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Dimerization and Structure Formation of Colloids via

Capillarity at Curved Fluid Interfaces

Alismari Read, Sreeja Kutti Kandy, Iris B. Liu, Ravi Radhakrishan and Kathleen J. Stebea

Capillary interactions are ubiquitous between colloids trapped at �uid interfaces. Generally, colloids

in �uid interfaces have pinned, undulated contact lines that distort the interface around them. To

minimize the area, and therefore the energy of these distortions, colloids interact and assemble in a

manner that depends on the shape of the host interface. On curved interfaces, capillary interactions

direct isolated colloid motion along deviatoric curvature gradients. This directed motion relies on the

leading order, long-ranged quadrupolar distortions made by the colloids' undulated pinned contact

lines. Here we study pair interactions and dimer formation of colloids on non-uniformly curved �uid

interfaces. Pair interaction energies are inferred to be order of 104kBT , and interacting forces are of

order 10−1 pN for 10 micron particles adsorbed on interfaces formed around a 250 micron micropost.

We compare experiments to analysis for the pair interaction energy, and identify criteria for dimers to

form. We also study the formation of trapped structures by multiple particles to discern the in�uence

of the underlying interface shape and the contact line undulations. By comparison to Monte Carlo

simulations with potentials of interactions based on analysis, we �nd that higher order terms in the

distortion �elds generated by the particles play a major role in the structure formation on the curved

interface. These interactions are determined by the particle's contact line and the host interface

shape, and can be used to assemble particles independent of their material properties.

1 Introduction

The macroscopic behavior of complex materials depends on the
organization of their constituents, including microscopic parti-
cles or colloids within them. Engineered soft materials with col-
loidal components are widely exploited in diverse fields includ-
ing pharmaceuticals1 and personal care,2 and are important ele-
ments in emerging advanced metamaterials.3 Classically, in sus-
pension, colloid properties are used to influence colloid organiza-
tion by tuning suspension properties to guide colloids to self as-
semble into structures that include crystals, disordered gels, and
glasses.4 To access other structures, externals fields, often elec-
tromagnetic in origin, are used to guide assembly.5–7

Colloids can also accumulate and organize at or near the in-
terface between immiscible fluids. When adsorbed on fluid in-
terfaces, colloids form a variety of structures, including closed
packed structures,8 ordered crystalline structures determined by
the balance of capillary and electrostatic interactions,9 and dis-
ordered structures influenced by near field capillary attraction.10

Curvature is known to alter colloid organization fundamentally.
For example, repulsive colloids adjacent to curved fluid interfaces
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and other curved boundaries reveal required defects in packings
as a function of Gaussian curvature.11,12 While the importance of
curvature is well appreciated, its role in guiding structure forma-
tion by many colloids adsorbed on fluid interfaces has not been
well-studied. In this research, we focus on the behavior of mi-
croparticles trapped on curved interfaces, and on the understand-
ing of how curvature gradients and curvature capillary interac-
tions influence particle organization. Hereafter, we refer to indi-
vidual microparticles as colloids.

When particles adsorb on fluid interfaces, the highly
anisotropic interfacial environment dramatically alters classical
colloid interactions, and introduces capillary interactions. These
latter interactions can be dominant and dictate colloidal orga-
nization.13–16 A colloidal particle attached to a fluid interface
decreases the energy of the system by replacing an area or
patch of the interface with the colloid itself. Once attached,
the colloid does not desorb spontaneously, as the reduction in
energy upon attachment is typically many orders of magnitude
larger than thermal energies.9 Typically, colloids at interfaces do
not attain equilibrium wetting configurations, but rather assume
non-equilibrium trapped states that result in an undulated three
phase contact line where the interface intersects the particle (in-
set of Fig.1(a)).17 As a result, around each colloid, the interfa-
cial shape is distorted; this distortion field decays with distance
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from the particle. Contact line pinning occurs at sites of particle
chemical heterogeneity or surface roughness.11,14 Particle shape
anisotropy18,19 also generates undulated contact lines with asso-
ciated interface distortion that can be far larger than that typically
observed for pinned contact lines on spherical particles. Finally,
particle weight20 or other body forces on a particle can distort
the interface. Often, for colloids that are sufficiently small, the
particle weight can be neglected. In this case, the distortion fields
are not determined by the colloid material properties or suspen-
sion chemistry, but rather by the random pinning of the particle
contact line and the shape of the surrounding interface. For all
colloids with negligible weight, the leading order distortion gen-
erated by pinned contact lines in the surrounding interface has
quadrupolar symmetries.

When a pair of particles trapped at a fluid interface are close
enough for their distortion fields to overlap, the area of the inter-
face changes. Capillary interactions are defined as the product of
this change in interface area and the surface tension. Capillary in-
teractions drive colloidal attraction in preferred orientations that
minimize the interfacial area.14,15 A dilute, random distribution
of particles on a planar interface have no preferred site for assem-
bly. Rather, capillary interactions occur between proximate par-
ticles with overlapping distortion fields. Microparticles attract to
form dimers or other aggregates that are typically trapped owing
to high strength of capillary attraction between them. However,
for a non-uniformly curved host interface, the curvature generates
a capillary energy field that directs particles along curvature gra-
dients to specific locations and may guide them into well-defined
structures. This phenomenon relies on the dependence of the
particle’s distortion field on the host interface shape.21 Remark-
ably, even spherical colloids have been shown to have highly di-
rectional interactions. For example, on interfaces with constant
mean curvature and weakly varying deviatoric (saddle-like) cur-
vatures, charged spherical colloids formed a distorted square lat-
tice due to capillary quadrupolar interactions balanced by electro-
static repulsion.22 On interfaces with steeper deviatoric curvature
gradients, isolated disk-like or spherical particles migrate to sites
of high deviatoric curvature as shown in Fig.1(b), while keeping
their quadrupolar rise aligned with the rise of the interface, like
a charged multipole in an external electric field.23,24 This rota-
tion to preferred alignment is evident with isolated anisotropic
particles like cylindrical microparticles; if not properly aligned
when they encounter the curvature field, they rotate to align the
quadrupolar axis of their distortion fields with the principal axes
of the interface before migrating.25

These ideas, reported over the past decade, provide untapped
opportunity to organize colloidal particles. In this research, we
probe this organization on interfaces with zero mean curvature
but varying deviatoric curvature formed around a cylindrical mi-
cropost hundreds of microns in diameter (Fig.1(a)). By consid-
ering the interactions of the overlapping distortions of the col-
loids on a curved interface (Fig.1(c)), we probe the formation
and migration of dimers to steep curvature regions, (Fig.1(d)).
For more crowded interfaces, we explore fractal structures formed
around the cylindrical post by a dense suspension of microspheres
(Fig.1(e)). To support these observations, we derive theory for

pair interactions between colloids trapped on curved interfaces.
We implement Monte Carlo simulations informed by our analy-
sis to compare to the trapped structures formed in the regions of
high curvature gradient.

