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Particle anisotropy tunes emergent behavior in active
colloidal systems†

Shannon E. Moran,a Isaac R. Bruss,a Philipp W. A. Schönhöfer,a and Sharon C. Glotzerab‡

Studies of active particle systems have demonstrated that particle anisotropy can impact the collec-
tive behavior of a system, motivating a systematic study. Here, we report a systematic computational
investigation of the role of anisotropy in shape and active force director on the collective behavior
of a two-dimensional active colloidal system. We find that shape and force anisotropy can com-
bine to produce critical densities both lower and higher than those of disks. We demonstrate that
changing particle anisotropy tunes what we define as a “collision efficiency” of inter-particle collisions
in leading to motility-induced phase separation (MIPS) of the system. We use this efficiency to
determine the relative critical density across systems. Additionally, we observe that local structure in
phase-separated clusters is the same as the particle’s equilibrium densest packing, suggesting a gen-
eral connection between equilibrium behavior and non-equilibrium cluster structure of self-propelled
anisotropic particles. In engineering applications for active colloidal systems, shape-controlled steric
interactions such as those described here may offer a simple route for tailoring emergent behaviors.

1

1 Introduction2

Active matter is a field of rapidly expanding interest and research3

activity over the last decade1–4. Vicsek’s pioneering work showed4

a collection of point particles with alignment rules displays rich5

collective behavior, including phase separation5. However, theo-6

retical work describing the collective behavior of bacteria demon-7

strates that phase separation behavior is not reliant upon explicit8

alignment rules6. In a phenomenon known as “motility-induced9

phase separation” (MIPS), systems of disks were found to phase10

separate as a consequence of density-dependent particle veloc-11

ity7. This phase separation behavior of isotropic particles has12

been explained using a variety of models, including: athermal13

phase separation8, the kinetic steady-state balancing of particle14

fluxes9,10, classical nucleation11,12, and the balancing of colli-15

sion and ballistic timescales13. Importantly, phase separation16

predicted by theory has been observed in experiments, which con-17

firm the activity-dependent formation of clusters and “active crys-18

tals”14–16.19

However, in real-world systems particles (e.g. bacteria)20

are rarely isotropic in shape. Thus, one thrust in the active21
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matter community has focused on understanding how particle22

anisotropy will change the behavior theoretically predicted for23

systems of isotropic particles. In a simple anisotropic model, sim-24

ulations of rods with varying aspect ratios and densities display a25

rich variety of collective motion, such as laning, swarming, and26

jamming17–19. Additionally, simply changing the direction of the27

driving force relative to a fixed particle shape (e.g. “rough” trian-28

gles) drastically alters the resulting collective behavior and onset29

of phase separation20,21.30

Few general mechanisms have been proposed for the vary-31

ing impacts of particle anisotropy on collective behavior. Active32

squares display a steady state “oscillatory” regime in which large33

clusters break up and re-form22. A combination of activity and34

molecule shape has shown to enhance polymerization23. Mix-35

tures of gear-shaped “spinners” with opposite rotational driving36

forces phase separate through competing steric interactions24–26.37

In systems of active “dumbbells”, particle anisotropy allows for38

the stabilization of cluster rotation27,28. This cluster rotation is39

also observed in active squares22, but is notably absent in clusters40

of frictionless isotropic particles.41

From these studies, we can see a general description of the42

impact of particle shape anisotropy on emergent system behavior43

is needed. Such a description would allow us to tailor the form44

and onset of critical behavior in active systems through “implicit”45

steric means, rather than explicit interaction rules.46

In this paper we aim to develop a generalized description of47

the role of active particle anisotropy through direct comparison48

to frictionless active disks (i.e. isotropic particles). We study a49

family of translationally self-propelled 2D polygons (of side num-50
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ber 3≤n≤8) with force director anisotropy implemented as shown51

