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Abstract

Using holographic particle tracking, we report the three-dimensional flow structure organizing

the viscoelastic instability in cross-channel flow. Beyond a critical Wi, the advective core flow

undergoes an out-of-plane instability marked by the emergence of tertiary flow, resembling that

of the toroidal vortices in Taylor-Couette geometry. The out-of-plane flow component distorts

the separatrix between the impinging inflow streams, triggering symmetry breaking normal to the

extension plane. As extensional rate increases, progressively higher order modes of the separatrix

are observed, akin to Euler buckling of a rigid column. The disturbances propagate upstream via

stress fluctuations despite viscous dissipation. These complex flow structures may be generic to

elastic turbulence in mixed flows.

∗ bqin@princeton.edu
† parratia@seas.upenn.edu

1

Page 1 of 13 Soft Matter

mailto:bqin@princeton.edu
mailto:parratia@seas.upenn.edu


DRAFT

The presence of even minute amounts of polymer can significantly affect the flow of a

viscous liquid. At negligible fluid inertia, viscoelastic fluids that are subject to the correct

flow gradients and curvature can exhibit hydrodynamic instabilities [1–5] and even turbu-

lentlike flow – dubbed elastic turbulence [6–9]. Similar to the complex routes to turbulence

at high Reynolds number, the early stages of elastic turbulence are marked by the emer-

gence of purely elastic instabilities and non-trivial flow structures that are inherently three-

dimensional (3-D). For example, in the classic work on the Taylor-Couette flow of polymeric

fluids, azimuthal toroidal vortices and rolls emerge beyond a critical rotation speed and

are observed to organize the unsteady chaotic flow [1]. Subsequent investigations in other

geometries revealed wake vortices behind cylinders [10], chaotic swirls in the flow between

parallel plates [6], three-dimensional upstream vortices [11], and spanwise modulations re-

sembling traveling waves [12–14]. Effect of small quantity of polymer on the inertial vortex

instability in cross-channel flow is investigated in [15]. While these flow structures may be

widely present and are critical in organizing the subsequent chaotic flow, the mechanism of

interaction between various modes of instability in the full 3-D space and how they give rise

to complex flow patterns and dynamics is largely unknown. With few exceptions, the lack

of experimental measurements of these 3-D flow structures hinders our understanding of the

nature of this important class of flow.

A prime example of such complexity – both in time and space – is the cross-channel

flow. Widely used as a model system to study polymer extension dynamics[16–18] and bulk

extensional rheology [19, 20], the cross-channel is a mixed-type flow consisting of curvilinear

streamlines separated by the central hyperbolic points. In the purely elastic regime, stream-

line curvature amplifies secondary flow disturbance [2, 21] in the core flow, while hyperbolic

points efficiently stretch polymers and generate large polymer stresses (as seen in birefrin-

gence) along the separatrix (unstable manifold) [19, 22, 23]. As a result of such complex

flow landscape, the viscoelastic cross-channel flow undergoes a series of hydrodynamic in-

stabilities at large enough strain rates. Experiments using micro-machined cross-channels

and viscous polymeric fluids found two flow transitions: a steady symmetry breaking insta-

bility in the extensional x-y plane, followed by an unsteady flow switching instability[24].

The mechanism of the instability is attributed to the abrupt polymer stretching near the

hyperbolic point. Subsequent 2-D simulations using upper-convected Maxwell model found

qualitative agreement with the first steady supercritical transition[25], while simulations us-
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FIG. 1. (a) Schematic of the cross-channel setup. (b,c) Cutaway view of the ensemble of three-

dimensional particle trajectories from the holographic tracking velocimetry for (b) Newtonian and

(c) viscoelastic fluid at ε̇ = 10 s−1. (d,e) Corresponding isosurfaces with u/U = 0.3 (low speed

zone) colored by ux component.

ing FENE-P model identified the oscillatory instability[26]. Recent 3-D simulations of the

cross-channel flow argues that the symmetry breaking in extensional plane offers a path of

least resistance and reduces the overall drag [27]. The authors reported the occurrence of

3-D velocity components and bifurcation of the hyperbolic points normal to the x-y plane.

