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Using Osmotic Pressure Simulations to Test Poten-
tials for Ions†

Colin Gillespiea and Scott Milnerb

This paper presents a new method to simulate the osmotic pressure of an ionic solution. Previous
simulation methods confine ions between walls, and the osmotic pressure is inferred from the
force required to maintain this confinement. In this work, we impose a harmonic potential on the
ions to form a nonuniform concentration profile in the solution. As this profile arises from the
force balance of the harmonic potential with the osmotic pressure, it can be used to determine
the osmotic pressure across the entire concentration profile. This method can be performed
without specialized programming, making it accessible to the general user. Using our method,
we find that standard potentials for Na+ and Cl− ions need adjustments to be consistent with
experimental osmotic pressure at high concentrations.

1 Introduction
Understanding the behavior of ions and ionic solutions is impor-
tant across a wide range of topics, from biology to colloid science
to electrochemistry. Simulating ionic solutions as they interact
with biomolecules, colloidal particles, and electrochemical inter-
actions provides an important source of physical insight and com-
plements experimental results.

In general, simulation potentials are tuned to reproduce liquid
state properties. Potentials such as the Optimized Potential for
Liquid Simulations (OPLS) have been tuned to reproduce liquid
densities, boiling points, and heats of vaporization.1 The analo-
gous quantity to validate potentials for ions is the osmotic equa-
tion of state, i.e., the osmotic pressure as a function of concentra-
tion. Physically, osmotic pressure is the force per area exerted by
solutes confined by semipermeable membranes, and varies with
the concentration of the solution.

Hamer and Wu have published a collection of osmotic and ac-
tivity coefficient for electrolyte solutions.2 Experimental data was
collected using a variety of techniques based on colligative prop-
erties, including freezing-point depression, vapor-pressure lower-
ing, and isopiestic equilibrium. Detailed descriptions of the tech-
niques can be found in their paper. This data collection serves as
an excellent source to validate simulation results, allowing us to
tune ion potential parameters.
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For concentrated ionic solutions, the osmotic pressure depends
delicately on the apparent size of ions, represented in the poten-
tial by the short-range repulsion. Too much short-range repul-
sion gives too high an osmotic pressure at high concentrations, as
ions increasingly repel each other; too little short-range repulsion
gives too low an osmotic pressure, as ions of opposite signs tend
to cluster under Coulomb attraction. Therefore, adjusting the ap-
parent size of ions is a potent way to adjust the osmotic equation
of state.

Most published osmotic pressure simulation methods confine
ions in some way between repulsive walls and measure the force
on those barriers. The first such approach, developed by Luo and
Roux, uses two flat-bottom harmonic potentials to confine ions.3 4

The potentials confine the ions by applying a linear opposing force
when the ions pass beyond the start of the potential. The osmotic
pressure is obtained as the time average force from the potential
divided by the area. Unfortunately, the flat bottomed harmonic
potential is not available in most simulation software, and thus re-
quires specialized coding which makes this method inconvenient
for general use.

The second approach simulates a confined system with no ex-
plicit semi-permeable membrane, using Gibbs ensemble Monte
Carlo methods.5 In the simulation, solute particles are exchanged
between a pure solvent compartment and a mixture compartment
until equilibrium is obtained. The osmotic pressure for the system
is calculated from the chemical potential. However, this approach
also requires specialized software, limiting its usefulness.

The third approach uses a physical membrane constructed in
the simulation. Raim and Srebnik used a polyamide membrane
that was impermeable to ions while impeding the flow of solvent

Journal Name, [year], [vol.], 1–6 | 1

Page 1 of 6 Soft Matter



molecules.5 The pressure difference across the barrier at equi-
librium gives the osmotic pressure. In a related approach, Murad
and Prowles used a molecular membrane that was invisible to sol-
vent molecules, while remaining completely impermeable to the
solute.6 This method did not require additional coding outside
general simulation software.

While measuring osmotic pressure by confining ions can be
effective, there are several inherent issues with this simulation
archetype. Each simulation gives osmotic pressure only at a sin-
gle concentration. Therefore, to measure the osmotic equation
of state, separate simulations must be performed at a series of
concentrations.

