q3). The GP-based Bayesian op-
timization takes the following steps: 1) Given some initial obser-
vations {λk,Π(λk)| k = 1,2, . . . , j0}, a probabilistic model is built
for Π using GP regression that has marginal closed-form for the
posterior mean and variance. The number ( j0) and selection of
initial data will be discussed later. 2) A cheap utility function,
e.g., the lower confidence bound function49 LCB(λ) chosen in
this paper, is optimized based on the posterior to decide where
to take the next evaluation. 3) Augment the data with the next
observation. These three steps are iterated until the objective
function is less than preset tolerance ζBO or the number of itera-
tions reaches the limit Imax. The GP has marginal closed-form for
the posterior mean and variance, and hence is chosen for building
probability measure over objective and acquisition functions. The
uncertainty level determined from the GP is exploited to balance
exploration against exploitation. Thus, the method is able to start
with a small set of initial data and adaptively add more data as
necessary at locations that can maximize information gain. The
procedure of the GP-based Bayesian optimization employed in
this work is outlined in Algorithm 1.

Algorithm 1 GP-based Bayesian optimization

Set ζBO and the searching space of λ
for i = 1,2, · · · ,10 do

Generate {λk,Π(λk)| k = 1,2, . . . , j0}
for j = 0,1, . . . ,Imax do

Build a GP regression model for Π

Optimize LCB(λ) based on the mean and variance of GP
regression to determine:

λ j+1 = argmin
λ

LCB(λ)

Evaluate Π(λ j+1)
if Π(λ j+1)< ζBO then

End loop with λ∗ = λ j+1
else

Augment data set {λk,Π(λk)| k = 1,2, . . . , j0 + j+1}
end if

end for
end for
Output λ∗ and Π(λ∗)

To avoid the optimization falling into local minima and to en-
sure sufficient exploration of the parameter space, initial observa-
tions {λk,Π(λk)| k = 1,2, . . . , j0} should be sampled covering the
range of searching space. In the meanwhile, the cost of construct-
ing a GP model each time exhibits a cubic scaling with the number
of observations. With more initial data, the cost of constructing
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GP models and optimizing utility functions would dominate the
total cost of Bayesian optimization and make the computation
more expensive. Thus, in practice, less initial data (smaller j0)
is preferred in each Bayesian optimization loop. To ensure the
optimization unbiased, we can perform Bayesian optimization for
several times with different random initial observations, which
is noted by the outer for-end loop in Algorithm 1. For instance,
if 1000 initial random observations are considered sufficient to
cover the searching space, we can divide the 1000 initial ran-
dom observations into 10 groups each with 100 data and perform
Bayesian optimization for 10 times using one group of initial data
each time. The number of groups and the amount of data in each
group are decided from the trade-off between two considerations:
1) using fewer initial observations can accelerate each optimiza-
tion process; and 2) conducting more Bayesian optimization pro-
cesses increases the costs because the objective function has to be
evaluated more times.

Although theoretically sound, Bayesian optimization is practi-
cally limited to optimizing 10-20 parameters. This is due to the
fact that the number of data samples required to cover the search-
ing space exponentially increases with the dimension of the pa-
rameter space50. As a result, Bayesian optimization in high di-
mensional parameter space can be expensive. For a polymer so-
lution system that entails a slow-decaying VACF(t) and hence a
long memory, approximation of K(t) for the entire t ≤ tcut typi-
cally requires to retain more than 5 terms in Eq. (7). The re-
sulting λ consists of more than 20 parameters. Thus, directly
applying Bayesian optimization to determine K(t) for the entire
t ≤ tcut is challenging. In the present work, we propose a two-
stage Bayesian optimization method, as described in the follow-
ing, to address this challenge.

First, we notice that K(t) typically displays a fast-decaying
short-time dynamics followed by a slow-decaying long tail. We
specify a time scale tshort to divide K(t) into the short-time and
long-tail parts such that |VACF(t)/VACF(0)| ≤ 10−1 for t ≤ tshort. A
schematic diagram of different time scales is shown in Fig. 2. The

t
short

t
cut

Time

Fig. 2 Schematic diagram of different time scales in K(t).

short-time K(t ≤ tshort), denoted as K1(t), due to its fast-decaying
behavior, typically can be satisfactorily approximated by retain-
ing 2-3 terms in Eq. (7); i.e., 8-12 parameters need to be op-
timized, which can be efficiently achieved using Bayesian opti-
mization. Thus, in the first stage, Bayesian optimization is em-

ployed to solve Eq. (8) for K1(t) with 4N1 (e.g., N1 = 3) parame-
ters in λ. To provide Bayesian optimization reasonable searching
space for all parameters, we note al ,bl ,ql > 0, and cl is related
to al ,bl ,ql and must satisfy |cl | ≤ al bl

2ql
(see §3.3 for explanation).