in Figure 1. This choice of shapes systematically extends previous52

studies on triangles with inertia20, triangles with friction21, and53

squares22. Full simulation parameters and additional details can54

be found in Section 2.55

We show that the onset of phase separation at a critical den-56

sity φ∗ is highly dependent on the shape of the particle given a57

constant Péclet (Pe) number, where Pe is a measure of active (ad-58

vective) to diffusive motion. In our system, we observe phase59

separation at densities as low as φ∗ = 0.01 in vertex-forward 6-60

gons, or as high as φ∗ = 0.37 in edge-forward 3-gons– both below61

and above φ∗ of disks. Interestingly, we find that the direction62

of the force director is sufficient for changing the φ∗ for a given63

shape, but not for changing the relative phase separation onset64

between different shapes. Specifically, edge-forward active parti-65

cles have higher φ∗ than their vertex-forward counterparts. Ad-66

ditionally, the internal structure of the phase-separated cluster is67

primarily determined by the particle shape and resembles each68

shape’s equilibrium densest packing. This resemblence suggests69

a link between structure and critical density not yet explored in70

active systems.71

In addition to this systematic study, this work’s contribution to72

the study of anisotropic active matter is the introduction of a “col-73

lision efficiency” measure. We find that systems with the lowest74

critical densities are also those that maximize particle deceler-75

ation per unit increase in inter-particle collision pressure, Pcoll.76

That is, some shapes can more efficiently convert particle colli-77

sions into decreases in particle velocity, v, leading to phase sepa-78

ration. This allows us to quantitatively attribute changes to φ∗ in79

systems of shapes versus disks to steric impacts on collisions, and80

directly shows that we can tune critical behavior of active systems81

by tuning the nature of the inter-particle collision dynamics.82

We note that 3- and 4-gons (the only two previously studied ac-83

tive polygons) behave fundamentally differently from other poly-84

gons. We attribute this to the slip planes present in their dens-85

est packings. As these shapes have been used as model systems86

for a number of previous studies20–22, we show why such results87

should not be generalized to systems that do not have slip planes.88

2 Methods89

2.1 Model and dynamics90

The model particles used in this study are shown in Figure 1.91

We study a family of regular polygons of side number 3≤n≤8.92

We set particle side length a to maintain a constant side-to-corner93

perimeter ratio, ζ , to ζ = ∑s as
2πrWCA

= 9 over all sides s. Here, 2πrWCA94

is the corner rounding introduced by the frictionless, purely re-95

pulsive, excluded volume Weeks-Chandler-Anderson (WCA) po-96

tential of interaction length rWCA, which we set equal to 1 for97

all shapes under study to keep the interaction length consistent.98

The WCA potential is a shifted Lennard-Jones potential, shifted99

to zero and cut off at its minimum. Mathematically, the in-100

teraction between particles i and j is constructed as U(ri j) =101

4ε[(σWCA/ri j)
12− (σWCA/ri j])

6] + ε for r≤rcut and 0 for r > rcut,102

where rcut = 2(1/6)σWCA and σWCA = 2rWCA
29.103

We know from equilibrium studies30–32 and other works on ac-104
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Fig. 1 (a) Shape anisotropy is studied with a family of regular polygons
of side length a. Here we show a pentagon as example. Particles in-
teract through a purely repulsive WCA potential characterized by rWCA.
Full specification can be found in Section 2. (b) Simulation timescales
are characterized by τ, the time for a particle to ballistically travel its
characteristic length, σ , calculated as the diameter of an equiarea (A)
disk. (c) Force anisotropy is defined by the active force director, n̂A,
which propels the shape either edge- or vertex-forward. A key feature
of this system is that collisions of anisotropic particles can sustain trans-
lational and/or rotational motion. Illustrative collisions are provided for
each force director.

tive anisotropic particle systems22 that self assembly and critical105

behavior is sensitive to the effective “roundness” of particle ver-106

tices. As the repulsive interaction introduces a slight “rounding”107

to the shapes, maintaining a constant ζ over all simulations en-108

sures our systems can be compared with one another. This value109

ζ = 9 was chosen to balance shape fidelity (less rounding) and110

simulation feasibility with computational demands.111

We also explore anisotropy in the constant active force director112

(FFFA
i = v0n̂i

A(cosθi,sinθi)) applied to each particle i. For a given113

simulation, we set n̂i to be either perpendicular to a side of the114

particle (edge-forward) or bisecting a vertex (vertex-forward), as115

shown in Figure 1c. The active force director n̂i is initialized ran-116

domly for each particle from the set of possible vertex-forward or117

edge-forward directions for each simulation, and is locked in the118

particle’s frame of reference. The active force direction changes119

only with particle rotation due to thermal fluctuations and colli-120

sions.121

We took further care to ensure consistent anisotropy through122

our choice of active force magnitude and temperature. Our sys-123

tems were run at Péclet (Pe) number of Pe = 150, where Pe is124

a measure of active (advective) to diffusive motion (Pe = v0σ

kBT ,125

where σ is the diameter of an equi-area disk for a given shape).126

In this Pe regime, we can treat the active driving force as the pri-127

mary contributor to particle motion over thermal fluctuations. By128

setting the temperature of the thermal bath governing the fluctu-129

ations to kBT = v0σ

Pe and the magnitude of the active driving force130
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v0 = 1, we ensure that the interaction distance between interact-131