Such components are observed for finite aspect ratio channels even at vanishingly low Wi

(≈ 0.001) and when the flow is symmetric in the extensional plane, which suggests that

the base viscoelastic flow is inherently 3-D and 2-D measurements misses the full flow dy-

namics especially in the turbulent regime. To date, however, it remains unclear what is the

relationship between the curved streamline instability and the stress amplification along the

separatrix manifold and hyperbolic points. The flow structure and mechanism that organizes

the observed instabilities in viscoelastic cross-channel flow is missing.
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Here, using time-resolved holographic particle tracking, we report the three-dimensional

flow structure that links the curved core flow and the separatrix containing the hyperbolic

points. We find that, beyond Weissenberg number unity, the advective inflow undergoes

an instability perpendicular to the x-y extension plane marked by the emergence of weak

tertiary velocity component uz, resembling that found in the toroidal vortices in Taylor-

Couette geometry. Second, the presence of the out-of-plane flow components then distorts

the separatrix manifold (unstable manifold), which undergoes a symmetry breaking insta-

bility in the z direction, separate from the symmetry breaking in the 2D x-y plane. As flow

rate increases, higher order mode shapes of the separatrix are observed, akin to the buckling

of a rigid column under compression, except that here, the origin of the instability is the

velocity modulations in the wall-normal z direction arising from normal stress imbalance.

Lastly, pressure measurements show that, contrary to the birefringent strands located at the

separatrix (unstable manifold)[19, 22], stress disturbances can also propagate far upstream

in the direction of the stable manifold, despite viscous dissipation.

The cross-channel used in the experiments has a square cross section with equal width

and depth W = H = 100 µm, shown in Fig. 1(a). The mean flow velocity is U = Q/WH

where Q is the volumetric flow rate prescribed externally by a syringe pump (Harvard

Apparatus PHD2000). The polymeric fluid consists of c = 300µg/g polyacrylamide (PAA

18×106 Da) in 90% mass fraction glycerol aqueous solution, with a nearly constant viscosity

of approximately η = 0.30 Pa·s (see Supplemental Information (SI) for rheology [28]). The

PAA polymer overlap concentration (c∗) is approximately 350 µg/g [29], or c/c∗= 0.86. A

Newtonian fluid of 90 wt% glycerol in water is also used for comparison. The Reynolds

number is kept below 0.01 for all flow rates used, where Re = ρUW/η and ρ = 1.23 g/cm3

is the fluid density. The nonlinearity of the polymer conformation can be described by the

extensional Weissenberg number, Wi = λε̇ where the dominant extensional relaxation time

is around λ ≈ 0.28 s (as measured by capillary thinning, see SI [28]) and the extensional

rate is estimated by ε̇ = 2U/W .

Three-dimensional particle trajectories, which are used to generate 3-D flow fields, are

obtained using holographic particle tracking [30, 31]. The seeded fluid (1 µm dia. tracers,

10−5 mass fraction) is illuminated using a laser beam (532 nm) mounted on an inverted

microscope and recorded with high speed camera (6000 fps). The out-of-plane (z) positions

of tracer particles are obtained using back-scatter reconstruction [11]. Particle trajectories
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within a cubic volume (100 µm in width) at the center of the cross-channel are measured.

An cutaway view of the the ensemble Lagrangian trajectories are shown in Fig. 1(b), as

colored by particle speed. To monitor disturbance propagation, pressure taps are installed

50W upstream from the cross-channel center. Signals from both streams are recorded si-

multaneously (5 ms and 100 Pa resolution), separate from velocimetry measurements.
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FIG. 2. Cross-sectional velocity maps show planar and tertiary instabilities at ε̇ = 10 s−1 (Wi =

3). Left panel is Newtonian fluid and right is viscoelastic. (a,b) Streamlines and normalized local

velocity magnitude u/U , in the extensional x-y plane, showing the well-known planar asymmetric

flow instability. (c,d) The same plot in the x-z cut-plane, normal to the extensional plane and

along the inflow direction (y = 50 µm) Note that the flow enters along x axis and exits along y.

(e,f) Normalized tertiary velocity uz in the same cut-plane.

