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Effect of polymer-nanoparticle interaction on strain localization in 
polymer nanopillars
Entao Yang,a Robert J. S. Ivancic, b Emily Y. Lin,a and Robert A. Riggleman*a

Polymer nanocomposites (PNCs), a class of composites consisting of typically inorganic nanoparticles (NPs) embedded in a 
polymer matrix, have become an emerging class of materials due to their significant potential to combine the functionality 
of NPs with the toughness of polymers. However, many applications are limited by their mechanical properties, and a 
fundamental understanding of NPs’ effect on the nonlinear mechanical properties is lacking. In this study, we used molecular 
dynamics simulations to investigate the influence of NPs on the tendency of a polymer nanopillar to form a shear band. Even 
though we restrict ourselves to sufficiently low NP loadings that the elastic and yield behaviors are unaffected compared to 
the pure polymer, the polymer-NP interactions have a surprisingly strong effect on the location of a shear band in the 
sample. Different polymer-NP interactions have been used to explore their effect on the local structure of materials which 
is described using a recently developed machine-learned quantity, softness. Our calculations reveal a strong correlation 
between the strain localization pattern and the local structural signatures. Lastly, we show that weak interactions between 
NP and polymer matrix can form a soft region near the NP, and this leads to an attraction of the shear band to the NP surface.

Introduction
Polymer nanocomposites (PNCs) typically consist of a polymer matrix 
loaded with inorganic nanoparticles (NPs). Due to the high surface-
to-volume ratio, the NPs can dramatically enhanced materials’ 
electrical, thermal, and mechanical properties, even at a low 
concentration.1–3 As a result, PNCs have been used in a wide range of 
fields, ranging from electronics4 to gas separation process.5 
However, many applications can be limited due to the brittle nature 
of PNCs, which can lead to catastrophic failure.6 There are many 
studies that have examined the effects of different factors on PNCs’ 
mechanical properties, such as NP size,7 mobility,8 dispersion state,9 
and grafting,7,10 but the inherent connection between polymer-NP 
interactions and their influence on the local structure and the 
consequences for material failure are not well understood. Since 
isolating effects of NP size, dispersion state, and NP surface 
roughness is experimentally challenging, simulation becomes an 
effective method to facilitate a fundamental understanding of the 
physics underlying mechanical properties of PNCs. 
Polymer-NP interactions play a critical role in PNCs’ mechanical 
properties. Adding attractive or neutral NPs can increase the average 
shear and Young’s modulus, alter polymers’ nonaffine displacement 
field during the deformation, and render the material less fragile.11,12 
The primary mechanism of this reinforcement is the presence of an 
interfacial polymer layer around NPs, where polymers have a 

different segmental packing and a modified mobility.11,13,14 
Quantities like the layer width, the interfacial polymer density, and 
the interfacial dynamics are strongly dependent on polymer-NP 
interactions.15 A slow dynamical layer near NPs with an attractive 
polymer interaction can have the relaxation time increased by 
several orders of magnitude compared with the bulk polymer; this 
finding has been observed in both experiments16–18 and 
simulation.13,19–21 In contrast, for weaker or repulsive polymer-NP 
interactions, the near-surface dynamics are typically 
accelerated.15,22,23