ing particles remains constant for all simulations.132

Particle motion was solved for using the Langevin equations of133

motion.134

miv̇vviii = ∑
j

FFFEx
i j − γ · vvviii +FFFA

i +FFFR
i (1)135

136

miθ̈i = ∑
j

TTT Ex
i j − γR ·ωωω iii +

√
2DRη(t)R

i (2)137

Mass (mi) is set to 1×10−2 such that the dynamics closely ap-138

proximate the Brownian limit in line with the expected dynamics139

of bacteria and colloidal-scale particles. The forces and torques140

due to excluded volume (FFFEx
i j and TTT Ex

i j ) were calculated using a141

discrete element method33, which calculates interparticle inter-142

actions between a point on one particle perimeter and a point on143

another particle’s perimeter. Translational and rotational veloc-144

ities are given by vi and ωi, respectively. We parametrized the145

implicit solvent via the translational drag coefficient γ = 1 and146

γR = σ 3γ

3 per the Stokes-Einstein relationship. These parameter147

choices correspond to the overdamped, diffusive limit. Our model148

does not account for solvent-mediated hydrodynamic interactions149

between active particles. Although there is a small inertial com-150

ponent in our model, we confirmed that it is not critical for any of151

the observed behavior. The last term in both equations accounts152

for thermal fluctuations. Noise is included via Gaussian random153

forces FFFR
i =

√
2γkBT η(t) that model a heat bath at temperature154

T . Here η(t) are normalized zero-mean white-noise Gaussian pro-155

cesses (〈ηi(t)〉 = 0 and 〈ηi(t)η j(t ′)〉 = δi jδ (t − t ′)). This ensures156

thermodynamic equilibrium in the absence of the externally ap-157

plied forces (FFFA
i j). The simulation protocol is described in Ap-158

pendix A.1.159

3 Results and Discussion160

3.1 Phase separation and critical behavior161

Figure 2a shows the critical density φ∗ based on the occurrence162

of two density peaks in the local density distributions (for an in-163

depth description see Appendix A.2) for different regular poly-164

gons. As we increase the number of vertices (i.e. become more165

“disk-like”), we expected to see monotonically increasing critical166

density34 from high-anisotropy 3-gons towards lower anisotropy167

8-gons.168

Instead phase-separation behavior does not vary monotonically169

with n. For shapes of n = [3,4], we observe a φ∗ near that of disks170

in this Pe regime, with exact value dependent on the force direc-171

tor. As we increase n to 5, we see a sharp decrease in φ∗ with172

continued dependence on the force director. The lowest critical173

densities are observed for shapes of n = 6, above which we ob-174

serve the expected monotonic increase in φ∗ as n is increased to175

[7,8].35176

We first address the impact of the force director. We expect177

φ∗ to depend on the nature of the active force director because178

the stability of small cluster depends on the force directors, as179

suggested in the collision example diagram in Figure 1. Specif-180

ically, for vertex-forward shapes, the only stable dimer sustains181

translational motion. For edge-forward shapes, stable dimers ex-182

ist that are either stationary and/or can sustain translational mo-183

Local density
0.0 0.2 0.4 0.6 0.8 1.0

b) Edge-forward Vertex-forward

�⇤ > �⇤ �⇤ > �⇤

�⇤

disks

Vertex-forward
Edge-forward

Fig. 2 Critical density and collective behavior of active anisotropic sys-
tems. (a) Critical density for systems of each n-gon. We define the
critical density, φ∗, as the density at which > 50% of the replicates phase
separate into clusters. Lower error bar bounds indicate the minimum sys-
tem φ at which at least one replicate phase separated into clusters, while
the upper error bar bounds indicate the minimum φ at which all replicates
clustered. See also Appendix A.2. (b) Representative steady-state local
density snapshots in the critical (φ ∗) and phase separated (> φ∗) regimes
of edge forward (left) and vertex forward (right) active polygons. A dis-
tinctive feature of phase separation in systems of anisotropic particles is
the formation of multiple stable clusters that persist for long time scales.
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Fig. 3 Example of structural evolution of clusters in system of vertex-
forward 8-gons at φ = 0.5. a) Left column: Active force director n̂A