Furthermore, the impenetrable barrier imposed on the ions
leads to ordering at the wall and non-uniform concentration pro-
files. Figure 1 is a rendering of a frame of a simulation using
confinement, in which ordering of the ions near the boundary
membranes is evident. The resulting ion distributions are shown
in Figure 2. The nonuniform ion concentration raises complica-
tions in determining the effective concentration of the bounded
region.

Fig. 1 A typical configuration of a 2.50 M NaCl solution confined between
graphene-like sheets invisible to water. The Na+ (blue spheres) and Cl −

(cyan spheres) ions tend to order near the confining membranes.
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Fig. 2 A plot of the concentration profiles of Na+ (blue) and Cl − (cyan)
ions compared to the target concentration (black) in a simulation of 2.50M
NaCl between confining sheets.

In this work, we present a new method, in which we measure
the osmotic equation of state over a wide range of concentration

in a single simulation. In brief, the method works by placing the
ions in a harmonic potential. This potential leads to an nonuni-
form equilibrium concentration profile, as sketched in Figure 3.
In equilibrium, each slice of the concentration profile can be re-
garded as stationary under the sum of three forces: the gradient
of the external potential, and the osmotic pressure on the two
sides of the slice, which differ slightly because of the nonuniform
concentration. By analyzing this balance of forces, we can infer
the osmotic pressure everywhere in the system from the measured
concentration profile.

Fig. 3 Sketch of the new method. Potential (green) results in nonuni-
form ion concentration (blue). Each slice of solution (red) is acted on by
harmonic force FU , and osmotic pressure Π from left and right.

2 Π(φ) by harmonic confinement
Ions in a harmonic potential exhibit a nonuniform concentration
profile at equilibrium. This nonuniform profile arises from the
balances of forces exerted on the solution by the external har-
monic potential and internal forces. Consider the balance of
forces on a thin slice from z to z + ∆z (see Figure 3). The force
exerted on the slice by the potential U is:

FU = φ(z)
dU(z)

dz
∆z (1)

where φ(z) is the total ion concentration at height z. (By design,
the imposed potential acts equally on both species of ions.)

The force exerted on each slice by the osmotic pressure de-
pends on the concentration of each neighboring slice. A solution
with higher concentration exerts a higher osmotic pressure onto
its surroundings than one with a lower concentration. The differ-
ence in concentration from the two adjacent slices produces a net
force on a given slice:

FΠ =
dΠ(z)

dz
∆z (2)

.
When the system is in equilibrium, the sum of the osmotic and

gravitational forces on each slice must vanish. The same conclu-
sion can be reached by the device of inserting massless, semiper-
meable membranes between each successive slice of the concen-
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tration profile. Inserting the membranes changes nothing about
the equilibrium configuration, but allows us to identify the forces
acting throughout the fluid. Each membrane supports the weight
of the suspension in the slice immediately above, and is acted
on by the slightly different osmotic pressures in the slices above
and below. The sum of the forces acting on each membrane must
evidently vanish.

By the above arguments, the change in the osmotic pressure
across a thin slice is then proportional to the change in the har-
monic potential multiplied by the concentration of the slice.

dΠ(z)
dz

=−φ(z)
dU(z)

dz
(3)

This allows the osmotic pressure of the simulation to be inferred
from the concentration profile and the imposed harmonic poten-
tial.

2.1 Simulation setup

We chose NaCl for the first salt to simulate. Sodium cations and
chlorine anions are ubiquitous; high quality data on NaCl osmotic
pressure is readily available; and both cation and anion are single
atoms, so that the simulation potentials describing ion interac-
tions are particularly simple.

Our all-atom molecular simulations were performed with the
simulation package GROMACS, using the OPLS potentials.7 8 9 10

GROMACS has a wide range of of options for imposing forces on
atoms in solutions, referred to as “pull code” options. One such
option imposes a force onto a target atom or molecule that de-
pends linearly on the distance from a chosen origin. By choosing
the origin at the center of the simulation, we create an external
harmonic potential centered in the system.