Strain localization in amorphous solids, commonly referred to as 
shear banding, occurs when large shear strains localize into a 
relatively thin band. It has been observed experimentally in many 
amorphous materials, including granular materials,24 amorphous 
alloys,25,26 and metallic glasses,27,28 and it is widely accepted that the 
strain localization leads to the failure of amorphous solids.29–32 The 
formation of shear band can be affected by many factors, including 
strain rates, temperature, and sample preparation.33,34  Although 
there is no obvious structural difference between the strain 
localization region and the others, previous work shown that shear 
band location depends on the structural features that are frozen 
during sample preparation,35,36 implying a strong correlation 
between the shear band location and the local structures of particles. 
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Recently, a novel machine learning application has been proposed 
which uses the Support Vector Machine (SVM) algorithm to identify 
particles that tend to rearrange in a short time window based on the 
instantaneous local structure.37,38 A new scalar quantity ‘softness’ 
has been defined39 to indicate the relative probability of a particle to 
exhibit a rearrangement.38 This quantity has expanded our 
understanding of glassy liquds39,40 and aging in glassy materials.41 In 
particular, it has been critical in the understanding of the universal 
yield strain of glassy materials38 and the determination of shear band 
initiation from a microscopic perspective.36 
In this work, we generate a family of nanopillars with a single NP 
embedded in their center and probe the effect of polymer-NP 
interactions on strain localization in the pillar. Using a single NP can 
be an efficient approach in simulation studies of PNCs,15,42,43 because 
it helps isolate the effect of interactions between polymer and NP on 
the resulting mechanical response from the dispersion and overall 
distribution of the NPs, which are inherently coupled in multi-particle 
simulations. Surprisingly, we find that although the elastic and yield 
properties are unaffected, the location of shear bands can be 
controlled by the nanoparticles. We characterize the local structure 
around NP surfaces using softness and find that weak polymer-NP 
interactions lead to soft regions near the particle surfaces. We also 
find that weak polymer-NP interactions tend to attract shear bands 
to the region near NP surface, while stronger polymer-NP 
interactions lead to a region less prone to shear banding. During the 
deformation, we find a region near NP surfaces with a gradient in the 
strain rate, and we qualitatively compare the size of this region to 
the region with a disrupted structure. The size of NPs has also been 
varied to quantify their effects on local structure and dynamics.

Method
System Initialization 

We used a coarse-grained bead-spring model to construct the 
polymer matrix in our simulations.44 Polymer chains consist of 
10 Lennard-Jones (LJ) interaction sites representing the 
monomers, which are connected by harmonic bonds. All the 
systems have 2,200 chains, yielding a total of 22,000 polymer 
particles. The standard 12-6 Lennard-Jones cut-and-shifted 
potential is used to describe all the non-bonded interactions,

𝑈𝑛𝑏(𝑟𝑖𝑗) = 4𝜀𝑖𝑗[( 𝜎
𝑟𝑖𝑗)

12

― ( 𝜎
𝑟𝑖𝑗)

6] ― 𝑈𝑐𝑢𝑡  , 𝑟𝑖𝑗 < 2.5 𝜎

where  is the value of the 12-6 potential at our cut-off distance, 𝑈𝑐𝑢𝑡

. Both polymer-polymer ( ), and NP-NP ( ) interactions 𝑟𝑐 = 2.5 𝜎 𝜀𝑝𝑝 𝜀𝑛𝑛

are fixed at 1.0, while the polymer-NP ( ) interaction is varied from 𝜀𝑝𝑛

0.2 to 3.0. The bonded interactions are described by the harmonic 
bonding potential, 

𝑈𝑏
𝑖𝑗 = 𝐾(𝑟 ― 𝜎)2

where , and  is the diameter of monomers. All the 𝐾 = 400𝜀/𝜎2 𝜎
units reported in this paper are in LJ reduced units. The reduced 
temperature, , is expressed as , and the LJ time,  𝑇 𝑇 = 𝑘𝑇 ∗ /𝜀 𝜏𝐿𝐽 = 𝑡 ∗

, where  is the Boltzmann constant,  is the mass of a single 𝜀/𝑚𝜎2 𝑘 𝑚

LJ interaction site,  is temperature, and  is time and the asterisk 𝑇 ∗ 𝑡 ∗

indicates quantities in laboratory units. 
The NP is modelled as an amorphous and rigid sphere of LJ sites, with 
a nominal radius of 3.0, 4.0 or 5.0 . To construct the 𝑅𝑝 =   𝜎
amorphous NP, we first equilibrated a bulk LJ liquid at high 
temperature (T=10.0) and high density ( ). We then cut a 𝜌0 = 1.25
spherical solid from the LJ fluid by selecting all of the particles within 

 of a point in the fluid. Particles that are outside of the sphere were 𝑅𝑝

deleted. The resulting NP configuration has the same density as the 
high temperature, high pressure LJ liquid, thus ensuring the 
amorphous nature of the NP. We constructed one NP for each radius, 
guarantying the same surface roughness as a function of  for the 𝜀𝑝𝑛