exhibits strong polarization at all times, pointing towards the center of
the cluster both at the boundary and throughout the cluster. Center
column: Hexatic bond order ψ6 (see definition in Appendix A.3) forms
quickly and uniformly through clusters. Spatial boundaries in the order
parameter are the result of cluster mergers that have not yet annealed.
Right column: Body order ξ8 (see definition in Appendix A.3) accounts
for particle orientation in the cluster. Strong orientational grains form
in the clusters, though they do not span clusters as completely as bond
order. Grain boundaries are apparent and do not anneal completely. b)
Legend for orientation maps in (a). c) Snapshots of bond and body order
from regions highlighted in (a).

tion. Looking only at the mechanical force balance on configura-184

tions of edge- versus vertex-forward particle clusters, we might185

expect that edge-forward particles would phase separate more186

easily due to more effective inter-particle slowing. However, the187

sustained translational motion of small clusters allows increased188

inter-cluster collisions in the vertex-forward systems. It is clear189

that this increased inter-cluster collision phenomena wins out,190

with lower φ∗ for vertex forward n = [3,4,5]. Following this logic,191

the translational speed of a vertex-forward dimer relative to the192

particle ballistic velocity should decrease with increasing n. We193

hypothesize that for n > 6, this decrease in small cluster trans-194

lational speed leads to the lack of difference between edge- and195

vertex-forward φ∗. Representative small-N clusters are shown for196

each combination of n-gon and force director in the Supplemen-197

tary Information.198

In investigating the structures formed by particles in the phase-199

separated cluster, we find that without exception the particles200

have assembled into their densest packing, as shown in the far201

right column of Figure 2b. Using this information, we make the202

following observations. For 6-gons (the shape with the lowest203

φ∗), the densest packing has neither void space nor slip planes.204

For 5-, 7-, and 8-gons, the densest packing has void space, but no205

slip planes. For 3- and 4-gons, the densest packing has no void206

space, but has slip planes. This leads us to hypothesize that a207

system’s ability to inhibit particle movement in the cluster (where208

void space and slip planes play a role) is critical to understanding209

the critical behavior.210

Additionally, the only two shapes in our simulations that ex-211

hibit an “oscillatory” regime in their phase behavior are 3- and 4-212

gons (videos available in the Supplemental Information). These213

shapes are also the only two that have slip planes in their densest214

packings. In the literature, other studies have noted oscillation215

as novel behavior accessed via anisotropy and activity22,36. We216

posit that the oscillatory regime for anisotropic particles is in fact217

a natural consequence of the preferred steady-state structure of218

the component particle shapes in these systems. We will revisit219

this claim more rigorously in Section 3.3.220

Our final observation on the critical behavior is that the na-221

ture of the phase separation varies significantly based on shape,222

as shown in Figure 2b. Beyond the critical regime, we see the223

formation of many stable clusters at steady state for n≥5. This224

is in contrast to systems of isotropic disks, where secondary clus-225

ter formation is short-lived with phase separation characterized226

by a single large cluster9,10. The phenomena of multiple phase-227

separated clusters at steady state is theoretically predicted in bac-228

teria6, but not in other theoretical models focused on isotropic229

active particle phase separation8,12.230

3.2 Cluster growth and coarsening dynamics231

It remains an open question in the literature as to how shape232

may affect the kinetics of phase separation, e.g. coarsening and233

domain growth laws in active systems. Here, we investigate how234

particle shape enables the observed phase separation initially into235

multiple small clusters with coarsening at steady state.236

Before phase separating, systems exhibit localized areas of237

high-density fluctuations, as described in many other theoretical238

studies of active systems7,8. These localized areas of high density239

are hexagonally ordered, with the exception of 4-gons, which or-240

der on a square lattice. Following this initial structuring, orienta-241

tional order develops consistent with the known densest packing242

of each regular polygon37. An example of this phase separation243

process in vertex-forward 8-gons is shown in Figure 3.244

This transition from random orientation to close-ordered dens-245

est packing is due to the active collision pressure on the clus-246

ters. Studies on active disk cluster nucleation have confirmed that247

inward-pointing particles at the cluster boundary is a necessary248

condition for nucleation11,12. Similarly, active polygon clusters249

possess a net-inward force (Figure 3a). However, unlike in clus-250

ters of disks, the rotation of n-gons within the cluster is sterically251

inhibited. Thus, there exists a sustained inward-facing pressure252

on the clusters driving the structure to a densest packing.253

We observe that the nature of the phase separation dynamics254

for shapes resembles that of quenched disks10 for n≥5, as seen in255

Figure 2b. Multiple small clusters form and are stable at steady256
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Local density
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4 Example of clustering (phase separation) kinetics for vertex-
forward 5-gons at three system densities (φ > φ∗). The fraction of sys-
tem particles in a cluster, NC/N, is plotted over the evolution of the
simulation. Particles are considered “in a cluster” if their local density is
≥ 0.6. Nc/N trajectories for all ten replicates for each φ are shown, though
the behavior is so similar that the replicates are only distinguishable for
φ = 0.1. Snapshots are colored by local density, colorbar shown.