The upper bounds for al and ql can be as large as physically rea-
sonable, e.g., in this work we gave al ∈ [0,60] and ql ∈ [0,30]. To
specify the searching space for bl , from Eq. (7) we know that
bl is directly related to K(t = 0). According to the relationship :
K(t = 0)=∑

N
l=1 bl ≈ FACF(t = 0), we constrain bl ∈ [0,FACF(t = 0)],

where FACF is the force autocorrelation function and defined as
FACF=〈F(t)F(0)〉. The optimized parameters are denoted as λ∗1.

Second, approximating the entire K(t) (up to tcut) may require
to supplement the N1 terms with more terms. Assume we need
N1 +N2 (e.g., 3+ 3) terms to accurately approximate the entire
K(t). The augmented N2 terms attempt to accurately approxi-
mate the slow-decaying long tail of K(t) for tcut ≥ t > tshort. When
we employ the Bayesian optimization to optimize 4(N1 +N2) pa-
rameters, although dimensionality of the parameter space is high,
the optimized parameters λ∗1 obtained in the first stage can nar-
row down the searching space for the 4N1 parameters, which
can significantly reduce the number of iterations required in the
optimization. Thus, in the second stage, Bayesian optimization
is employed to solve Eq. (8) for the entire K(t) (t ≤ tcut) with
4(N1 +N2) parameters. The searching space for the 4N1 pa-
rameters is constrained in [(1− α)λ∗1,(1 + α)λ∗1]. Here, α < 1
can start with a small value and gradually increase according to
whether the preset tolerance can be reached within the maximum
iterations allowed. In this work, α = 0.2 was used in all cases.
Given the searching space for the 4N1 parameters and noting that
K(t = 0) = ∑

N1+N2
l=1 bl ≈ FACF(t = 0), the upper limit of bl in the

N2 terms should be no greater than α×FACF(t = 0).

The procedure of the proposed two-stage Bayesian optimiza-
tion is summarized in Algorithm 2. Although this approach re-
quires two stages of Bayesian optimization, the number of iter-
ations in each stage and total computational time can be signif-
icantly reduced, compared with the single-stage Bayesian opti-
mization to achieve similar results. In this work, we set Imax = 500
and ζBO = 0.02, and the Skopt package47 was used to perform
each Bayesian optimization.

Algorithm 2 Two-stage Bayesian optimization

Stage 1: Solve Eq. (8) for t ≤ tshort
Set N1 and the searching space: al ∈ [0,60], bl ∈ [0,FACF(t = 0)],
cl ∈ [− al bl

2ql
, al bl

2ql
], and ql ∈ [0,30] for l = 1, · · · ,N1

Execute Algorithm 1
Output λ∗1 and Π(λ∗1)

Stage 2: Solve Eq. (8) for t ≤ tcut
Set N2 to augment N1 s.t. N = N1 +N2
Set the searching space for N1 terms: [(1−α)λ∗1,(1+α)λ∗1],
and the searching space for the rest N2 terms: al ∈ [0,60], bl ∈
[0,α×FACF(t = 0)], cl ∈ [− al bl

2ql
, al bl

2ql
], ql ∈ [0,30] for l = 1, · · · ,N2

Execute Algorithm 1
Output λ∗ and Π(λ∗)
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3.2.2 Algebraic decay

In general, for fluids, including polymeric fluids (polymer solu-
tion or melt), the long-time behaviors of the VACF and memory
kernel display hydrodynamic scaling, i.e., algebraic decay with
the scaling t−

3
2 for t ≥ talg

35–38, where talg denotes the character-
istic time of the emergence of algebraic decay. Different kinds of
fluids have different talg. In the case of talg < tcut, e.g., for a dilute
polymer solution, the memory kernel for t ≥ talg simply follows
the algebraic decay, and hence we only need to infer K(t < talg)

via Bayesian optimization. In this section, we propose an active
learning method to determine talg (emergence of the hydrody-
namic algebraic decay) “on-the-fly” while generating the data of
VACF in atomistic simulations.

To proceed, setting X = g(t) = t−
3
2 and Y = VACF yields a linear

regression model:

Y = β1X + ε for t ≥ talg , (10)

where β1 is the slope and ε is an identical independent Gaussian
noise with zero mean and variance of σ2

ε . Note since VACF→ 0
when X → 0 (t → ∞), the above linear regression model assumes
a zero intercept. The task herein is to determine talg and β1 via
regression from the VACF data. The talg and β1 sought can be
used to predict the VACF from Eq. (10) beyond the dataset. Here,
we require the standard deviation of the predicted VACF at tcut is
less than a preset tolerance, i.e., σ (VACF(tcut))≤ ζAD, where ζAD

is the preset tolerance. (Recall tcut is the time scale defined such
that |VACF(t)/VACF(0)| ≤ 10−3 for t > tcut.) We denote the latest
time of the VACF dataset as ttest. For clarity, the different time
scales are indicated in Fig. 3.
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Fig. 3 Schematic diagram of different time scales in VACF(t).