same size of NPs. Also due to its amorphous nature, the actual radius 
could be slightly smaller than the nominal radius in some part of the 
NP. For simplicity, we used the nominal radius as the position of NP 
surface in this work and distance between NP surface and polymer 
monomers can be slightly negative in some cases.
We believe the rigid NP approximation employed here is reasonable, 
because NPs are frequently much stiffer than polymer matrix. We 
also note that previous work has shown that in supported polymer 
films, the stiffness of the substrate will not qualitatively change 
polymer dynamical profiles, especially for thick films.45 Our softness 
analysis presented later also proves that the polymer packing change 
due to stiffness is much smaller compared with the polymer-NP 
interactions. Thus, we do not expect to see any qualitative change in 
our results without this approximation.    
To build the PNC pillars, we first place the NP at the center of a 
simulation box, and fill the simulation box with polymer chains 
surrounding the NP, then we confine the system to a pillar geometry, 
where the height (H) and diameter (D) are 50 , and 25 , 𝜎  𝜎
respectively. Polymer chains are inserted into the cylinder space on 
a mesh with 1 σ resolution initially, surrounding the NP. Periodic 
boundary conditions are used along the lengths of the pillar (z-
direction), and the pillar geometry is initially maintained by using a 
harmonic repulsive wall in the radial direction, which is 14.0-  away 𝜎
from the pillar center. Pure polymer pillars with a same number of 
polymer chains were also constructed as a control group following a 
similar protocol. 
All the systems were first equilibrated in the NVT ensemble at T=1.0 
until the polymers had diffused many times their end-to-end 
distance. The confining wall was then removed to construct a pillar 
with free surfaces, and the systems were further equilibrated at 
T=1.0. Equilibration proceeded until the polymers had diffused 
farther than their equilibrium end-to-end distance. Independent 
configurations were generated at this high temperature and were 

Fig.1 (a) Visualization of our cylindrical PNC system. The pillar is cut 
to display the nanoparticle (colored in blue) in the center. (b) Image 
of rigid amorphous nanoparticle, . These snapshots were 𝑅𝑝 = 5.0 σ
created using OVITO software.52
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separated by approximately a diffusion time. A typical snapshot of 
the system and the amorphous NP are shown in Fig. 1.
Following the equilibration, all the systems were quenching to T=0.1, 
which is much less than the glass transition temperature  (~0.43), Tg

with a constant rate  .  was determined by 𝛤 = 5 × 10 ―4 𝜏𝐿𝐽
―1 Tg

monitoring the density during the quenching process. Linear fits 
were performed above and below the transition region, and the 
corresponding temperature of the intersection point between these 
two lines was taken as the glass transition temperature. In most of 
the work presented below, unless specified, we use the system with 
NP radius equals to 5.0 . All the simulations were performed using 𝜎
the LAMMPS package46 with a timestep , and all 𝛿𝑡 = 0.002 𝜏𝐿𝐽

results are averaged over 3 to 20 independent configurations.

Pillar Deformation and Strain Localization

To study the mechanical properties of these PNC pillars, we applied 
uniaxial tension along the length of the pillars with a constant true 
strain rate . During deformation, the system stress and 𝜀 = 10 ―4

particle positions were stored at a fixed interval. To measure the 
degree of strain localization, we calculated the local deviatoric strain 
rate, , using a previously established method.47 The equation for  𝐽2 𝐽2

is:

𝐽2(𝑖,𝑡, 𝛥𝑡) =
1

𝛥𝑡
1
3𝑇𝑟 [

1
3(𝑱𝑻

𝒊 𝑱𝒊 ― 𝑰) ―
1
3𝑇𝑟(𝑱𝑻

𝒊 𝑱𝒊 ― 𝑰)]
2

where  is the best-fit local affine transformation matrix for particle 𝑱𝒊

i after small strain ( ), which can be calculated from particle and its 𝛥𝑡
neighbours’ positions.30 Particle neighborhood is defined with a cut 
off radius of 2.5 , which is the same as LJ interaction length. A σ
particle with a large  value indicates that the particle has a high 𝐽2

shear strain rate.
Softness and  calculations𝑷𝒉𝒐𝒑

To calculate the softness of polymer monomers, we used a similar 
scheme as described in ref. 36–40 The basic idea is to employ a large 
group of structure functions to distinguish the local structures of 
particles that have a tendency to rearrange from those that tend to 
not rearrange for a prolonged period. A training set of rearranging 
and non-rearranging particles is generated, and each particle is 
characterized by the set of structure functions, which form a vector 
in a high-dimensional space with dimensionality equal to the total 
number of structure functions. We then employ a support vector 
machine (SVM) algorithm to identify the hyperplane that best 
separates the rearranged and the non-rearranged particles, which 
are labelled as soft and hard particles respectively. The softness of a 
given particle is defined as the signed distance between the 
hyperplane and its corresponding point in the high dimensional 
space, which is positive on the soft (likely to rearrange) side and 
negative on the other. 
In this work, we define two groups of structure functions for each 
particle :𝑖