state (where steady state is determined by the methods described257

in Section 2). However, the coarsening behavior between shapes258

differs. As seen in Fig. 2, the critical-regime onset phase separa-259

tion for n = [5,7,8] is characterized by the formation of one (or260

few) clusters that quickly form and slowly grow, while for n = 6,261

cluster nucleation is so favorable that we see the nucleation of262

many small clusters even in the critical regime.263

We demonstrate this coarsening behavior in Figure 4, where264

the fraction of the system in a cluster (NC/N) is plotted over time265

(in units of τ, where τ is the time for a particle to ballistically266

travel its own diameter). At low densities, but even at those267

above the critical system density for a given shape, we observe268

rapid nucleation and growth of small clusters, which remain sta-269

ble at steady state (this behavior is also observed in the low den-270

sity/activity limit of dumbbells27). At higher densities, the size of271

the clusters increases the likelihood of another cluster colliding272

with it and merging to make a larger cluster.273

This leads us to another key aspect of anisotropic systems not274

seen in disks: sustained rotational and translational motion of275

clusters (Figure 5). Previous studies on squares found that sus-276

tained motion drove the system into an oscillatory behavior22.277

We find that such motion is also critical to the coarsening of clus-278

ters of active shapes. In contrast, clustered disks cannot sustain279

motion, and quenched systems coarsen through the dissolution280

of some clusters and growth of others rather than inter-cluster281

collisions. The only net motion within clusters of disks is at the282

boundaries, where a balance of particle fluxes in/out character-283

izes the steady state configuration10. As a result, the steady state284

of multiple small clusters in a system of isotropic particles is unfa-285

vorable, as clusters in such systems are only stabilized by particles286

being self-propelled into the cluster.287

3.3 Collision efficiency288

Phase separation due to MIPS is the result of particle slowing289

as local density increases, with v(ρ)7. Here, we demonstrate a290

method for quantifying the impact of shape on dv/dρ.291

To build our intuition for this approach: at a particle level, we292

can describe MIPS as collision-induced slowing. In a system of293

frictionless disks, collisions between small numbers of particles294

are not stable, with clusters of small size (nC < 10) generally hav-295

ing a short lifespan (< τ). (Nucleation in disk systems is facil-296

itated by local polarization of the active force directors leading297

to a stable nucleation seed11,12.) In contrast, collisions between298

anisotropic particles can create long-lasting clusters of small nC,299

“seeds”, such as those highlighted in the Supplementary Informa-300

tion, Figure 1. In addition to lifetimes lasting � τ, some seeds301

can sustain translational motion and/or stabilize collisions from302

external particles. While these seeds are not a necessary condi-303

tion for phase separation, they facilitate the process by slowing304

both constituent seed particles and single particles colliding with305

the seed, leading to localized areas of high density.306

At a system level, we can translate this collision-induced slow-307

ing to a “collision efficiency” during the nucleation and growth308

of clusters. We hypothesize that those systems in which collision309

work is more efficiently transformed into a decrease in average310

particle velocity (i.e. greater −dv/dρ) are also those that are able311

to phase separate at lower system densities (lower φ∗). As the312

system density φ is a proxy for the number of collisions a parti-313

cle experiences13, particles with higher collision efficiency need314

fewer collisions– and thus lower φ– to reduce the average particle315

speed and lead to phase-separation of the system.316

To demonstrate this quantitatively, we measure the instanta-317

neous pressure Pcoll due to inter-particle collisions (calculations318

detailed in Section A.4). In Figure 6a, we plot the trajectories of319

systems through v/Pcoll space. We find that each system type (n320

and force direction) falls onto a well-defined trajectory with short321

nucleation, long growth, and flat steady-state regions. The slope322

of this growth regime, −dv/dρ, is what we term the “collision ef-323

ficiency”. We observe that relative slopes of the growth regimes324

correctly predict the relative critical densities of the shapes stud-325

ied, including the relative critical densities of edge-forward and326

vertex-forward systems of the same shape.327

Notably, 3- and 4-gons require significantly higher collision328

pressure to reach steady state, as shown in Figure 6b. These sys-329

tems fall on the same master curve, suggesting that some fea-330

ture similarity in the system drives similarity in v/Pcoll space.331

Using the concept of collision efficiency, we can now quantita-332

tively demonstrate how the slip planes observed in 3- and 4-333

gon densest packings lead to the “oscillatory” behavior discussed334
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Fig. 5 Particle displacement fields for simulations at steady state, laid over a map of local densities. (a) Clusters of disks have no net motion, with
particle motion limited to the cluster boundaries and gas phase. (Shown is a system of disks at φ = 0.3). In contrast, clusters of anisotropic particles
display both (b) net rotational motion (shown for edge-forward 7-gons, φ = 0.1) and (c) net translational motion (shown for vertex-forward 4-gons,
φ = 0.5).