The variance of the noise ε in Eq. (10) is first estimated from
G1 training data by

σ̂
2
ε =

G1

∑
i=1

(Yi− Ŷi)
2/(G1−2) =

G1

∑
i=1

(Yi− β̂1Xi)
2/(G1−2) , (11)

where β̂1 can be estimated by

β̂1 =
∑

G1
i=1 XiYi

∑
G1
i=1 X2

i

. (12)

In Eqs. (11)-(12), the notation ·̂ is used to denote the estimated

values from the training data: {ti,VACF(ti)} with i = 1,2, . . . ,G1

and ti = ttest− (i− 1)∆t. Here, the size (G1) of dataset is deter-
mined from a theoretical argument: the standard deviation σ̂ε

calculated by Eq. (11) from G1 data has the desired probability
of falling into the preset interval around the true standard devia-
tion σε

51,52. Thereby, for σ̂ε having 95% probability to fall into
[(1−0.15)σε ,(1+0.15)σε ], G1 = 87.

Given the estimated β̂1, we can forecast the VACF at any
future time using Eq. (10) and determine tcut such that
| ˆVACF(t)/VACF(0)| ≤ 10−3 for t > tcut. The standard deviation of
VACF(tcut) depends on: 1) how faithfully the data follow alge-
braic decay, i.e., the model in Eq. (10); and 2) whether there are
sufficient training data for regression. Thus, by assuming that the
VACF data follow algebraic decay and evaluating the standard de-
viation of VACF(tcut), we first examine whether the training data
are sufficient for desired regression accuracy. To this end, the
standard deviation of VACF(tcut) can be estimated from:

σ [VACF(tcut)] = σ̂ε

√
1
G

[
1+

(Xcut− X̄)2

Var(X)

]
, (13)

where G is the number of training data; and Xcut = tcut
− 3

2 . Here,
X̄ and Var(X) are the mean and variance of X in the training data,
respectively, which can be estimated via the Delta method53 con-
sidering that the discrete t are equidistant, as: X̄ ≈ g(t̄) = g(ttest−
G−1

2 ∆t) and Var(X) ≈ Var(t)[ dg(t̄)
dt ]2 = 1

12 ∆t2(G −1)(G +1)[ dg(t̄)
dt ]2.

Requiring σ [VACF(tcut)] < ζAD, the number of training data (G )
required can be inversely solved from Eq. (13). In this work, the
tolerance is set as ζAD = 10−4. Note that G must be no less than
G1. The latter has been used to estimate σ̂2

ε (the variance of the
noise ε) in Eq. (11). Thus, G = max{G ,G1}.

After determining G , we finally evaluate the standard deviation
of VACF(tcut) from the training data {ti,VACF(ti)} with ti = ttest−
(i−1)∆t, i = 1,2, . . . ,G , as:

σ [VACF(tcut)] = σ̂ε,G

√
1
G

+
(Xcut− 1

G ∑
G
i=1 Xi)2

∑
G
i=1(Xi− X̄)2

, (14)

where σ̂ε,G is calculated from Eq. (11) from G training data. If
such evaluated σ [VACF(tcut)] satisfies σ [VACF(tcut)] ≤ ζAD, it in-
dicates that the VACF data used for training follow algebraic de-
cay. Hence, talg = ttest− (G −1)∆t characterizes the emergence of
algebraic decay; and the VACF for t > ttest can be predicted by
Eq. (10). If σ [VACF(tcut)] > ζAD, it implies that the VACF up to
ttest has not displayed algebraic decay, and hence, more data of
VACF for t > ttest need to be generated and examined using the
liner regression method. This process is iteratively repeated until
σ [VACF(tcut)]≤ ζAD is satisfied. To determine the new ttest for the
next iteration, we propose the following formula:

ttest = ttest +(1− σX
2

σ̂2
ε,G

)G ∆t, (15)

where σX = ζAD/

√
1
G +

(Xcut− 1
G ∑

G
i=1 Xi)2

∑
G
i=1(Xi−X̄)2 . This formula assumes that

the VACF data newly generated follow algebraic decay without
noise, and hence provides the most conservative estimation of
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the next ttest.

The proposed active learning method to determine talg in VACF
is summarized in Algorithm 3.

Algorithm 3 Active learning of algebraic decay in VACF

Initialize ttest = tshort and determine G1
do

Estimate σ̂ε by Eq. (11) from G1 training data
Estimate β̂1 by Eq. (12) from G1 training data and deter-

mine tcut
Determine G from Eq. (13) by requiring σ [VACF(tcut)]≤ ζAD

and take G = max{G ,G1}
Compute β̂1 by Eq. (12) and σ [VACF(tcut)] by Eq. (14) from

G training data
if σ [VACF(tcut)]≤ ζAD then

End loop
else

Generate more VACF data until new ttest determined by
Eq. (15)

end if
while σ [VACF(tcut)])> ζAD
Output talg = ttest− (G −1)∆t
Predict VACF(t > ttest) by Eq. (10)

If the determined talg < tcut, the method to infer the memory
kernel is revised as follows. K(t ≤ ttest) is inferred via the two-
stage Bayesian optimization described in §3.2.1. Note the in-
ference herein is up to ttest instead of talg, considering the er-
ror in K(t) (within ζBO) introduced by Bayesian optimization.
The memory kernel after talg follows algebraic decay: K(t ≥
talg) = β ′1t−

3
2 . Using the data of K(talg ≤ t ≤ ttest) as training

data, β ′1 is determined via regression as: β ′1 = ∑
G ′
i=1 t

− 3
2

i K(ti)

∑
G ′
i=1 t−3

i
, where

ti = talg +(i−1)∆t, i = 1,2, . . . ,G . Such obtained K(t) up to tcut is
then approximated by Eq. (7) truncated to N terms by fitting.