𝐺𝑅(𝑖;𝜇, 𝐿) = ∑
𝑗

max (𝑒 ― (𝑅𝑖𝑗 ― 𝜇)2/𝐿2
― 𝜖𝑅,0)

𝐺𝐴(𝑖;𝜉,𝜆,𝜁) = ∑
𝑗
∑

𝑘
max (𝑒 ―(𝑅2

𝑖𝑗 + 𝑅2
𝑖𝑘 + 𝑅2

𝑗𝑘)/𝜉2
(
1 + 𝜆cos 𝜃𝑖𝑗𝑘

2 )
𝜁

― 𝜖𝐴,0)

where  is the distance between particle  and particle ;  is the 𝑅𝑖𝑗 𝑖 𝑗 𝜃𝑖𝑗𝑘

angle between particle , , and ; ,  , , ,  are all parameters 𝑖 𝑗 𝑘 𝜇 𝐿 𝜉 𝜆 𝜁
varied to construct different structure functions. The  group of 𝐺𝑅

structure functions describe the local radial structure characteristics 
of each particle. It can also be regarded as a Gaussian-smoothed 
version of the radial distribution function, , for the particle . The𝑔(𝑟) 𝑖

 group of structure functions contain the bond orientation  𝐺𝐴

information among the three particles. 
In contrast to previous approaches which have an explicit built-in cut-
off radius, we determine the cut-off radius of these structure 
functions implicitly by parameters  This ensures that 𝜖𝑅,𝜖𝐴 ∈ (0, 1).
these structure functions are smooth at the determined cut-off 
radius. Larger values of  and  simply correspond to a larger 𝜖𝑅 𝜖𝐴

discontinuity in derivatives of these functions at the cut off radius. 
We have found that our results are insensitive to this so long as they 
are chosen reasonably small. Here, we choose  and 𝜖𝑅 = 0.01 𝜖𝐴

. The cutoff distance, , is approximately 2.5 σ. More = 0.05 𝑅𝑐𝑢𝑡

details about  determination can be found in the ESI†. 𝑅𝑐𝑢𝑡

In this work, given that we have a relatively simple model system 
with only one monomer size, we used 30 radial structure functions 
and 10 angular structure functions. These parameters can be found 
in the ESI†, together with the hyperplane we trained. Thus, the total 
dimensions of the structure functions are . Then we assign 𝑀 = 40
the structure functions of each monomer  to a vector . The 𝑖 𝒑𝑖 ∈ ℝ40

elements in this feature vector serve as the coordinates of each 
particle’s corresponding point in the 40-dimensional space.   
The next step in computing a softness field is constructing a “training 
set”, a set of particles about to rearrange and a set that have not 
rearranged for a long time. Though this has been done in 
mechanically deformed systems below the glass transition,36,37,41,48 it 
is significantly more difficult than in quiescent systems as one must 
worry about obtaining enough rearrangements for training, what 
constitutes a monomer being non-rearranging for a “long time” in a 
mechanically deformed system, and how strain localization affects 
results. Instead, we have collected our training data from a pure 
polymer system above  in the NPT ensemble at  and , 𝑇𝑔 𝑇 = 0.5 𝑃 = 0
since it has been shown that the softness field is invariant to changes 
in temperature.39 In this simulation, we collect 10,000 configurations 
with an output frequency of .∆𝑡𝑓 = 0.1 𝜏𝐿𝐽