earlier and observed in previous works22. As shown in Figure335

6c, systems of shapes whose densest packings do not have slip336

planes (like the edge-forward 5-gons shown) proceed monotoni-337

cally through v/Pcoll space with τ, eventually resulting in phase338

separation. In contrast, systems with slip planes do not pro-339

ceed through v/Pcoll space monotonically with τ. In the system340

shown of vertex-forward 3-gons, a phase-separating system pro-341

ceeds through v/Pcoll space as the phase-separated clusters form.342

At high Pcoll, however, the system is no longer able to sustain the343

inter-particle collision pressure and the cluster breaks apart, re-344

tracing its path through v/Pcoll. Additionally, the lack of hysteresis345

in this path through v/Pcoll space during cluster dissolation con-346

firms that this oscillatory phenomenon is not path dependent or a347

function of simulation protocol, but rather a function of the parti-348

cle anisotropy alone. The oscillatory regime can be described as a349

system’s inability to stabilize the inter-particle collision pressure.350

In collision efficiency, we have introduced a metric that quanti-351

tatively explains how shape impacts the critical density in active352

systems. This framework tells us that we can tune the critical be-353

havior of a system by altering how efficiently particles decelerate354

other particles in collisions.355

4 Conclusions356

In this work, we investigated the critical phase behavior of a 2D357

active matter system of anisotropic particles in which anisotropy358

was implemented through polygon shape and active force direc-359

tor. We demonstrated that we can quantitatively describe the crit-360

ical behavior as a function of “collision efficiency”, which can be361

tuned by engineering particle interactions (here, we explore only362

shape). Further, we observe that this critical behavior is related363

to the structure of the component particle shapes’ densest packing364

at equilibrium.365

We showed that increasing the efficiency of inter-particle col-366

lisions in slowing particles down during cluster growth is a key367

driver of decreasing critical densities. This observation is closely368

related to a number of theoretical developments in the field of369

active matter. We can think of this efficiency as a determinable370

scaling coefficient on the change in particle velocity with local371

density (dv/dρ) in MIPS6. Similarly, an analytical determina-372

tion of the average collision time for an inter-particle collision373

would allow prediction of critical onset through the balancing of374

τcollision and τballistic timescales13. Such an analytical determina-375

tion would need to account for all possible angles of collision be-376

tween anisotropic particles and all iterations of force anisotropy.377

An analytical description linking driving force and anisotropy378

to collision time may enable prediction of critical system den-379

sities. Additionally, while the nature of the densest packing in380

equilibrium can be used to explain the structure seen in dense381

phase-separated regions, further work is needed to elucidate the382

link between equilibrium packing and non-equilibrium assembly.383

As an understanding of the thermodynamics of active matter con-384

tinues to develop, establishing the phase behavior of active assem-385

blies will be of intense interest as a means of achieving directed,386

non-equilibrium self-assembly.387

While anisotropic active particles are in the early stages with388