While there is no hard limit on the number of pulls that can be
enabled, each ion pull option must be individually defined in two
places. Each ion needs its own individual group defined in the
system index (.ndx) file, and pull options for each group must be
defined in the molecular dynamics parameters (.mdp) file. The
pull code options have the form shown in Table 1. (To produce
these long and repetitive files, we used two bash shell scripts.)

pull = yes
pull-ngroups = 160
pull-ncoords = 160
pull-group1-name = ion1
pull-coord1-type = umbrella
pull-coord1-geometry = direction-periodic
pull-coord1-vec = 0 0 1
pull-coord1-groups = 0 1
pull-coord1-origin = 2.491 2.491 2.491
pull-coord1-dim = N N Y
pull-coord1-k = 3.250
pull-group2-name = ion2

...

Table 1 Pull code options for a harmonic potential

When building a new simulation, a balance must be struck be-
tween processing time and data quality. Increasing the size or

length of a simulation increases the quality of the data collected at
the cost of additional computational power and time required. To
achieve this balance, there are four parameters to be considered:
the size of the system, the strength of the harmonic potential, the
number of ions, and the length of the simulation.

The size of the system determines the number of ions and wa-
ter molecules that can be placed in the solution. More ions means
better statistics for the concentration profile. However, a simula-
tion with twice the number of atoms takes twice as long to run
with the same computational resources.

For this work, we used two different system sizes, one a 2.5 nm
cube, the other a 5 nm cube. By carefully choosing the system
parameters, with the same concentration profile as a function of
scaled position. If the profiles produced are not the same, this
would indicate the presence of finite-size effects.

The spring constant of the harmonic potential controls how
rapidly the potential varies along the z axis. If the harmonic po-
tential is too strong, then the ions will predominately gather in
the center. This would waste computational power, as the edges
of the system would consist only of water. If the harmonic poten-
tial is too weak, the resulting concentration profile will not cover
a large enough range, and will not become dilute at the boundary,
preventing the simulation from achieving its goal.

Therefore, we want to choose a spring constant to produce a
concentration profile that approaches zero only at the boundary
of the system. This ensures that the space is fully utilized, while
maintaining the ability to measure osmotic pressure across the
full concentration profile. We chose the spring constant such that
the energy difference between the maximum of the harmonic po-
tential and the boundary of the potential is equal to 4kT , where
k is the Boltzmann constant and T is the absolute temperature.
This makes the concentration at the boundary approximately e−4

times the maximum concentration, giving us a large range for the
concentration profile.

For the small system, this gives a spring constant K of 13
kJ/mol/nm2. Since the large system is twice as large in each di-
rection, the equivalent spring constant for the large system is four
times smaller, or 3.25 kJ/mol/nm2. This produces the same har-
monic potential curve in each system when measured on a scaled
z axis.

The number of ions in the solution determines the maximum
concentration that the solution can reach for a given simulation
size. After initial testing, the small system was taken to contain
10 of each ion. The large system contained 80 of each ion, as the
volume is eight times that of the small system.

When the three parameters are chosen in this manner, the con-
centration profile for the large and small systems plotted on a
scaled z axis are indeed the same, as shown in Figure 4. The con-
centration profiles were averaged with their mirror images, taking
advantage of symmetry to improve the accuracy of the measure-
ments. Note that the concentration nicely approaches zero far
away from the center of the box.

By comparing the concentration profiles of the small and large
systems, with correspondingly stronger and weaker harmonic po-
tentials (with K equal to 13 and 3.25 kJ/mol/nm2 respectively),
we can assess the extent of finite-size effects on our simulation
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protocol. We may expect that if our system were too small, and
the concentration profile varied too rapidly with respect to molec-
ular scales, our analysis of the osmotic pressure balance would be-
gin to fail. Because the two profiles in Figure 4 are nearly identi-
cal, we have confidence that our simulation system, though small,
is large enough for our purposes.