We use  as the indicator of particles’ local rearrangements, 𝑃ℎ𝑜𝑝

which is introduced by Candelier et al.49,50  is defined as:𝑃ℎ𝑜𝑝

𝑃ℎ𝑜𝑝(𝑡) = ⟨(𝑟𝑖 ― ⟨𝑟𝑖⟩𝐵)2⟩𝐴⟨(𝑟𝑖 ― ⟨𝑟𝑖⟩𝐴)2⟩𝐵

which is calculated at time by first defining a lag time  and two 𝑡 𝑡𝑅

time intervals , and .  represents 𝐴 = [𝑡 ― 𝑡𝑅 2,𝑡] 𝐵 = [𝑡,𝑡 + 𝑡𝑅 2] 𝑟𝑖

the position of particle  at an instant in the time interval. And the 𝑖 〈 〉𝐴

,  represent the average over different time intervals. Based on  〈 〉𝐵

previous work51 and our own optimizations, we define a rearranging 
particle if its  value is great than 0.25. The non-rearranging 𝑃ℎ𝑜𝑝

particle is defined if its  value remains below 0.05 for 200 frames, 𝑃ℎ𝑜𝑝

corresponding to a time interval of 20 . 𝜏𝐿𝐽

To construct our training set, 20,000 rearranging particles (labelled 
as ‘soft’) and an equal number of non-rearranging particles (labelled 
as ‘hard’) are chosen randomly from our quiescent simulation. We 
then use a linear Support Vector Machine (SVM) to find a hyperplane 
that best separates the soft and the hard particles in the high 
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dimensional space defined by our set of structure functions. The 
normal to this hyperplane is the output of our training and can be 
used to calculate the softness, and the projection of a particle’s 
position in this hyperspace onto the normal provides a signed 
“distance” to the hyperplane, which we take as the particle’s 
softness. This hyperplane trained on the neat polymer is then used 
for all our PNC systems at all temperatures. We find that the fraction 
of rearranged particles labelled as soft is above 93% in all six 
interactions, indicating we only mislabel 7% of the rearrangements. 
The overall percentage of correctly classified particles, including both 
the rearranged and the non-rearranged particles, ranges from 92% 
to 97%.

Results
Macroscopic mechanical properties and dynamics of the deforming 
process

We began our analysis by characterizing the mechanical 
properties of these polymer nanopillars, using 20 independent 
configurations for each . The average true stress-strain 𝜀𝑝𝑛

curves of different systems during the deformation are plotted 
in Fig. 2. We find that the elastic modulus, yield stress, and yield 
strain are essentially unaffected by changes in  . This is not ε𝑝𝑛

unexpected given that we only have one NP in the center of the 
nanopillar, giving a NP volume fraction of less than 3%. As our 
main focus in this study is on the effect of polymer-NP 
interactions on nanopillars’ failure mode and shear band 
location, the lack of a change in the stress-strain curve is 
unimportant for our primary conclusions.
We next calculated particles’ deviatoric strain rate, , during 𝐽2

the deformation. In Fig. 3, we plot the average , , around 𝐽2 ⟨𝐽2⟩
the NP as a function of the radial distance from NP surface for 
systems with different  at 2 different strains,  and ε𝑝𝑛 λ = 0.2%

. Results of pure polymer pillars are presented as well, λ = 3.4%
and the distance is calculated as the distance to pillar center, 
minus the NP’s nominal radius, . The lag strain for the 𝑅𝑝 = 5.0 𝜎

 calculation is 0.4%, corresponding to a time interval of 𝐽2

, and  is averaged over 20 configurations. Fig. 3 ∆𝑡 = 40 𝜏𝐿𝐽 ⟨𝐽2⟩

shows that at each strain,  as a function of distance from NP ⟨𝐽2⟩
surface can be roughly divided into three regions. In the first 
region, which is immediately adjacent to NP surface (0 to 2.5 ), 𝜎
effect of  dominates changes in . In systems with smaller 𝜀𝑝𝑛 ⟨𝐽2⟩

,  value is higher, which indicates that these particles 𝜀𝑝𝑛 ⟨𝐽2⟩
rearrange more easily. As  increases, the plasticity measured 𝜀𝑝𝑛

by  decreases. Following the near-NP region, particles behave 𝐽2

more bulk-like; is stable, and it is relatively unaffected by ⟨𝐽2⟩ 
changes in polymer-NP interactions. The last region contains 
particles near free surface, and the higher mobility near the free 
surface leads to a sharp increase in . The peak we saw in ⟨𝐽2⟩
Fig.3 locates near the pillar surface, since our pillars have a 
radius around 12.5 σ and NP radius is 5.0 σ.  
Fig. 3 also shows that differences in among systems with ⟨𝐽2⟩ 
different polymer-NP interactions increase as strain increases, and 
above a threshold strain, the systems with weaker  (𝜀𝑝𝑛 ε𝑝𝑛 = 0.2