astonishing improvements38,39 of being synthesized in labs they389

are ubiquitous in nature. Biology presents us with a number390

of intriguing test cases for our framework. How does changing391

shape (as some biological systems are able to do) impact the392

v/Pcoll curve? For systems with explicit attractive interactions,393

e.g. chemotaxis, how can we formulate that interaction as a col-394

lision efficiency?395

Finally, while our work reveals a mechanism for how particle396

anisotropy in 2D drives different collective behavior from that397

seen in disks, our explanation can only describe behavior that398

we have observed, and is not yet capable of predicting clustering399

behavior given only a particle anisotropy. Developing a compre-400

hensive predictive theory of how particle anisotropy will impact401

the critical density would be of great interest to the field.402
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Fig. 6 (a) Shown are the average trajectories for 5≤n≤8 in v/Pcoll space for both edge- and vertex-forward particle simulations. (Note the inverted
axis for velocity.) The nucleation, growth, and steady state regions are highlighted. Increasing slope of the growth regime in v/Pcoll corresponds to
decreased φ∗, and is predictive for shapes with given force director. Error bars are the standard deviation, with full calculations detailed in Section
A.4. Where error bars are not visible, they are smaller than the data marker. (b) Trajectories for 3- and 4-gons are plotted separately. Here, both
shapes collapse onto one master curve. The master curves for edge- and vertex-forward 3- and 4-gons also collapse onto on another. Error bars are
calculated as in (a). (c) Individual trajectories are shown for 5- and 3-gons at the indicated φ . While velocity decreases monotonically with increasing
Pcoll for 5-gons, in 3-gons we observe an “oscillation” in which the largest cluster in the system breaks up at φ = 0.50. Pressure and velocity snapshots
are taken every 100τ.

A Appendix403

A.1 Simulation protocol404

The area fraction covered by N particles was calculated as φ =405
NAi
Abox

, where the area Ai of particle i includes both the hard shape406

and the rounding of rWCA = 1 induced by the WCA potential. Each407

simulation contains N = 1×104 particles in a square simulation408

box with periodic boundaries, with box size chosen to achieve the409

desired density.410

The timescale of the simulation, τ, is the time for a particle411

to ballistically travel its own diameter (τ = σγ

v0
). The Langevin412

equations of motion were numerically integrated using a stepsize413

of 1×10−3, chosen to balance efficiency with simulation stability.414

Particle positions were randomly initialized and allowed to relax415

with a repulsive isotropic potential between particle centroids at416

φ = 0.10 for 5×105 time steps. This isotropic potential was then417

turned off and the WCA excluded volume potential between par-418

ticle perimeter points was turned on while the box was slowly419

compressed to the target system density over 5×105 time steps.420

Only after these initialization steps was the active force turned on421

and the simulation run for 5000τ.422

We assert that the simulations have reached steady state when423

the total system inter-particle collision pressure has reached a424

constant value. Ten replicates were run at each statepoint to pro-425

vide sufficient statistics near the critical density.426
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Simulations were run using the open-source molecular dynam-427