3.3 Extended dynamics

Approximating the memory kernel by a finite set of exponentially
damped oscillators as in Eq. (7) would allow to replace the non-
Markovian dynamic equation (Eq. (2)) with a Markovian dynam-
ics extended in higher dimensions. By doing so, the expensive
cost of solving the GLE can be significantly reduced, as has been
evidenced in literature23,28,54. To this end, Eq. (7) is rewritten in
a matrix form as:

K(t) =−Apse−tAss Asp , (16)

where Aps = −AT
sp. If we define the parameter matrix A =

[0, Aps; Asp, Ass], it can be assembled from the parameters in
Eq. (7) by:

Al =



0
√

bl
2 −

ql cl
al

√
bl
2 + ql cl

al

−
√

bl
2 −

ql cl
al

al
1
2

√
4q2

l +a2
l

−
√

bl
2 + ql cl

al
− 1

2

√
4q2

l +a2
l 0


. (17)

In Eq. (17), the top right block contributes to Aps; the bottom
left contributes to Asp; and the 2× 2 block on the bottom right
constitutes Ass that is a block diagonal matrix consisting of 2× 2
blocks.

Given Eq. (16) and by introducing auxiliary variables s, the
extended Markovian dynamics is given by:(

Ṗ
ṡ

)
=

(
〈F〉
0

)
−

(
0 Aps

Asp Ass

)(
M−1P

s

)
+

(
0 0
0 Bs

)(
0
ξξξ

)
. (18)

Here, ξξξ is a vector of uncorrelated Gaussian random variables
with 〈ξξξ (t)〉 = 0 and 〈ξI,µ (t)ξJ,ν (0)〉 = δIJδµν δ (t), where ξν and
ξµ denote the different elements of ξξξ . To satisfy the second
fluctuation-dissipation theorem39, BsBT

s = kBT (Ass+AT
ss). We can

write the parameter matrix B = diag(0,Bs). To ensure A and B
are both real number matrices, the parameters in Eq. (7) need to
satisfy: al ≥ 0, bl ≥ 0 and |cl | ≤ al bl

2ql
.

Assuming the memory kernel can be approximated by Eq. (16),
the extended dynamics in Eq. (18) is equivalent to the GLE in Eq.
(2)54 with the random force

F̃(t) =−
∫ t

0
Apse−(t−t ′)Ass Bsξξξ (t ′)dt ′ . (19)

In the present work, the implicit velocity-Verlet temporal integra-
tor55 was used to numerically solve Eq. (18) in the CG simula-
tions.

4 Results

The proposed CG modeling was assessed in a benchmark star-
polymer solution system. In solutions, the structural and dy-
namic properties of star polymers depend on their concentra-
tions. Therefore, to demonstrate the robustness of the proposed
CG modeling approach, we considered the benchmark solution
system at different concentrations. In the CG model, each star
polymer is coarse-grained as a single CG particle; and the solvent
DOFs are eliminated. The CG potential and memory kernel in
the GLE (Eq. (2)) were constructed following the methodology
described in §3. The dynamics of the CG system is governed by
Eq. (18). We denote the CG model with the CG potential deter-
mined by the IBI method as “CG1” and the CG model using the
DNN method to construct the CG potential as “CG2”. We exam-
ined the accuracy and computational efficiency of the CG models
in reproducing both structural and dynamic properties of the ref-
erence atomistic system. The structural properties include the
RDF characterizing two-body correlations of star polymers, angu-
lar distribution function (ADF) characterizing three-body correla-
tions, and also the averaged local Steinhardt parameters q̄4 and
q̄6 that characterize the many-body correlations56,57. The CG po-
tential determines the structural properties of the CG system. The
dynamic properties include the VACF and diffusion coefficient as
functions of time. The memory kernel along with the CG poten-
tial determine the dynamics of the CG system. The simulations
were performed using LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator)58.
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4.1 Atomistic system
The atomistic system of star-polymer solution consists of Lennard-
Jones(LJ) beads. More specifically, each star polymer consists of
a core LJ bead and 10 identical arms with 3 LJ beads per arm, as
illustrated in Fig. 4. The core LJ bead and the LJ beads in each
arm are connected by finitely extensible nonlinear elastic (FENE)
bonds. The solvent is also modeled by LJ beads identical to those
in star polymers. Three concentrations were considered in this

Fig. 4 Atomistic model of a star polymer consisting of 31 LJ beads: one
core and 10 arms with 3 beads per arm.

work, as summarized in Table 1. The concentration is defined as
the percentage-wise fraction of the LJ beads in star polymers vs.
the total LJ beads in the polymer solution. The dynamics of the

Table 1 Atomistic systems with different concentrations.