) have a higher  at all distances from NP surface. This result , 0.35 ⟨𝐽2⟩
indicates that adding a weakly interacting NP can drastically increase 
particles’ local deviatoric strain rate throughout the entire pillar 
radially. We will show below that this is due to the tendency of shear 
bands to form near NPs with weaker interactions. We can also see 
that a weak interaction , but not the neutral interaction (ε𝑝𝑛 = 0.5 ε𝑝𝑛

), is more like the intermediate state. This is expected = ε𝑝𝑝 = 1.0
since NP itself can alter polymers packing and slow down dynamics 
around it. 
Calculating   using longer lag strains of  and  allows us to 𝐽2 5.6% 8.0%
easily identify the location of the shear band in the vicinity of the 
yield point. Fig. 4a and 4b show the position of the shear band in two 

Fig. 2 Stress-strain curves of pure polymer pillar and polymer 
nanopillars with different polymer-NP interactions. Error bars for 
different systems are in a similar magnitude and is only shown for 
the dark blue curve ( ).𝜀𝑝𝑛 = 0.2

Fig. 3 Average  values (  ) as a function of distance to the 𝐽2 ⟨𝐽2⟩
nanoparticle surface in the radial direction. (a) strain ;  (b) 𝜆 = 0.2%
strain .𝜆 = 3.4%
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cases, one where the shear band forms near the NP (Fig. 4a) and one 
far from the NP (Fig. 4b). These two snapshots were cut from pillars 
with  and  respectively. We also noticed that these 𝜀𝑝𝑛 = 0.2 𝜀𝑝𝑛 = 3.0
interactions are not the prerequisites for the shear banding 
positions. In another word, shear bands can form away from NP 
when , and near NP when , but with different 𝜀𝑝𝑛 = 0.2 𝜀𝑝𝑛 = 3.0
probabilities. 
Thus, to further quantify the distance between the shear band and 
the NP, we divided our pillars into  planes uniformly, 𝑁𝑝𝑙𝑎𝑛𝑒 = 900
with 25 bins in the  axis and 36 bins in the  direction. All the planes 𝑧 𝜃
have a same polar angle of , considering shear bands are 45°
expected to form along approximately  in the pillars. Thus, each 45°
plane is 2σ wide in the z direction, corresponding to a real width of 
1.41 σ. We then average  over each plane , with the longer lag 𝐽2  ⟨𝐽2⟩𝑝
strains calculated in each plane, and take the plane with the largest 

 as the shear band plane. According to our measurements, the ⟨𝐽2⟩𝑝
average  for the shear banding plane in different pillars is ⟨𝐽2⟩𝑝 ⟨𝐽2⟩𝑝

, while for the typical non-shear plane (the = 2.5 × 10 ―4 𝜏 ―1
𝐿𝐽

farthest parallel plane of the shear banding plane) is ⟨𝐽2⟩𝑝 = 7.2 ×
. Both values have a stand error in the order of . 10 ―5 𝜏 ―1

𝐿𝐽 10 ―6 𝜏 ―1
𝐿𝐽

This large difference (a factor of 3.5) further proves the existence of 
strain localization in our pillars.
Next, we calculated the normal distance between NP center and the 
shear band plane and plot it as a function of polymer-NP interactions 
around and post yield (Fig. 4c). When the interactions are weaker (

), shear bands tend to form near NP. When the ε𝑝𝑛 = 0.2, 0.35
interactions become more attractive, shear bands are less likely to 
form near NP and is distributed in regions far from NP. This general 
trend is insensitive to the lag strain we used to calculate . The ⟨𝑱𝟐⟩
randomly distributed shear bands (between particle surface and 
edge of simulation box along the pillar length) is also given as a 
reference. This is different from the average distance between pillar 
center and shear band in pure polymer pillars, which is around 8.6 , 𝛔
because shear bands are unlikely to form across the NP, and all the 
pillars have a same dimension. 
To quantitatively illustrate the shear band location as a function of 
polymer-NP interactions, we calculated a Gaussian-smeared 
probability density distribution of distance to the shear band, ,𝑑