2 Theory

We derive the pair interaction between two spherical particles A
and B trapped on a curved fluid interface in the limit of small
slopes. Particle weight and body torques are also neglected; an
assumption valid in the limit of small Bond number, Bo = ∆ρga2

γ
,

where ∆ρ is the density difference between the two fluids on
either side of the interface, g is the gravitational acceleration
constant, a is the characteristic length of the particle, and γ is
the interfacial tension. We focus here on interfaces with neg-
ligible mean curvature but finite differences in principal curva-
tures formed around the cylindrical micropost. For such inter-
faces, in the limit of small slopes, the interface shape is governed
by Laplace’s equation. Defining h as the height of the interface
above the plane tangent to the interface, this requires ∇2h = 0.
The particles A and B have randomly pinned undulated contact
lines of radius a that can be decomposed into Fourier modes with
leading order modes being the quadrupole with magnitudes hqpA

and hqpB, respectively. They are separated by distance rAB and
are located at a specific polar location (Li,βi) defined by a fixed
polar coordinate centered at the cylindrical micropost of radius
Rm and height Hm, as shown schematically in Fig. 2(a). The rise
axis of the quadrupolar distortion made by each particle can be
oriented arbitrarily on the interface with respect to the principal
axes. These quadrupolar distortions vary as cos2φ for an angle φ

around the particle. For isolated particles, the equilibrium orien-
tation is for the rise axis of this distortion to be aligned along the
positive principal axis of the underlying curved interface.

2.1 Method of reflections

We adopt the method of reflections to derive an analytical so-
lution for the pair interactions between particles on curved in-
terfaces.26,27 In this method, the interface shape is expanded in
a Taylor series in the vicinity of the particle, with terms owing
to each source of disturbance, including the neighboring particle
and the host interface shape. Enforcement of the pinned contact
line boundary condition generates reflected modes or induced
distortions in the interface.

We define a polar coordinate system (rA,φA) with origin at the
center of the circular hole of radius a made by particle A, and
φA = 0 along the x-axis. In the limit of small slopes, the shape of
the host interface, i.e the interface in the absence of any particles
can be locally expanded in a Taylor series around the center of A
as

hA
host = 2HA

o
r2

A
2
+∆CA

o
r2

A
4

cos(2(φA−βA)). (1)

In this expression, HA
o = 1

RA
1
+ 1

RA
2

is the (negligible) mean curva-

ture and ∆CA
o = 1

RA
1
− 1

RA
2

is the deviatoric curvature evaluated at

the origin of this coordinate system, where RA
1 ,R

A
2 are the princi-

pal radii of curvature of the interface also evaluated at the origin
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of A. Thus,

hA
host = ∆CA

o
r2

A
4

cos(2(φA−βA)). (2)

The pinning of the contact line requires hA
p(rA = a,φA) =

hqpA cos(2(φA−αA)) where αA is the phase angle defining the ori-
entation of the quadrupolar rise axis for particle A with respect
to the polar coordinate (rA,φA) with origin at the center of A. If
A was isolated on the curved interface, the shape of the interface
around the particle would be the sum of the contributions:

hA
iso(rA,φA) = hA

host(rA,φA)+hA
p(rA,φA)+hA

ind,host(rA,φA), (3)

where hA
p(rA,φA) = hqpA

a2

r2
A

cos(2(φA−αA)) is the quadupolar dis-

tortion in the interface owing to the undulated contact line and
hA

ind,host(rA,φA) = −
∆CA

o
4

a4

r2
A

cos(2(φA−βA)) is the reflected mode or

induced mode owing to interface curvature that enforces the con-
tact line boundary condition. Similarly a solution for the interface
shape can be found near particle B expressed in a polar coordi-
nate (rB,φB) centered in the circular hole made in the interface
by B as,

hB
iso(rB,φB) = hB

host(rB,φB)+hB
p(rB,φB)+hB

ind,iso(rB,φB). (4)

If A and B are near each other, however, they change the shape
of the interface in each other’s vicinity. This change in interface
shape near A by B can be found by expanding the disturbances
made by particle B around the center of A in a Taylor series. Given
that body forces and torques are negligible, the quadratic term in
this expansion is the first to contribute. Thus, in the vicinity of A
the shape of the interface due to particle B’s disturbance is,

hBatA =
3hqpBa2

r4
AB

r2
A cos(2(φA +αB))−

3∆CB
o a4

4r4
AB

rA
2 cos(2(φA +βB)),

(5)

where the first term in the expression corresponds to the distur-
bance made by B in the vicinity of A on a planar interface,14 and
the second term is the correction owing to the curvature near B.
We can now find the interface shape around A near B by solv-
ing the Laplace equation subject to a modified far field boundary
condition which requires that

lim
rA→∞

hA(rA,φA) = hA
host +hBatA. (6)

The resulting expression for hA is the sum of contribution from (i)
the quadrupolar distortion owing to A’s undulated contact line,
(ii) the distortion from the host interface, (iii) the local distortion
near A from the neighboring particle B, (iv) the reflected mode
or induced term from the distortion of the host interface, and (v)
the reflected mode or induced term due to particle B.

hA(rA,φA) = hA
p +hA

host +hBatA +hA
ind,host +hind,BatA, (7)

where

hind,BatA =

−
3hqpBa2

rAB
4

a4

rA
2 cos(2(φA +αB))+

3∆CB
o a4

4rAB
4

a4

rA
2 cos(2(φA +βB)).