Our simulations were performed with periodic boundary con-
ditions in all three directions. The imposed harmonic potential is
defined with respect to the nearest distance along z to the cen-
ter of the box, so that the potential is continuous at the system
boundary in z. The periodic boundary conditions allow us to dis-
pense with any vacuum interfaces or walls that would tend to
collect ions, as was observed for the ionic solutions confined be-
tween semipermeable membranes.
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Fig. 4 Ion concentration verses scaled z position for small (red) and large
(blue) systems.

The simulation run time must be chosen large enough to give
good statistics for the concentration profile, from which the os-
motic pressure is calculated. After initial experimentation, we
simulated the small system for 80 ns and the large system for 10
ns. With this choice, simulations with large and small systems
produced concentration profiles with comparable accuracy, as the
eightfold increase in the ions in the larger system is compensated
by the eightfold increase in run time for the smaller system. In-
deed, both runs then use comparable computational resources, so
there is little reason to prefer one over the other.

2.2 Analysis

The osmotic pressure of the simulation is calculated from the
force balance:

dΠ

dz
=−φ

dU(z)
dz

(4)

The harmonic potential takes the form:

U(z) =
1
2

Kz2 (5)

where z is centered in the system, and K is the spring constant.
Substituting the harmonic potential into the force balance gives:

dΠ

dz
=−φKz (6)

We measure the concentration profile as a sequence of equally
spaced z values, so we discretize the force balance as

∆Π

∆z
=−φKz (7)

Solving for the increment in osmotic pressure across a given slice
∆z gives

Π2 = Π1 +φKz(∆z) (8)

where Π1 is the osmotic pressure closer to the boundary of the
system.

Since φ and z are given at the endpoints of each interval ∆z,
their average value is taken to give the final form of the equation
as:

Π2 = Π1 +
φ2 +φ1

2
z2 + z1

2
K∆z (9)

This equation allows for the stepwise calculation of the osmotic
pressure given an initial value. This value is calculated at the edge
of the system, where the ion concentration approaches zero and
ideal behavior can be assumed, with an osmotic pressure given
by Π = RMT .

2.3 Results

To test the potential parameters for Na+ and Cl− ions, the os-
motic equation of state for NaCl solutions was determined using
the new method, and compared to experimental data.2 In Figure
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Fig. 5 Experimental data (black) vs simulation data for small (red) and
large (blue) systems using default OPLS parameters for Na+ and Cl−.

5, the simulation results for the small (red) and large (blue) sys-
tems lie well below experimental data (black) for concentrations
above 0.5M. This indicates that the simulated ions are too much
attracted to each other, tending to cluster at higher concentra-
tions, thus reducing the osmotic pressure.

2.3.1 Tuning the simulation potentials.

To counteract the deviation of the simulated osmotic pressure
from the data, we need to prevent the ions from clustering so
much. Of course, we should not change the ionic charge. Rather,
we strengthen the repulsive part of the Lennard-Jones interaction
between Na+ and Cl− ions. The Lennard-Jones potential is the
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sum of repulsive and attractive terms:

V =VA +VR = 4ε

[(
σ

r

)12
−
(

σ

r

)6
]

(10)

To increase the repulsive force while maintaining the same at-
tractive force, we find new σ and ε values such that

VR(σ
′,ε ′) = (1+X)VR(σ ,ε) (11)

VA(σ
′,ε ′) =VA(σ ,ε) (12)

where X is the fractional increase in the repulsive potential. This
gives:

σ
′ = 6
√

(1+X)σ (13)

ε
′ =

ε

1+X
(14)

A 20 percent increase in repulsive potential between Na+ and
Cl− ions above the standard OPLS value for their Lennard-Jones
interactions gives osmotic pressure results that closely match the
experimental data, as shown in Figure 6. The corresponding in-
crease in repulsive radius σ is very modest (3 percent). Note that
we only adjusted the interactions between Na+ and Cl-, overrid-
ing the default mixing rule that determines all cross-interactions
from the LJ parameters for each species. We have not changed
the ion-water interactions in any way. As a result, in our simula-
tions both species of ions have hydration shells of reasonable size,
before and after the adjustment.
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Fig. 6 Simulated osmotic pressure vs solution concentration solution
with modified potential parameters (blue) compared to experimental data
(black)

As a second example, a particularly important ionic group for
biomolecules is the carboxylic acid anion, COO−. To study the po-
tential for this ion, we investigate sodium acetate, Na+CH3COO−.
If we correctly capture the osmotic pressure of this salt, we may
be confident that we properly model the carboxylic acid groups in
charged polymers and biomolecules.