𝑃(𝑑) =
1

𝑁𝐿 2𝜋

𝑁 = 20

∑
𝑖 = 1

𝑒 ― (𝑅𝑖 ― 𝑑)2/2𝐿2
,

where  is the distance between the NP and the shear band plane, 𝑅𝑖

 is constant distribution bin size,  is the position at the center of 𝐿 𝑑
each bin, representing different distance to the NP center. The only 
purpose of the normalization here is to get more smooth curves. In 
Fig. 5, we calculated   with , for all six polymer-NP 𝑃(𝑑) 𝐿 = 1𝜎
interactions using two different lag strains (5.6% and 8.0%). Systems 
with weaker polymer-NP interactions ( ) tend to form ε𝑝𝑛 = 0.2, 0.35
shear bands near the NP. Distance from the NP quickly saturates as 

 increases, and the distribution becomes essentially constant. This 𝜀𝑝𝑛

Fig. 5 Probability density distribution of NP-shear band distance at 
different lag strains: (a) lag strain=5.6%; (b) lag strain=8.0%.

Fig. 4 Visualization of the pillars with shear band, formed around 
yield. Particles are colored based on  values. (a) shear band formed 𝐽2

near nanoparticle, picked from the weakest interaction, .  ε𝑝𝑛 = 0.2
(b) shear band formed away from nanoparticle, picked from the 
strongest interaction, . (c) Averaged nanoparticle-shear ε𝑝𝑛 = 3.0
band distance at different lag strains: the dash line represents the 
average distance between nanoparticle center and randomly 
distributed shear bands between particle surface and edge of 
simulation box along the pillar length. The visualization of pillars 
were created using OVITO software52. 
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is consistent with our previous results in deviatoric strain rate 
distribution, , in Fig. 3, where  is more like an ⟨𝐽2⟩ ε𝑝𝑛 = 0.5
intermediate state between weak and strong interactions.
Local structure and dynamics above  𝑻𝒈

We next characterized the softness near NPs at a temperature above 
 ( ) using the hyperplane trained from a bulk polymer liquid. 𝑇𝑔 𝑇 = 0.5

Due to our choice of using an amorphous NP that consists of Lennard-
Jones sites, we include the NP sites in the characterization of 
structure around polymer monomers near NP surface. This 
eliminates the presence of an artificial void in the local neighborhood 
of particles adjacent to NP surface, which would result in 
unphysically large softness. In the ESI†, we provide numerical 
justification for this approximation by showing that the softness 
curves are unaltered when changing the cut-off used in softness 
calculation, which provides evidence that the softness changes 
observed are due to changes in the local structure of the polymer 
monomers and not the inclusion of NP interaction sites. In Fig. 6, we 
plot average softness as a function of distance from NP surface in the 
radial direction for all six polymer-NP interactions and the pure 
polymer pillar. Three distinct regions of softness appear again, like 
the trend of  shown in Fig. 3. In the near-NP region, the average 〈𝐽2〉
softness decreases significantly with the increase of . It indicates ε𝑝𝑛

that weaker interactions make polymers in the near-NP region 

‘softer’ and more likely to rearrange, leading to higher probability of 
strain localization, as shown in Fig. 4-5. For distances just beyond the 
near-NP region, there is a bulk region where the averaged softness is 
approximately zero, indicating the effect of NP does not extend into 
this region. Like what was shown in Fig. 3, a free surface region is also 
observed in the softness distribution due to the reduction in 
neighbors for particles near nanopillar surface. This can be further 
verified by softness in pure polymer pillar, which fluctuates around 
zero and shows a sharp increase near surface. 
In Fig. 7, we demonstrated that effect of NP size is relatively weak on 
softness of polymer monomers in the near-NP region. We calculated 
average softness as a function of distance to NP surface for three 
interaction strengths and NP sizes,  3.0, 4.0, and 5.0 . Similar 𝑹𝒑 =   𝝈
trends are observed for all NP sizes. The only significant effect of NP 
size on average softness is the enhanced separation of three regions 
in smaller NP systems, which can be seen visually as the horizontal 
shift of the same color curves. This is due to their being more 
distance between the particle surface and the nanopillar free 
surface, considering all pillars have a same dimension.  
Finally, we examined the average segmental relaxation time, , of 𝜏𝛼