(8)

The inset in Fig.2(a) illustrates an example of the interface shape
around A near B where the shape is influenced by the neighbor-
ing particle and the curvature field defined by the micropost. The
quadrupolar distortion around the particle has been exaggerated
for illustrative purposes. To find the pair interaction between par-
ticle A and B the excess surface area has to be calculated. In the
limit of small slopes the area of the interface is approximated as∫ (

1+ ∇h·∇h
2

)
dS, where h is the interface shape in the presence

of the particles, and dS is the area element. We first consider the
free energy of the system prior to attachment of particle A, which
can be written as,

E1 = γ

∫∫
©
D

(
1+

∇(hA
host +hBatA) ·∇(hA

host +hBatA)

2

)
dS, (9)

where γ is the interfacial tension, and D refers to the entire inter-
facial domain. Upon attachment of particle A to the interface, the
energy becomes,

E2 = γ1A1 + γ2A2 + γ

∫∫
©

D−P

(
1+

∇hA ·∇hA

2

)
dS, (10)

where hA is the shape of the interface after particle A is adsorbed,
γ1A1 and γ2A2 are surface energies for the particle surface in con-
tact with the upper and lower fluids, and D− P refers to the
domain of the interface outside of the particle. Calculating the
change in free energy ∆E = E2−E1 we get,

∆E = ∆Eplanar− γ
hqpAa2∆CA

o

2
π cos(2(βA−αA))

− γ
6hqpAhqpBa4

r4
AB

π cos(2(αA +αB))+ γ
3hqpA∆CB

o a6

2r4
AB

π cos(2(αA +βB)).

(11)

The first term is independent of curvature and accounts for the
trapping energy of particle A on a planar interface, ∆Eplanar =

γ1A1 + γ2A2 + γπh2
qpA− γπa2. Since the contact line is pinned, this

term is a constant that we can neglect in the ensuing discussions.
The second term defines the interaction between particle A and
the host curvature field, EA

iso. Thus, the last two terms accounts
for the pair interaction between the two neighboring particles and
define the pair capillary energy for particle A, EA

pair. These calcu-
lations can be repeated for particle B in the vicinity of A on the
curved host interface. Adding the results, gives the net curvature
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capillary interaction energy for a particle pair,

Enet

γπa2 = EA
iso +EB

iso +

{
−

12hqpAhqpBa2

r4
AB

cos(2(αA +αB))

+
3hqpA∆CB

o a4

2r4
AB

cos(2(αA +βB))+
3hqpB∆CA

o a4

2r4
AB

cos(2(αB +βA))

}
,

(12)

where ∆Co
i = 2Rm tanψ

L2
i

is the deviatoric curvature of the host in-

terface evaluated at the location of the i-th particle, and ψ is the
slope of the interface. This is the final form of the energy that cap-
tures the interaction of particles A and B with the interface cur-
vature and with each other. If gradients in EA

iso or EB
iso are greater

than the gradient in the dimerization term (in curly brackets),
then particles move independently toward the post, else the two
terms compete. The outcomes for pair assembly are complex, in
that they depend on the position of the particles with respect to
the micropost (LA,LB) and their separation distance, rAB.

There are higher order modes in the interface distortion near
the particle because of the undulated contact line, hp(r,φ) =
h2

a2

r2 cos(2(φ − α2)) + h3
a3

r3 cos(3(φ − α3)) + ... and in the ex-
pansion of the interface shape near the particle, hhost =
∆Co

4 r2 cos(2(φ −β ))− 1
6

∆Co
L r3 cos(3(φ −β )) + ..., where the sub-

script 2 and 3 indicate mode of deformation, i.e. the quadrupole
and the hexapole, and αn is the location of the rise axis for mode
n. Higher order modes will be shown to be important in structure
formation later, thus we have also derived the interaction poten-
tial for two particles A and B on the curved interface up to n = 3
(see SI section 1 for details). The resulting pair potential is:

Enet,hex

γπa2 =
Enet

γπa2 +
∆CA

o
2

a
LA

h3A cos3(βA−α3A)

+
∆CB

o
2

a
LB

h3B cos3(βB−α3B)+60
a4

r6
AB

h3Ah3B cos3(α3A +α3B)

+5
a7

r6
AB

[
∆CB

o
LB

h3A cos3(α3A +βB)+
∆CA

o
LA

h3B cos3(α3B +βA)

]
.

(13)

2.2 Bipolar coordinate

The exact solution to the pair interaction between two spheri-
cal particles A and B in a curved host interface as described by
Equation 2 can be solved in bipolar coordinates by solving for the
disturbance field created by the particles on the curved interface,
η = h− hhost , at any point in the domain. Here h is the shape of
the interface in the presence of the particles. The bipolar coordi-
nate system has a family of spherical constant level curves con-
sistent with the geometry of our problem, and two coordinates,
−∞ ≤ ζ ≤ ∞, and 0 ≤ u ≤ 2π. We can relate these to Cartesian
coordinates through the following transformations,

x =
csinhζ

coshζ − cosu
(14)

y =
csinu

coshζ − cosu
, (15)

where c is the distance from the center of the curves to the focus,
and 2c is the distance between the two focal points. Specifically
for our system c can be related to the separation distance between
the two particles, rAB, and the radius of the particles, a. Placing
our particles along the x-axis as shown in the inset of Fig. 2(b),
and stretching the circles that make up the particles to the origin
in the form of an ellipse, one can relate c to known parameters as
follows,

c2 =
1
4
[rAB

2−4a2]. (16)

The projection of the two particle contact line on the xy-plane
correspond to contours of constant ζ namely, ζ =−sA and ζ = sB

where

sA = sB = cosh−1
[

rAB

2a

]
. (17)

The disturbance field is governed by the Laplace equation which
in bipolar coordinates is given by,

∇
2
η =

(coshζ − cosu)2

c2

[
∂ 2h
∂ζ 2 +

∂ 2h
∂u2

]
= 0. (18)

The pinning boundary condition on the contact line requires that,

η(ζ =−sA) = hA
p(rA = a,φA)−hA

host(rA = a,φA)

+

[
2hpBa3

rAB
3 cos(φA +2αB)−

a5∆Co
B

2rAB
3 cos(φA +2βB)

]
(19)