Figure 7 presents osmotic pressure results for sodium acetate
compared to experimental data, using the same system size, ion
count, and spring constant as the large NaCl simulations. In this
case, the unmodified OPLS force field for these ions, without any
adjustments, produced results close enough to experiment to be

usable in simulation even at high concentrations.
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Fig. 7 Simulation results for osmotic pressure vs concentration for
sodium acetate (orange) compared to experimental data (black).

3 Conclusions
In this paper, we presented a new method to simulate the osmotic
pressure of ionic solutions. The method works by placing the ions
in a harmonic potential, which induces a nonuniform concentra-
tion profile. By analyzing the equilibrium balance of osmotic and
external forces, we can measure the osmotic pressure across a
wide concentration range.

The method exploits the ability to impose external potentials
available in leading simulation platforms such as GROMACS, and
so requires no specialized coding.

Previous simulation approaches effectively confine ions be-
tween walls, and measure the force on the walls. This works, but
provides only one value of osmotic pressure at one ion concen-
tration. To measure one point accurately by such method takes
about as much computer time as our method takes to obtain the
entire osmotic pressure curve from 20 mM to 2M. To generate
such a curve with previous confinement methods would require
10-20 simulations, and thus take 10-20 times as long.

Additionally, for previous confinement simulations, it is prob-
lematic to determine the appropriate concentration of the con-
fined solution. Boundary effects of the confining wall lead to
strong local perturbations of the concentration near the wall. In
contrast, harmonic confinement eliminates boundaries from the
system, ensuring that there is no wall effect on the ion distribu-
tion.

One important application of reliable and convenient simula-
tions of the osmotic equation of state is in validating simulation
potentials for ionic solutions. Simulations of aqueous ions are im-
portant for biomolecules, colloidal particles, and electrochemical
interfaces. In all these instances, charged surfaces may attract
counterions, leading to local concentrations well in excess of av-
erage solution concentrations, possibly as high as several molar in
a thin nanoscale layer. If the simulation potential is not accurate
for such concentrated ions, ions will cluster too much or too little
onto charged surfaces, leading to qualitatively incorrect results
and predictions.

Journal Name, [year], [vol.], 1–6 | 5

Page 5 of 6 Soft Matter



Conflicts of interest
There are no conflicts to declare.

Acknowledgements
We thank the National Science Foundation for support under
DMR-1905632 and DMREF-1921854.

Notes and references
1 W. L. Jorgensen and J. Tirado-Rives, J. Am. Chem. Soc., 1988,

110, 1657–1666.
2 W. J. Hamer and Y. C. Wu, J. Phys. Chem. Ref. Data, 1972, 1,

1047.
3 Y. Luo and B. Roux, J. Phys. Chem. Lett., 1996, 1, 183–189.
4 M. Kohns, S. Reiser, M. Horsch and H. Hasse, J. Chem. Phys.,

2016, 144, 084112.
5 V. Raim and S. Srebnik, J. Membrane Sci., 2018, 563, 183–

190.
6 S. Murad and J. G. Powles, The Journal of Chemical Physics,

1993, 99, 7271–7272.
7 B. Hess, C. Kutzner, D. van der Spoel and E. Lindahl, J. Chem.

Theory Comput., 2008, 4, 435–447.
8 D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark

and H. J. C. Berendsen, J. Comp. Chem., 2005, 26, 1701–
1719.

9 E. Lindahl, B. Hess and D. van der Spoel, J. Mol. Mod., 2001,
7, 306–317.

10 H. J. C. Berendsen, D. van der Spoel and R. van Drunen,
Comp. Phys. Comm., 1995, 91, 43–56.

6 | 1–6Journal Name, [year], [vol.],

Page 6 of 6Soft Matter