System Number of
star polymers

Number of
solvent beads Concentration Mole

fraction
melt 2,500 0 100.0% 100.0%
dense 2,000 15,500 80.0% 11.4%
dilute 1,000 46,500 40.0% 2.1%

atomistic system is governed by the Hamiltonian:

H =
n

∑
i=1

p2
i

2mi
+∑

i6= j
E(ri j) , (20)

where ri j = |ri j|= |ri−r j| is the distance between two LJ beads; E
denotes the total potential energy contributed by the inter-atomic
and bonded potentials. The inter-atomic LJ potential adopts the
purely repulsive Weeks-Chandler-Andersen (WCA) potential and
is given by:

EWCA(r) =

{
4ε[(σ

r )
12− (σ

r )
6 + 1

4 ] r ≤ rc

∞ r > rc
, (21)

where rc = 21/6σ is the cutoff distance. The bonded interaction
between connected LJ beads in star polymers is modeled as a
spring with a FENE potential, i.e.,

EFENE(r) =

{
− 1

2 kr2
0 ln[1− ( r

r0
)2] r ≤ r0

∞ r > r0
, (22)

where k = 30ε/σ2 is the spring constant, and r0 = 1.5σ is the
maximum length of the FENE spring. In sum, we have:

E(ri j) = EWCA(ri j)+EFENE(ri j) . (23)

The data of the atomistic systems were generated from MD sim-

ulations, which were performed in the canonical ensemble (NVT)
using Nośe-Hoover thermostat with kBT = 1.0 and the time step
∆t = 0.001τ. All the results in the present paper are expressed in
the reduced LJ unit; i.e., the mass, length, energy, and time units
are set as: m = 1, σ = 1, ε = 1, and τ = σ(m/ε)0.5 = 1. To obtain
accurate ensemble averages from the noisy data of MD simula-
tions, 10 independent simulations with different random seeds
were conducted for each system. In each simulation, the data
after reaching thermal equilibrium were collected for computing
the ensemble-averaged quantities of interest. The periodic cubic
box of length 57.8647σ was used in all MD simulations. This size
was chosen large enough such that the finite size effect on the
VACF can be neglected.

4.2 Melt

We first considered a melt system of star polymers, where there is
no solvent. Each star polymer is coarse-grained as a CG particle.
The CG system consists of 2,500 CG particles. To construct the
CG potential, the cutoff radius Rcut = 6.4 was employed in both
IBI and DNN methods, which is at the first valley of the RDF.
In the DNN method, one hidden layer with 10 nodes was used
to build the DNN model of the CG potential. From the VACF
data generated in MD simulation, we determined tcut = 18.5, and
tcut < talg. Thus, we inferred the entire memory kernel K(t) (up
to tcut) from the VACF data by employing the two-stage Bayesian
optimization as described in §3.2.1 with N1 = 3, N2 = 3, and
tshort = 2.8. Thereby, the inferred K(t) was represented by N =

N1 +N2 = 6 terms of exponentially damped oscillators with the
optimized parameters λ∗. From λ∗, the matrices A and B in §3.3
were assembled. With the extended dynamics fully determined,
the CG simulation numerically solved Eq. (18) and computed the
quantities that characterize the structural and dynamic properties
of the CG system. The predictions by the CG simulation were
compared with the MD simulation results.

4.2.1 Structural properties

The results on the structural properties are presented in Figs. 5-7.
By comparison with the MD simulation results, we find that the
CG model constructed can accurately reproduce all the structural
properties. Since the structural properties of the CG system are
determined by the CG potential, the results demonstrate the per-
formance of the DNN and IBI methods employed for constructing
the CG potential. From the results on the averaged local Stein-
hardt parameters q̄4 and q̄6, we find that the DNN method (in
CG2) slightly outperforms the IBI method (in CG1) for reproduc-
ing the many-body correlations, which can be owing to the fact
that the DNN method does not assume a pairwise potential but
accounts for generally many-body contributions to the CG poten-
tial.

4.2.2 Dynamic properties

The memory kernel K(t) inferred by employing the two-stage
Bayesian optimization is plotted in Fig. 8. Since the CG poten-
tials constructed by the IBI and DNN methods are not identical,
the memory kernels in the two CG models are not the same.
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Fig. 5 RDF of star polymers in melt predicted by the CG models and
compared with the MD simulation results.
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Fig. 6 ADF of star polymers in melt predicted by the CG models and
compared with the MD simulation results. Here, the ADF was computed
at two different positions: (a) R = 4.5 at the first peak of RDF and (b)
R = 6.4 at the first valley of RDF.
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Fig. 8 Memory kernel inferred for star polymers in melt: (a) short-time
K(t) on linear scale and (b) long-time |K(t)| on logarithmic scale. Here,
tshort = 2.8.