η(ζ = sB) = hB
p(rB = a,φB)−hB

host(rB = a,φB)

+

[
a5∆Co

A

2rAB
3 cos(φB +2βA)−

2hpAa3

rAB
3 cos(φB +2αA)

]
,

(20)

where the term in the brackets is the first order term from the
expansion of the i-th particle’s disturbance in the vicinity of parti-
cle j. This term is subtracted because the particles have no body
torque, and thus lie in the plane tangent to the interface. In the
region far from the particles the interface shape must be equal to
that of the host requiring that η(u = 0) = η(u = 2π) = 0. The gen-
eral solution can be constructed in the form a Fourier expansion
as,

η(ζ ,u) =A0ζ +B0 +
∞

∑
m=1

[Cm cosmu+Dm sinmu]sinh(m(sA +ζ ))

+ [Em cosmu+Fm sinmu]sinh(m(sB−ζ )). (21)

The unknowns can be found explicitly by applying boundary con-
ditions and taking advantage of orthogonality. The net curvature
capillary interaction energy is given by the product of the surface
tension and the excess surface area due to the adsorption of the
particles, Enet = γδA. The excess surface area in the limit of small
slopes is equal to the total surface area of the interface minus the
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projected surface area from the circular hole made by the particle.
This can be written as,

δA =
∫∫
©
(

1+
∇h ·∇h

2

)
dS−

∫∫
©1 dS =

∫∫
© ∇h ·∇h

2
dS, (22)

therefore, the net curvature capillary interaction energy is,

Enet =
γ

2

[ ∫∫
©

D−P

∇h ·∇h dS−
∫∫
©

D−PA

∇hA
p ·∇hA

p dS−
∫∫
©

D−PB

∇hB
p ·∇hB

p dS
]
,

(23)
where the first integral is the total excess surface area around the
interacting particles and host interface, and the last two are the
areas around the isolated particles due to particles’ self distortion.
The total excess area has information about the self energies of
individual particles, therefore the integrals describing these inter-
actions have to be removed from the total energy to capture solely
the interaction between the particles and the host interface. Note
that h = η + hhost thus the solution to the shape of the interface
can be constructed and the energy can be numerically integrated.

Considering an ideal case in which particles are aligned with
each other and the curvature field, i.e. αA = βA,αA = αB and αB =

βB in Equation 12, the analytical solution can be compared to the
exact solution in bipolar coordinates. Fig. 2(b) shows a plot of the
non-dimensional pair interaction energy as a function of the non-
dimensional inter-particle distance. Both solutions display energy
minimization showing that the energy should decrease as these
particles come into contact. The two solutions are in agreement
when the particles are far from each other as expected, but near
contact, the exact solution deviates slightly from the analytical
solution. This indicates that higher order reflections, which are
neglected in the method of reflections, become important near
field.

3 Experiments

We study the pair assembly and structure formation of
polystyrene colloidal spheres (Polysciences Inc.) with mean di-
ameter of 2a = 10 µm. These particles have been previously char-
acterized by SEM and AFM measurements and reported to have
root mean squared roughness of 15–40 nm. From prior work on
isolated spheres on curved interfaces, it was inferred from parti-
cle trajectories that these particles have quadrupolar distortions
with magnitudes ranging from 15–130 nm.24

The vessel in which we form the curved fluid interface is de-
scribed in detail in reference [23-24], and described briefly here.
A circular ring 25 µm high and several capillary lengths in radius
is formed on a silicon wafer support. Centered in this ring, a
circular micropost 200 µm high with radius Rm ∼ 125 µm is fabri-
cated. The ring and micropost are formed from SU-8 epoxy resin
using standard lithographic techniques. The host curved interface
is formed by pinning the interface of a drop of water to the edge
of the micropost; the water is confined by the ring-like barrier.
The volume of fluid is adjusted to form an interface with a small
slope, ψ ∼ 5–15o at the three phase contact line where the mi-
cropost and interface meet. In the vicinity of the micropost, the
interface has a well-defined curvature field, with negligible mean
curvature due to the finite volume of fluid creating a weak but

negligible pressure drop across the interface, and finite deviatoric
curvature that depends on the distance from the center of the
micropost. A layer of hexadecane is gently placed on the water
to prevent evaporation, and to minimize disturbance from un-
controlled convection in the laboratory. The oil superphase also
facilitates introduction of particles to the interface; particles are
introduced from a drop of microspheres in hexadecane added on
top of the oil phase. These particles sediment and attach to the
interface. Once attached to the interface, particles migrate uphill
along deviatoric curvature gradients, form pair assemblies with
neighboring particles, and assemble into structures whose pack-
ings we characterize and compare to simulations.

4 Monte Carlo simulations

To study multiparticle assemblies, we perform Monte Carlo (MC)
simulations to explore the energy landscape of our system and
to extract structural data. In the model system, both the colloids
and the micropost are represented as hard spheres with radius a
and 25a respectively, and all pair interactions were calculated us-
ing Equation 12. We initialize a system of N colloidal particles by
assigning a random position to each colloid around the micropost
within a circle of radius Rrange. For each particle i, the quadrupo-
lar rise is included by defining an in-plane unit vector n̂i with a
π rotational symmetry. The rise directions are also chosen to be
random in the initial configuration. The system evolves through
a set of three MC moves namely (i) translation, (ii) rotation and
(iii) cluster move.