ics software HOOMD-blue (v2.2.1 with CUDA 7.5). The Langevin428

integrator uses a velocity-Verlet implementation40. Simulations429

were performed on graphics processing units (GPUs)40,41. Shape430

interactions were modeled using the discrete element method im-431

plementation in HOOMD-blue33 using an optimized rigid body432

routine for particle rotations41. The isotropic repulsive potential433

during initialization was implemented using the dissipative parti-434

cle dynamics (DPD) pair force implemented in HOOMD-blue42.435

Additional open-source software were used in vi-436

sualization and analysis. Density and order parame-437

ter calculations detailed below were implemented with438

Freud43 (https://github.com/glotzerlab/freud).439

Simulation data were visualized using Plato440

(https://github.com/glotzerlab/plato) and Ovito44.441

The structural order color wheel is the color part of the cubehe-442

lix45 colormap at constant apparent luminance (s = 4, r = 1, h443

= 2, γ = 1).444

A.2 Critical density identification445

Multiple methods exist in the literature to determine the critical446

density for phase separation in active systems. In an active system447

of squares22, a system was considered “clustered” if the fraction448

of system particles in the largest cluster was ≥0.2. However, we449

found this method to be ill-suited for our systems, some of which450

are comprised of many small clusters. In disks, studies have used451

local-density histograms about randomly-sampled points of the452

simulation box13 or about each particle10. If the histogram dis-453

played two peaks, the system was considered phase separated.454

However, the very low system densities studied here limit the ef-455

ficacy of the random-sample approach (e.g. at a packing fraction456

of 0.01, the high-density “peak” would be ≤2% of the magnitude457

of the larger peak). In dumbbells, studies used both a grid-based458

and Voronoi-based local density calculation to develop local den-459

sity histograms, to equal effect46.460

To determine phase separation even at low densities, we calcu-461

lated two separate histograms of local densities within a 2.5rmax462

radius (1) of randomly sampled points (N = 1×105) and (2)463

about each particle (N = 1×104). For each shape, rmax was cal-464

culated as the circumscribing radius about the shape. We then465

calculated a position-normalized local density histogram of the466

system by multiplying the frequencies of local densities in each467

local density bin by one another. If the resulting histogram has a468

high-density peak ≥20% the height of the low-density peak, we469

consider the system to be phase separated. We choose the thresh-470

old of 20% to stay consistent with previous studies22. However,471

the high-density peak quickly becomes dominant in the phase sep-472

arated state such that a different choice would only change our473

results marginally.474

The onset of this phase separation is characterized by a criti-475

cal particle density, φ∗, at which the system transitioned from a476

homogeneous mixture to coexisting low and high density phases.477

We define the critical density, φ∗, as the lowest density at which478

> 50% of the system replicates phase separate. In Figure 2, er-479

ror bars are given as the range of densities, which have some480

replicates exhibiting both homogenous and with others exhibit-481

ing phase-separating behavior, and indicate an upper and lower482

limit.483

A.3 Structural order in clusters484

We examine internal cluster structure with two order parame-485

ters. We first calculated the k-atic order parameter, i.e. the bond-486

orientation order parameter for k-fold rotational symmetry.487

ψk(i) =
1
n

n

∑
j

ekiθi j (3)488

The parameter k governs the symmetry of the order parameter489

while the parameter n governs the number of neighbors of parti-490

cle i to average over. For calculating bond order, θi j is the angle491

between the vector ri j and (1,0), i.e. the angle of the bond be-492

tween particle i and particle j with respect to the x-axis. In other493

systems, ψk has been used to identify hexagonal (k = 6) order in494

systems of active disks10 and ordering on a square lattice (k = 4)495

in systems of active squares22.496

The body-orientation order parameter tells us relative orienta-497

tions of local particles,498

ξs( j) = eisθ j (4)499

taking into account s-fold symmetry, where θ j is the angle that500

rotates particle j from a reference frame into a global coordinate501

system and i is the imaginary unit. For particles with even n, s= n;502

for particles with odd n, we set s = 2n to account for anti-parallel503

packings37.504

A.4 Collision pressure calculation505

In a 2D system of particles, we used HOOMD (v2.2.1) to cal-506

culate the instantaneous (scalar) pressure of the system as P =507

(2K + 0.5W )/A, where K is the total kinetic energy containing508

thermal and active swimming contributions, W is the configura-509

tional component of the pressure virial, and A is the area of the510

box. We can isolate the pressure due to inter-particle collisions,511

W/A = 1
2A ∑i ∑ j 6=i FFF i j ·rrri j = P− 2K

A . We further normalize the pres-512

sure by the thermal energy as Pcoll ≡ (W/A)/kBT to facilitate com-513

parison among systems of particles, as kBT is varied by shape to514

maintain constant Pe = 150. While pressure in equilibrium sys-515

tems is typically taken over an ensemble, here we use it as an516

instantaneous measure of the location in configuration space of517

the system. This allows us to view particle trajectories in velocity518

and configuration space, allowing for the definition of a unique519

master curve for each system.520

To calculate each shape’s “trajectory” through v/Pcoll space521

shown in Figure 6, we sampled complete simulation trajectories522

for simulations below, at, and above the critical density, and cal-523

culated a distinct Pcoll and average particle velocity 〈v〉 for each524

time step. We then binned the Pcoll values into equal-size bins,525

and calculate an overall average 〈v〉 and standard deviation of 〈v〉526

for each bin. These averages and standard deviations are nor-527

malized by the vballistic calculated for each shape, and are plotted528

against the average Pcoll value in the corresponding bin.529
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