The VACF and diffusion coefficient D(t) predicted by the CG
simulation beyond tcut are depicted in Fig. 9. By comparison with
the MD simulation results, only small discrepancy in the VACF’s
long tail is detected, which is less than 10−3 × |VACF(0)|. The
overall good agreements demonstrate the accuracy of the con-
structed CG model in reproducing the dynamic properties of the
reference atomistic system. In this regard, the CG models with
the CG potential constructed by the IBI or DNN method do not
show significant difference.
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Fig. 7 Probability distributions of the averaged local Steinhardt param-
eters q̄4 and q̄6 of star polymers in melt predicted by the CG models and
compared with the MD simulation results.

We note that Li et al.23 also developed CG modeling for melt
of star polymers. Two methods were compared in their work.
One was based on the GLE and extended dynamics, similar to
this work. However, the VACF and diffusion coefficient were
not reproduced so accurately as in this work. The other method
assumed pairwise interactions in the non-Markovian dynamics,
which could reproduce the VACF and diffusion coefficient of the
reference atomistic system with the same accuracy as in the
present work. However, that method has two issues: 1) it re-
quires to evaluate all pairwise dissipative and random interac-
tions (within the cutoff) for each CG particle, which is more costly
than directly evaluating the total dissipative and random forces
on each CG particle; 2) its pairwise assumption cannot capture
the many-body effect on the dynamics of polymers arising from
solvent and hence is not applicable to polymers in solution.

4.3 Dense solution
We next studied a dense solution of star polymers. The atom-
istic system consists of 2,000 star polymers and 15,500 solvent
beads. In CG modeling, each star polymer is coarse-grained as a
CG particle; and the solvent DOFs are eliminated. Hence, the CG
system consists of 2,000 CG particles. The cutoff radius Rcut = 6.8
(at the first valley of RDF) was employed in both methods for
constructing the CG potential. In the DNN method, two hidden
layers with 20 and 10 nodes, respectively (from the input end to
the output end), were used to build the DNN model of the CG po-
tential. From the VACF data generated in the MD simulation, we
determined tcut = 10.2, and tcut < talg. Thus, we inferred the entire
memory kernel K(t) (up to tcut) from the VACF data by employ-
ing the two-stage Bayesian optimization with N1 = 3, N2 = 3,
and tshort = 3.0. Thereby, the inferred K(t) was represented by
N =N1+N2 = 6 terms of exponentially damped oscillators with
the optimized parameters λ∗. With the CG potential and mem-
ory kernel determined, the CG simulation solving the extended

Journal Name, [year], [vol.],1–14 | 9

Page 9 of 14 Soft Matter



10-2 10-1 100 101

Time

10-5

10-3

10-1
|V

A
C

F
|

MD
CG1
CG2

t
short

t
cut

0 10 20 30 40 50
Time

0

0.02

0.04

D
(t

)

MD
CG1
CG2

t
short t

cut

Fig. 9 Dynamic properties of star polymers in melt: the absolute value
of VACF (on logarithmic scale) and diffusion coefficient D(t) predicted
by the CG models and compared with the MD simulation results. Here,
tshort = 2.8 and tcut = 18.5.

dynamics predicted the structural and dynamic properties of the
CG system. The predictions by the CG simulation were compared
with the MD simulation results.

4.3.1 Structural properties

The results by both CG and MD simulations on the structural
properties are presented in Figs. 10-12. We find that the CG
models constructed can accurately reproduce all the structural
properties of the reference atomistic system. The performance of
the IBI and DNN methods in correctly constructing the CG poten-
tial are comparable. The results on the averaged local Steinhardt
parameters, especially, q̄4, indicate the DNN method outperforms
the IBI method in reproducing the many-body correlations.
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Fig. 10 RDF of star polymers in dense solution predicted by the CG
models and compared with the MD simulation results.

4.3.2 Dynamic properties

The memory kernel K(t) inferred by employing the two-stage
Bayesian optimization is plotted in Fig. 13. The VACF and diffu-
sion coefficient D(t) predicted by the CG simulation (beyond tcut)
are depicted in Fig. 14. By comparison with the MD simulation
results, only small discrepancy in the VACF’s long tail (beyond
tcut) is noticed, which is less than 10−3 × |VACF(0)|. The over-
all good agreements demonstrate the accuracy of the constructed
CG models in reproducing the dynamic properties of the refer-

0 0.2 0.4 0.6 0.8 1
 / 

0

1

2

A
D

F MD
CG1
CG2

0 0.2 0.4 0.6 0.8 1
 / 

0

1

2

A
D

F MD
CG1
CG2

(a)

(b)

Fig. 11 ADF of star polymers in dense solution predicted by the CG
models and compared with the MD simulation results. Here, the ADF
was computed at two different positions: (a) R = 4.7 at the first peak of
RDF and (b) R = 6.8 at the first valley of RDF.
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Fig. 12 Probability distributions of the averaged local Steinhardt param-
eters q̄4 and q̄6 of star polymers in dense solution predicted by the CG
models and compared with the MD simulation results.

ence atomistic system. In this regard, the CG models with the CG
potential determined by the IBI or DNN method do not exhibit
significant difference.