In the translational move, the centre of a randomly chosen col-
loidal particle, Xc, is moved to a new random position Xc + δX
within a cube of size ε centered at Xc. In the rotational MC
move, a colloidal particle is chosen randomly and the rise ori-
entation n̂i for the chosen colloid is rotated by a randomly cho-
sen angle δθ drawn from a uniform distribution in the range
[−π/200,π/200]. Both the rotational and translational moves
are accepted through standard Metropolis algorithm,28 accord-
ing to the probability min(1,exp(−β∆U)) where ∆U is the change
in total energy upon change in the degree of freedom. For all
the MC moves the energetics is controlled by the total energy
of the system of colloids U = ∑

i
EHS

i,p + ∑
〈i, j〉

Ei, j +EHS
i, j , where the

first summation is over all the colloids and the second is over
all the pairs. Here Ei, j is the net curvature capillary interac-
tion energy of the colloids at the interface given in Equation 12
while EHS

i, j , EHS
i,p are hard sphere potentials representing colloid-

colloid and colloid-micropost excluded volume interactions re-
spectively. To perform a cluster move, we first find the clusters
of colloids by defining a cutoff distance rcut for two particles to
form a cluster. In a cluster move, a randomly selected cluster
is attempted to translate without changing the quadrupolar rise
orientations of the particles within the cluster, i.e., the centre of
all the particles in the selected cluster {Xi

c} is moved to a new
position {Xi

c + δXcluster}. The moves are accepted with an ac-

ceptance probability min

{
1,exp(−β∆U)∏

k,l

1−pn(k,l)
1−po(k,l)

}
where ∆U is

the change in total energy upon change in positions. p(k, l) is the
probability of particles k and l to be in the same cluster where k
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denotes a particle in the cluster and l a particle outside it. ‘o’ and
‘n’ corresponds to the old and new configurations. The acceptance
rule guarantees that two particles that did not belong to the same
cluster in the old configuration will not end up in a distance less
than rcut .29,30 Each MC step consists of N attempted translational
and rotational moves and Ncluster cluster moves where Ncluster is
the total number of clusters. A typical colloidal aggregation run
takes 5× 105 MC steps to aggregate and a real time of 11 hours
on an 8 CPU node with OPENMP parallelization. For few sample
configurations we performed simulations up to 2× 106 MC steps
and observed statistically similar conformational properties.

To account for hexapolar interactions in MC we define an ad-
ditional vector n̂h

i in our MC simulations, with a 2π/3 rotational
symmetry, that is representative of the hexapolar rise at each col-
loidal particle i. n̂h

i for each colloid is initialized randomly and is
independent of the quadrupolar rise directions. In this case the
rotational MC move also includes the rotation of the hexapolar
orientation with the same angular displacement as used for the
quadrupolar rise. For this system all energy calculations were
done using the net curvature capillary interaction energy Ei, j

given in Equation 13.

5 Results and discussion

We have observed pairs of spherical particles interacting in the
curvature field around the micropost upon the addition of par-
ticles to the interface. To study the dynamics of pair formation
in experiment, we select pairs that are one behind the other; we
inferred that the quadrupolar rise axes are aligned with the prin-
cipal axes of the interface, allowing us to simplify the analysis
considerably. Fig.2(c-d) shows the trajectory for two particles
interacting on the curved interface. This interaction shows two
particles located in a region close to the micropost, and separated
by some inter-particle distance. Initially, the particles are well
separated and migrate along a radial path, i.e. along deviatoric
curvature gradients in the host interface, toward the micropost.
When the particles are close enough to interact, particle A (pink)
reverses its direction to form a dimer with particle B (green) as
shown in the time stamped image (Fig.2(c)). The observation
that both particles are migrating along the radial path suggests
that their quadrupolar rise axes are aligned along the rise axis of
the host interface via interaction with the underlying curvature
field.

The dynamics of this two-particle system can also be explored.
Given the deterministic particle motion evident in the experiment,
stochastic forces on the particle can be neglected. The particle
moves in a viscous medium with velocity u in creeping flow; the
corresponding Reynolds number, Re = auρ

µ
∼ 10−6, where ρ is the

average fluid density and µ is the average viscosity of the super-
phase and subphase. In this limit, capillary forces are balanced
by viscous drag for each particle. Equating the capillary force
Fcap =−∇Enet to the Stoke’s drag force Fdrag = 6πµa dL

dt , assuming
a constant drag coefficient, and using our analysis (Equation 12),
we can predict the change in particle position with respect to the
post over time. Fig.2(d) shows a plot of the distance from the
particle center to the post as a function of time for particle A and
B. The comparison between the predicted behavior and the ob-

served trajectory shows that there is good agreement between the
solutions in the far field. However, near field there is a slight devi-
ation between the two, attributable to near field interactions or to
the constant drag coefficient assumption. By integration of energy
dissipated along the particle path, the change in the net curvature
capillary interaction energy between the particles is inferred to
be order 104kBT , and forces are of order 10−1 pN. The magnitude
of the quadrupolar distortions are the sole free parameters fit in
this comparison. Their magnitude (hqpA = 15 nm, hqpB = 36 nm)

is similar to those previously inferred for spherical polystyrene
particles moving in isolation on curved interfaces; those magni-
tudes differed from particle to particle. This analysis indicates
that capillary forces and torques from curvature drive particles to
sites of high curvature and alignment of quadrupolar axes along
principal axes; those from neighboring particles drive mirror sym-
metric orientations and assembly, and the reflected modes from
the curvature favor yet a third orientation when minimizing the
interfacial area created by the particle. Analysis for other set of
interacting pairs can be found in SI, section 2.

5.1 Dimer formation

The specific trajectory described above is one of multiple trajec-
tories observed experimentally for particles on the curved inter-
face. For other particle pairs, dimers can form with different ori-
entations of their line of centers aligned along neither principal
axis, or can fail to form entirely, depending on their position with
respect to the post and each other, and the orientation of their
quadrupolar axes. We know that when deviatoric curvature is
very weak (large distances from the post) the term in curly brack-
ets in Equation 12 will dominate and particles will dimerize. On
the other hand, cases in which particles are well-separated the
curvature field always dominate. In this case particles migrate
to sites of high curvature in isolation. In all other cases, the
curvature and pair interactions compete with a wide variety of
possible assemblies. Compared to isolated particles which are
known to follow a radial path along curvature gradients (See SI
section 3 for details) and align their quadrupolar rise axis along
the rise axis of the host interface, pairs have the freedom to depart
from these paths. Fig.3(a) shows a few examples of dimerization
events. The first panel shows assembly in which particles are right
behind one another, both following a radial path to the edge of the
micropost and forming a pair along the way. The assemblies pic-
tured in panels II and III are examples of particles moving along
complex paths to make dimers with lines of centers that do not
align along either principal axis. These observations show that
there is an interplay between the interface curvature, the particle
separation distance, and the particle orientation. Furthermore, in
the near field, other modes of distortion in the interface from the
undulated contact line can play a role. (We develop this concept
in greater detail below).