the polymer as a function of distance to NP to further demonstrate 
the effect of polymer-NP interaction at different positions. Previous 
work has shown that segmental relaxation time can be robustly 
predicted using softness41, thus we expect to see a strong correlation 
between the relaxation time and the softness. Considering we have 
measured  at a temperature below , which represents polymer 𝐽2 𝑇𝑔

dynamics as well, it can be helpful if we have a measure of the 
relaxation time above . We kept the polymer nanopillars at 𝑇𝑔 𝑇 = 0.5
, at equilibrium above  (~0.43), to calculate segmental relaxation 𝑇𝑔

time from the intermediate scattering function, . This is also 𝐹𝑠(𝑞,𝑡)
the same temperature we measured softness, so that we can better 
evaluate the correlations.  is taken as the time when  decays 𝜏𝛼 𝐹𝑠(𝑞,𝑡)
to 0.2. In Fig. 8, we showed  as a function of distance to NP surface. 𝜏𝛼

The segmental relaxation time is independent of  far from the NP, 𝜀𝑝𝑛

but a strong function of  near NP surface. For systems with 𝜀𝑝𝑛

strongly attractive polymer-NP interactions, relaxation time is 
significantly increased near NP. In other words, polymer monomers 
near NP surface are greatly restricted by the NP and cannot get 
relaxed in an accessible simulation time. This observation is 
consistent with our previous analyses, outlined in Fig. 3-7. The length 

Fig. 6 Average softness values as a function of distance to the 
nanoparticle surface in polymer nanopillars with nanoparticle radius 

. 𝑅𝑝 = 5.0 σ

Fig. 7 Average softness as a function of distance to the nanoparticle 
surface for systems with different sizes of nanoparticles (denoted by 
different line styles) and polymer-NP interactions (denoted by 
different colors). 

Fig. 8 Segmental Relaxation time vs. distance to the nanoparticle 
surface. Different polymer-NP interactions are denoted by color. 
Different nanoparticle radius is denoted by line style. 
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scale of the recovery to the bulk relaxation time is larger than that of 
the softness (and  distributions obtained below ), which is also 𝐽2 𝑇𝑔

consistent with previous results shown by Sussman, et al51, where 
the ability of softness to predict mobility decrease near interfaces in 
polymer thin films.

Conclusions
We used molecular dynamics simulation to study the strain 
localization in polymer nanopillars under tensile deformation. 
Polymer nanopillars with varied polymer-NP interactions as well as 
NP sizes were constructed. We measured the macroscopic 
mechanical responses to deformation below , and found the 𝑇𝑔

polymer-NP interaction does not significantly change the 
macroscopic stress-strain behavior at this NP loading; however, the 
location of shear band formation was strongly affected by the 
polymer-NP interactions. We employed different metrics for 
quantifying microscopic structure and particle-level dynamics, we 
showed that by tuning the interactions between polymer and NP, 
one can control the location of the strain localization. Weaker 
polymer-NP interactions lead to a softer region around the NP, which 
ultimately leads to a higher probability of shear band formation. Thus, 
it is possible to control the shear band formation of a polymer pillar 
by adding NPs and varying the interactions. We note that in pure 
polymer nanopillars surface fluctuations also play an important role 
in shear banding even for nanopillars larger than those considered.36 
However, our results imply that weakly interacting NPs can attract 
the shear bands, despite the expected strong role of surface 
effects. The increased internal mobility around these weak NPs 
can overcome any effects of the surface defects and attract 
shear bands. The results of our study are encouraging because they 
illustrate a strong connection between the structural signature found 
above the glass transition temperature, , and the strain 𝑇𝑔

localization below , which further demonstrates that shear band 𝑇𝑔

position greatly depends on the structural features of materials. 
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We used molecular dynamics simulations to investigate the effect of NPs on the tendency of 
polymer nanopillar to form a shear band and found the polymer-NP interactions have a 
surprisingly strong effect on the location of a shear band in the sample.
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