4.4 Dilute solution
Finally, we examined a dilute solution of star polymers. The atom-
istic system consists of 1,000 star polymers and 46,500 solvent
beads. The CG system consists of 1,000 CG particles. The cutoff
radius Rcut = 7.4 (at the first valley of RDF) was employed in both
methods for constructing the CG potential. In the DNN method,
3 hidden layers with 40, 20 and 10 nodes, respectively (from the
input end to the output end) were used to build the DNN model
of the CG potential. Following the method described in §3.2.2,
we determined talg = 6.3 and tcut = 93.7 from the VACF data gen-
erated in the MD simulation. Since talg < tcut, the memory kernel
K(t ≤ ttest) was inferred using the two-stage Bayesian optimiza-
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Fig. 13 Memory kernel inferred for star polymers in dense solution: (a)
short-time K(t) on linear scale and (b) long-time |K(t)| on logarithmic
scale. Here, tshort = 3.0.
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Fig. 14 Dynamic properties of star polymers in dense solution: the
absolute value of VACF (on logarithmic scale) and diffusion coefficient
D(t) predicted by the CG models and compared with the MD simulation
results. Here, tshort = 3.0 and tcut = 10.2.

tion with N1 = 3, N2 = 3, tshort = 3.8, and ttest = 7.2. The memory
kernel after talg followed algebraic decay: K(t ≥ talg) = β ′1t−

3
2 with

β ′1 determined from the data of K(talg ≤ t ≤ ttest) via regression.
The entire memory kernel K(t ≤ tcut) was then fitted by Eq. (7)
truncated to N = 7 terms in CG1 model and N = 8 terms in CG2
model. The fitting parameters λ were then used to assemble the
matrices A and B for the extended dynamics in §3.3. The CG sim-
ulations solving the extended dynamics predicted the structural
and dynamic properties of the CG system. The predictions by the
CG simulations were compared with the MD simulation results.

4.4.1 Structural properties

The results by both CG and MD simulations on the structural
properties are presented in Figs. 15-17. The CG models con-
structed can accurately reproduce all the structural properties of
the reference atomistic system. The overall performance of the
IBI and DNN methods in correctly constructing the CG potential
are comparable. However, the DNN method (in CG2) is superior
to the IBI method (in CG1) in reproducing the many-body cor-

relations, which is indicated by the results on the averaged local
Steinhardt parameters q̄4 and q̄6 in Fig. 17.
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Fig. 15 RDF of star polymers in dilute solution predicted by the CG
models and compared with the MD simulation results.
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Fig. 16 ADF of star polymers in dilute solution predicted by the CG
models and compared with the MD simulation results. Here, the ADF
was computed at two different positions: (a) R = 5.2 at the first peak of
RDF and (b) R = 7.4 at the first valley of RDF.

4.4.2 Dynamic properties

The VACF of star polymers in dilute solution displayed a very
slowly decaying VACF, see Fig. 18. The finite-size effect of pe-
riodic box in MD simulations can cause spurious oscillations in
the long tail of slow-decaying VACF, which in turn may affect ac-
curately detecting hydrodynamic scaling behavior (algebraic de-
cay with time) of VACF. Thus, we enlarged the periodic cubic
box used in the MD simulation by two times but kept the same
concentration of star polymers. The resulting length of periodic
box is 115.7295σ , which was filled with 8,000 star polymers and
372,000 solvent beads. From the VACF data of this larger atom-
istic system, employing the method described in §3.2.2 resulted
in the same talg, which confirmed the accuracy of the determined
talg. The comparison of the VACF is depicted in Fig. 18, which also
indicates that the long-time VACF (of the larger atomistic system)
without spurious oscillations consistently follow the theoretical
prediction of algebraic decay.

The memory kernel K(t) inferred using the method described in
§3.2.2 is presented in Fig. 19. The VACF and diffusion coefficient
D(t) predicted by the CG simulations are shown in Fig. 20. Those
results are compared with the MD simulation results for t ≤ talg
and compared with the theoretical prediction of algebraic decay
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Fig. 17 Probability distributions of the averaged local Steinhardt param-
eters q̄4 and q̄6 of star polymers in dilute solution predicted by the CG
models and compared with the MD simulation results.
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Fig. 18 Comparison of VACFs of the original atomistic system and a
two-times larger system of star polymers in dilute solution. The slope
− 3

2 (green dash dot line) is drawn for reference.

for t > talg. Good agreements are achieved for either CG model
(with the CG potential constructed by the IBI or DNN method).

4.5 Computational efficiency of CG simulations

In this section, we assess the cost of CG simulations vs. the refer-
ence atomistic simulations. For comparison, each simulation was
conducted for 103τ via serial computing on Intel Core i5-6500
CPU @ 3.20GHz. The computer time spent in each simulation
was summarized in Table 2. Note the computer time reported
herein for CG simulations does not include the time used to con-
struct the CG models. Owing to the larger time step permitted
and fewer total DOFs in CG simulations, we anticipate the CG
simulations are more efficient than the reference atomistic sim-
ulations. Hence, in Table 2, we further evaluated the speedup
factors of CG simulations.