Consider the net capillary energy for particle i in the vicinity
of particle j. Expressing deviatoric curvature in terms of the co-
ordinates of the interface and factoring out the isolated particle
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curvature migration term,

E i
net

γπa2 =−Rm tanψ
hqpi

L2
i

cos(2(βi−αi))×

[
1+
{

6hqp j

Rm tanψ

L2
i a2

r4
AB

cos(2(αi +α j))

cos(2(βi−αi))
−

L2
i

L2
j

3a4

r4
AB

cos(2(αi +β j))

cos(2(βi−αi))

}]
.

(24)

For pair interaction to dominate the terms inside the curly bracket
must be greater than one. These terms depend in a complex man-
ner on quadrupolar rise axis alignment with respect to the post
and between neighbors. The torques that enforce these align-
ments, given by angular derivatives of Equation 24, decay more
slowly than do capillary forces. Evaluation of this expression for
typical system parameters specified in the caption to Fig.3, shows
that the first term in curly brackets is typically one order of magni-
tude greater than the second term. Furthermore, the ratio 6hqp

Rm tanψ

is ∼ 10−2, so pair interactions are important only when:

L̃i� ˜rAB
2, (25)

where L̃i and ˜rAB are the distances normalized by particle radius.
For this particular arrangement, the third term is relatively small.
However, more generally, all three terms can compete. While the
net capillary energy depends on particle location, alignment, and
particle orientation with respect to one another, we can enumer-
ate several expected assemblies. These have been captured by
MC simulations for particles with constant quadrupolar magni-
tudes shown in Fig.3(b). Initially the particles are placed side by
side and the rise orientations are taken to be in random direc-
tions. The distance from the post center to the particle center for
A, LA, was 350 µm for all simulations, and the initial separation
distance between the particles was gradually increased.

I. Pair assembly with no curvature alignment. When the
magnitude of the torque due to particle-curvature interaction is
small compared to the torque resulting from particle-particle in-
teractions, particles dimerize in a mirror symmetric state without
influence from the underlying curvature field. As shown in panel
I of Fig.3(b) this occurs only for particles at close distances. This
assembly will happen with greater probability on interfaces that
are crowded since particles tend to land close to one another.

II. Pair assembly with weak migration. If the magnitude
of the deviatoric curvature generated torque is large enough
to drive alignment along principal axes, particles can dimerize
along the azimuthal direction (panel II of Fig.3(b)) or the ra-
dial direction (not shown). Particles align with the curvature
field and each other, and then come together to form a dimer,
cos(2(αA+αB))≈ cos(2(βi−αi)). Here, particles form dimers with
minimal migration to sites of high deviatoric curvature.

III. Pair assembly with migration. Similar to the case de-
scribed above, if particles are at regions of strong curvature they
will first align with the curvature field. However, as they are
well-separated, initially the curvature dominates their interac-
tion. Particles migrate in isolation until close enough to form a
pair (Fig.2(c-d) and panel III of Fig.3(b)). Otherwise, if the parti-
cles are far apart, particles will fail to form a pair (IV of Fig.3(b)).

5.2 Structure formation

In experiment we have also characterized structures formed by a
dense suspension of 5-micron radius polystyrene spheres at the
hexadecane-water curved interface formed around a 125-micron
radius cylindrical post, as shown earlier in Fig.1(e). Close to the
post the fractal structure shows curvature-dominated linear struc-
tures. At large L, the structures are more highly branched. These
branched structures are formed by particle clusters that formed
along the path to the post. Fig.4(a) shows close ups of clusters
of particles showing complex configurations including linear and
square structures (straight chains and L shape). We also observe
hexagonal assemblies (triangles, Y shapes), and other complex
formations that arise from the overlapping of smaller groups. Just
like isolated particles these migrate toward regions of high curva-
ture and once attached become hot spots for other groups and
particles. We see both isolated particles migrate to the post and
join the tips of the closest structure, and aggregates joining to
form the branched structure. Once a particle joins a cluster, it
does not leave it. However, there is significant reorganization
within a cluster as it migrates due to the change in balance of the
curvature-related interactions, including changes in relative par-
ticle position and rotation of particles. Thus, these structures are
not strictly kinetically trapped. Example of a cluster reorganizing
in experiment is shown in the supplementary video S9 (e.g. a
particle within an L shape changes position in the cluster).

The observed linear and square assemblies are purely from
quadrupolar interactions. On the other hand the more complex
structures were suspected to come from near field interactions
due to higher order modes in the interface distortion near the
particle, and in the expansion of the interface shape near the par-
ticle. These higher order terms drive other symmetries for pair
interactions and for alignment and migration in the host inter-
face curvature field. These factors also affect the clusters. To
predict some of these assemblies we derived the pair potential
including the next mode for the particle’s self-distortion and in-
terface shape, the hexapole. This potential given in Equation 13
was then implemented in MC simulations. Fig.4(b) shows the as-
semblies obtained from a 200-particle MC simulation. As in exper-
iments, the simulation captures close packed triangle, hexagonal
caps, and other assemblies where chains are slightly bent. Square
and complex assemblies are also present.

The distribution of angles calculated from each particle center
in the particle aggregates yields evidence of different mechanisms
behind the formation of these structures. Fig.5(a) and Fig.5(b)
show the angle distribution between particle centers for fractals
created by capillary interactions on interfaces with ψ = 5o and
ψ = 15o respectively. Each angle distribution has distinct peaks at
60o,90o and 180o. The peaks at 90o, and 180o suggest the presence
of quadrupolar interactions on the curved interface. The peak at
60o shows the importance of higher orders modes in the forma-
tion of structures. These peaks are absent in a simulated DLA
structure with a circular seed region (i.e. the post) and the same
number of particles (∼ 664) as in one of the experiments (Fig.
S6(d)). We have also simulated systems of 500 particles where
hexapolar interactions are included and where we have assumed
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the magnitude of the hexapolar distortion is equal to that of the
quadrupole (hqp = 30 nm = hhex).

When comparing the angle distribution in the clusters between
experiments and MC simulations, very clear peaks appear in the
simulations for 60o,90o and 180o, which are blurred in the ex-
periments. These differences cannot be attributed to MC dis-
placements or rotational step sizes (See SI section S6 for details).
However, two key differences in theory/simulation and experi-
ment likely explain this discrepancy. Namely, the pair potentials
on which the simulations rely do not include the higher order
modes in the particle disturbances, and assume fixed amplitudes
of the quadrupolar and hexapolar modes. However, this confirms
that these interactions are present and are important in captur-
ing structure formation on the curved interface. Recall that these
structures include particles that form clusters far from the post.
On interfaces with steeper slopes, we observed faster clustering,
owing to the increased importance of the third term in Equation
24 (Fig.5(d)). The success of MC in capturing these effects relies
on the cluster moves. The fact that MC simulations capture as-
pects of the particle assemblies and trajectories may reflect that
hydrodynamic interactions play a secondary role. However, drag
on particles and hydrodynamic interactions for particles in close
proximity at fluid interfaces is a complex topic and worthy of de-
tailed future study.

The overall fractal structures have fractal dimension ranging
from 1.4–1.6, which is the same as that of the commonly known
diffusive limited aggregation (DLA)31 fractal structure in the limit
of small particle number (see SI section 5 for details). The fractal
dimension of the capillary structures depends only weakly on the
number of particles N, as shown in Fig.5(e). In this figure, the
asterisks correspond to the DLA limit for 567, 664 and 6000 par-
ticles. In experiment, we have formed two structures, with 567
and 664 particles, respectively; the fractal dimensions of these
structures, shown as triangles, are 1.46 and 1.52, respectively. To
further explore the dependence on N, we use MC simulations to
compute the fractal dimension for simulated capillary assemblies
for 500, 750, 1000, and 1500 particles. For each value, five runs
with different particle positions and quadrupole orientations were
performed and the standard deviation was calculated, showing
we obtain similar metrics (SD = 0.01–0.04). Corresponding struc-
tures for realizations of the MC simulations (N = 1000) and the
DLA (N = 1000) are shown in Fig.5(e).

6 Conclusion

We study colloidal organization at curved fluid interfaces owing
to particle-curvature and particle-particle capillary interactions in
theory, simulations, and experiment. We show that we are able to
derive the pair capillary energy for two particles on a curved fluid
interface with varying deviatoric curvature using the method of
reflections. The exact solution can also be derived in bipolar co-
ordinates in the form of a series, which can be evaluated and com-
pared to the solution using method of reflections. Both solutions
agree well in the far field as expected. In the near field, however,
the solutions differ since the exact solution captures near field dis-
tortions neglected in the more approximate method, which yields
a closed form solution. This comparison shows that the analytical

solution is a good approximation except very near contact, and
gives good insight about the physics of the problem.

The interaction potential can also be used to predict assembly
of particle pairs through Monte Carlo simulations, and dynam-
ics through force calculations. The predicted particle behavior
agrees with observed experimental trajectories. The data allows
the particle quadrupolar magnitudes to be inferred. The cases ex-
plored showed that the magnitudes are consistent to magnitudes
previously reported and comparable to particle roughness. Group
assemblies and fractal like structures around the cylindrical mi-
cropost have been observed experimentally. Monte Carlo simula-
tions indicated that the assemblies seen are due to the coupling
of quadrupolar interactions in the far field but also due to near
field interactions from higher order modes. Angle distributions
between particle centers yield evidence that these structures are
formed due to unique interactions that arise from the coupling of
particle deformation and the curvature field underneath them.

Con�icts of interest

There are no conflicts to declare.

Acknowledgements

Discussions with Drs. Nima Sharifi Mood and Nicholas Chisholm
are gratefully acknowledged. This work is partially sup-
ported by NSF grants CBET-1133267, CBET-1066284, GAANN
P200A120246, MRSEC grant DMR11-20901, and NIH grant
U54CA193417.

Notes and references

1 R. G. Willaert and G. V. Baron, Reviews in Chemical Engineer-
ing, 1996, 12, 1–205.

2 T. Jesionowski, Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 2001, 190, 153–165.

3 Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang
and X. Yin, Science, 2017, 355, 1062–1066.

4 D. Baranov, A. Fiore, M. van Huis, C. Giannini, A. Falqui,
U. Lafont, H. Zandbergen, M. Zanella, R. Cingolani and
L. Manna, Nano Letters, 2010, 10, 743–749.

5 S. L. Biswal and A. P. Gast, Physical Review E, 2003, 68,
021402.

6 S. L. Biswal and A. P. Gast, Physical Review E, 2004, 69,
041406.

7 P. Dommersnes, Z. Rozynek, A. Mikkelsen, R. Castberg,
K. Kjerstad, K. Hersvik and J. O. Fossum, Nature Communi-
cations, 2013, 4, 2066.

8 A. Dong, J. Chen, P. M. Vora, J. M. Kikkawa and C. B. Murray,
Nature, 2010, 466, 474–477.

9 P. Pieranski, Physical Review Letters, 1980, 45, 569.
10 B. J. Park and D. Lee, Small, 2015, 11, 4560–4567.
11 G. Meng, J. Paulose, D. R. Nelson and V. N. Manoharan, Sci-

ence, 2014, 343, 634–637.
12 W. T. Irvine, V. Vitelli and P. M. Chaikin, Nature, 2010, 468,

947–951.
13 I. B. Liu, N. Sharifi-Mood and K. J. Stebe, Annual Review of

Condensed Matter Physics, 2018, 9, 283–305.

8 | 1�10Journal Name, [year], [vol.],

Page 8 of 11Soft Matter



14 D. Stamou, C. Duschl and D. Johannsmann, Physical Review
E, 2000, 62, 5263.

15 P. A. Kralchevsky and K. Nagayama, Advances in Colloid and
Interface Science, 2000, 85, 145–192.

16 M. Oettel, A. Dominguez and S. Dietrich, Physical Review E,
2005, 71, 051401.

17 D. M. Kaz, R. McGorty, M. Mani, M. P. Brenner and V. N.
Manoharan, Nature Materials, 2012, 11, 138–142.

18 J.-C. Loudet, A. M. Alsayed, J. Zhang and A. G. Yodh, Physical
Review Letters, 2005, 94, 018301.

19 L. Botto, L. Yao, R. Leheny and K. Stebe, Soft Matter, 2012, 8,
4971–4979.

20 V. Paunov, P. Kralchevsky, N. Denkov and K. Nagayama, Jour-
nal of Colloid and Interface Science, 1993, 157, 100–112.

21 E. Lewandowski, J. Bernate, P. Searson and K. Stebe, Lang-
muir, 2008, 24, 9302–9307.

22 D. Ershov, J. Sprakel, J. Appel, M. A. C. Stuart and J. van der
Gucht, Proceedings of the National Academy of Sciences, 2013,
110, 9220–9224.