5 Conclusion
We have presented a data-driven CG modeling approach for poly-
mers in solution, which can reproduce the dynamic as well as
structural properties of the reference atomistic system. The CG
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Fig. 19 Memory kernel inferred for star polymers in dilute solution: (a)
short-time K(t) on linear scale and (b) long-time |K(t)| on logarithmic
scale. Here, tshort = 3.8 and talg = 6.3.

Table 2 Comparison of computational cost of CG simulations vs. refer-
ence MD simulations.

System Simulation ∆t (τ) Cost (s) Speedup Factor

melt
MD 0.001 6271 -
CG1 0.1 59 106.3
CG2 0.1 181 34.6

dense
solution

MD 0.001 6117 -
CG1 0.1 47 130.1
CG2 0.1 175 35.0

dilute
solution

MD 0.001 5485 -
CG1 0.1 29 189.1
CG2 0.1 88 62.3

modeling is built upon the framework of GLE. The non-Markovian
memory kernel is inferred from the atomistic simulation data of
VACF via two-stage GP-based Bayesian optimization. The uncer-
tainty level determined from the GP enables the optimization to
balance exploration against exploitation, leading to adaptive sam-
pling of data with information gain maximized. Considering that
the long-time behaviors of VACF and memory kernel for polymer
solutions can exhibit hydrodynamic scaling (algebraic decay with
time), we have proposed an active learning method to “on-the-
fly” determine the emergence of hydrodynamic scaling while the
atomistic simulations are generating the data of VACF. In addi-
tion, we have compared the DNN and IBI methods for construct-
ing the CG potential. With the memory kernel and CG potential
determined, the GLE is mapped onto an extended Markovian pro-
cess to circumvent the expensive cost of directly solving the GLE.
We have assessed the accuracy and computational efficiency of
the proposed CG modeling in a benchmark polymer solution sys-
tem at three representative concentrations.

By comparing with the atomistic simulation results, we have
demonstrated the proposed CG modeling can robustly and accu-
rately reproduce both the structural and dynamic properties of
polymers, regardless of the solution concentrations. Moreover,
the CG simulations have fewer total DOFs, permit larger time
steps, and thereby are much more efficient than the reference
atomistic simulations. Employing the DNN or IBI method for con-
structing the CG potential does not affect the effectiveness of the
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Fig. 20 Dynamic properties of star polymers in dilute solution: the VACF
(on logarithmic scale) and diffusion coefficient D(t) predicted by the CG
models and compared with the MD simulation results for t ≤ talg and
theoretical prediction of algebraic decay for t > talg. Here, tshort = 3.8,
talg = 6.3 and tcut = 93.7.

proposed two-stage Bayesian optimization for inference of mem-
ory kernel and reproducing the dynamic properties. However, we
have found that the DNN method outperforms the IBI method in
reproducing many-body structural correlations characterized by
the averaged local Steinhardt parameters. As the concentration
of polymer solution decreases, the solvent-mediated many-body
effect becomes more pronounced, and hence the CG potential be-
comes more complex and nonlinear, which is reflected by more
layers and nodes required in the DNN representation of the CG
potential. In spite of superior accuracy, the CG simulation with
the DNN model of CG potential is significantly slower than the CG
simulation with the IBI-determined potential. The dominant cost
of calling the DNN model in CG simulations stems from assembly
of the descriptor matrix DI as the input of DNN. Future efforts
aiming to reduce this cost would be worthwhile. Another avenue
for future work would be to explore how the DNN’s representa-
tion of the many-body potential can sensibly be decomposed into
a sum of two-body, three-body, four-body, . . . contributions. This
effort may shed a light on how important the many-body interac-
tions are, and how they can be represented such that potentially
more efficient CG simulation schemes could be constructed.

Although a model system of star polymers was chosen to as-
sess the accuracy and computational efficiency of the proposed
CG modeling, the two-stage GP-based Bayesian optimization for
inference of memory kernel and the active learning method to
determine the emergence of hydrodynamic scaling in VACF are
anticipated to be applicable to general polymer solution systems.
We note that there may be cases that require more than 10 terms

truncated in Eq. (7) to approximate the entire memory kernel, for
which more than 40 parameters need to be optimized in the sec-
ond stage of Bayesian optimization. For those cases, the second
stage of Bayesian optimization can be expensive since the cost in-
creases exponentially with the dimension of parameters. To tackle
this issue, we could potentially employ the feature space-based
Bayesian optimization59–61, which can effectively reduce the di-
mensionality of the optimization problem by embedding the high
dimensional parameters λ∈R4N onto a low-dimensional feature
space λ′ ∈ Rd , where d� 4N . By jointly learning i) the feature
mapping: λ→λ′, ii) the reconstruction mapping: λ′→λ, and iii)
GP model for Π(λ′), the acquisition function LCB(λ′) can be op-
timized in the low-dimensional feature space, thereby effectively
reducing the cost of Bayesian optimization for high-dimensional
cases. The study in this regard will be in our future work.
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