23 L. Yao, N. Sharifi-Mood, I. B. Liu and K. J. Stebe, Journal of
Colloid and Interface Science, 2015, 449, 436–442.

24 N. Sharifi-Mood, I. B. Liu and K. J. Stebe, Soft Matter, 2015,
11, 6768–6779.

25 M. Cavallaro, L. Botto, E. P. Lewandowski, M. Wang and K. J.
Stebe, Proceedings of the National Academy of Sciences, 2011,
108, 20923–20928.

26 J. Happel and H. Brenner, Low Reynolds number hydrodynam-
ics: with special applications to particulate media, Springer Sci-
ence & Business Media, 2012, vol. 1.

27 S. Kim and S. J. Karrila, Microhydrodynamics: principles and
selected applications, Courier Corporation, 2013.

28 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller and E. Teller, The Journal of Chemical Physics, 1953,
21, 1087–1092.

29 D. Wu, D. Chandler and B. Smit, The Journal of Physical Chem-
istry, 1992, 96, 4077–4083.

30 D. Frenkel and B. Smit, Understanding molecular simulation:
from algorithms to applications, Elsevier, 2001, vol. 1.

31 T. A. Witten and L. M. Sander, Physical Review B, 1983, 27,
5686.

Fig. 1 (a) Schematic representation of two spherical colloids (red

spheres) on a curved interface formed by a cylindrical micropost (black

rectangle). Inset: schematic representation of a sphere with a pinned

undulated contact line. (b) Time lapsed image of the migration of an

isolated 10 µm PS sphere on the curved interface. The trajectory is

shown in yellow for equal time steps of 3.26 s (the neighboring colloids

are sedimenting in the oil phase and are not yet adsorbed in the inter-

face). (c) Distortions from particles A and B on the curved interface

are depicted with random orientation of the quadrupolar rise axis with

respect to each other and the principal axis of the underlying curvature.

The curved �uid interface has a saddle shape in the vicinity of the parti-

cles de�ned by the neighboring particle and the curvature �eld de�ned by

the micropost. Inset: top view of the two spherical colloids (red circles)

on the curved interface formed by the cylindrical micropost (black circle).

Arrows indicate location of the quadrupolar rise axes. (d) Time stamped

images of two particles shown in blue interacting and forming a dimer on

the curved interface. (e) Fractal structure around the cylindrical micro-

post formed from migrating groups and isolated particles on the curved

interface with slope ψ = 5o. Particles on top of the micropost are not in

the �uid interface and are not considered as part of the structure. The

fractal dimension of the structure is D = 1.52.

Fig. 2 (a) Top view of two spherical colloids (red circles) on a curved in-

terface formed by a cylindrical micropost (black circle). Inset: distortion

from particle A on the curved interface. (b) Dimensionless pair interac-

tion energy obtained from method of re�ections (solid line) and exact

solution obtained from analysis in bipolar coordinate (open circles) as a

function of the dimensionless inter-particle distance. Inset: sketch of the

bipolar coordinates system in the x-y plane with the line that connects

the centers of the two particles on the x axis (red circles). (c) Time

stamped image of two particles migrating toward the post and forming

a dimer (t = 0s, t = 2.47s, t = 5s). Inset: close-up of the trajectory (d)

The trajectory of each particles in this dimer (symbols) in terms of posi-

tion with respect to the micropost L versus time t. Theory with best �t

amplitudes for quadrupolar distortions (solid lines). Inset: inter-particle

distance rAB versus time t.
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Fig. 3 Particle dimerization at the curved interface: (a) Experimental

observations of two particles interacting on the curved interface showing

di�erent behaviors. (I) Particles form dimer along the radial direction

with respect to the micropost, indicating quadroples aligned along cur-

vature rise axis. (II-III) Particles can form dimers oriented at di�erent

angles with respect to the radial direction, indicating importance of the

other terms in Equation 24. (b) Monte Carlo simulation using interaction

potential derived for two particles on a curved interface showing di�erent

expected behaviors at LA = 350 µm for a typical system with ψ = 15o,

a = 5 µm, Rm = 125 µm, and hqpA = hqpB = 30 nm. Particles are initially

side by side with a random orientation of their quadrupolar axes. (I)

Particles can dimerize without in�uence from the underlying curvature

�eld. (II) Particles align with the curvature and form dimer along the

azimuthal direction. (III) Particles align with the curvature �eld, migrate

some distance and then assemble. (IV) Particles migrate in isolation.

Fig. 4 Structure formation at the curved interface: (a) Multi-particle

groups formed in experiment on the curved �uid interface for slopes ψ

between 5o and 15o. Diagram below correspond to some of the observed

shapes labelled with + and − signs to correspond to regions of quadrupo-

lar rise and quadrupolar fall respectively. (b) Monte Carlo simulation of

groups formed from quadrupolar and higher order hexapolar interactions

using derived modi�ed pair potential for a typical system with ψ = 15o,

a = 5 µm, Rm = 125 µm, and hqpA = hqpB = 30 nm. Snapshot is at the

69,000 MC step. [Blue circles] linear and square assemblies (right angles),

[Green circles] hexagonal assemblies, [Purple] complex assemblies.

Fig. 5 Angle distribution between particle centers for fractal structure

observed in experiments (shown in inset) when (a) ψ = 5o (D = 1.52) and
(b) ψ = 15o (D= 1.46). (c) Angle distribution for simulated fractal of 500

particles using MC with higher order hexapolar distortions. (d) Average

cluster size over MC steps. (e) Fractal dimension D versus number of

particles N for fractals obtained through experiment, MC simulations,

and DLA simulations. Pictures below correspond to a simulated DLA

fractal with a circular seed region, and to a MC simulated fractal with

664 and 1000 particles respectively.
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We probe colloidal organization by considering the interactions of 
the overlapping distortions of colloids on a curved interface.  
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