We begin with the raw particle trajectories within the cubic observation window of the

cross-channel at high extension rates. Fig. 1(b,c), show the cut-away views of the ensemble

of Lagrangian trajectories for the Newtonian and viscoelastic fluids, where incoming streams

approach the cross flow center along the x axis. In contrast to the Stokesian and symmetric

flow for the Newtonian fluid in Fig. 1(b), the viscoelastic flow is highly assymmetric between

the inflow and outflow streams. The core flow of the viscoelastic fluid also has higher
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normalized peak velocity, supporting the view that the symmetry breaking within the plane

of extension is redirected via paths of least resistance [27]. The striking difference between

the Newtonian case and the viscoelastic case, however, is revealed by plotting the low-speed

(u/U = 0.3) iso-surface in Fig. 1(d,e), obtained by sectioning the volumetric velocity data

from the holographic velocimetry technique. Here, u is magnitude of the local velocity

vector. For the Newtonian flow (Fig. 1d), the low speed region takes the form of an

axisymmetric cylinder. The inflow streams, distinguished by ux velocity component (red

and blue in Fig. 1d), split around a planar separatrix in the y-z plane, where ux is close

to zero. The viscoelastic case in Fig. 1(e) however, shows a much different structure: the

separatrix between the two impinging streams become curved and displays a clear loss of

symmetry normal to the plane of extension flow.

The three-dimensional flow structure underlying the instability can be dissected by the

cross-sectional velocity maps of the core advective flow. The velocity map within the ex-

tensional x-y plane passing the center of the cross-channel is shown in Fig. 2(a,b), where

streamlines are overlaid on speed maps u/U . The impinging streams enter along x-axis and

exit along y and the flow extensional strain rate is high ε̇ = 10 s−1. For Newtonian fluid,

the flow remains steady and symmetric around the hyperbolic points for all flow rates, as

in Fig. 2(a). The flow for the viscoelastic fluid, on the other hand, becomes highly asym-

metric and the inflow streams preferentially choose between two bistable outflow directions,

as previously documented in experiments [24] and simulations [25, 27]. For our system, the

asymmetric flow becomes unsteady and switches between the two bi-stable modes for ε̇ & 4

s−1. We note that, the viscoelastic case under the same volumetric flow rate, is able to

achieve higher core flow speed.

The flow structures normal to the x-y plane, however, reveal a different landscape for

the viscoelastic flow at high strain rate. Figure Fig. 2(c) shows the flow speed on a vertical

cross section along x for the Newtonian fluid. As expected, the viscous Stokesian flow has a

high degree of left-right symmetry as well as a classic parabolic profile along z-axis, due to

the lack of inertia in our system. The viscoelastic fluid at identical strain rate however, sees

a completely different picture in Fig. 2(d). The left-right inflow streams no longer mirror

each other and the parabolic core flows become shifted in opposite direction in z, leading

to a symmetry breaking normal to the plane of extension. Further, the lost of symmetry is

accompanied by the emergence of tertiary z velocity component – shown in Fig. 2(f)– that
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is absent in the Newtonian case Fig. 2(e). These out of plane velocities are strong (reaching

above 10% average flow speed) and resemble the appearance of azimuthal rolls obeserved

in a mass-conserved Taylor Couette flow [1]. The out-of-plane velocity component emerges

and increases in strength as strain rate increases (SI Fig. 5), in qualitative agreement with

[27]. Yet due to the rapid decay of streamline curvature in the cross-channel, these vortices

will be spatially localized.

Further, the onset of tertiary instability of the core flows completely alters the unstable

manifold associated with the hyperoblic point. As the left-right inflows compete in the out

of plane z direction, the separatrix dividing these core flows becomes unstable. It loses

left-right symmetry in z and appears to “buckle” with waveforms similar to the bifurcation

modes of an Euler column under compressive load, as shown in Fig. 2(f). The waveforms

here, however, are unsteady and switch stochastically as the core flow fluctuates in time. The

snapshots of the first-order instability modes are shown in Fig. 3(a,b), where the streamwise

ux velocity is normalized by the local speed u. The x-z cross section here passes through the

geometric center of the cross-channel and the separatrix is where the inflow x component

decays to zero. This fixed observation plane is chosen to represent the separatrix profile to

ensure consistency of separatrix profiles between measurements in the unsteady flow. As the

flow rate increases, higher order modes are excited and increases in occurance in addition

to the low order modes. Figure 3 (c,d) show the second order modes.
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FIG. 3. Instability modes of the separatrix between the two impinging inlet streams at ε̇ = 15 s−1.

This boundary undergoes irregular transitions between various shape modes: (a,b) show a second

order mode while (c,d) show a third order mode.
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FIG. 4. (a) Statistical mean amplitudes of the instability waveforms, uncertainties from standard

deviations of bootstrapped sample mean. (b) The sum of mean amplitudes of first 5 modes as a

function of strain rate. Transition from flat to curved separatrix between the two streams occurs at

around a critical strain rate of ε̇c ≈ 4 s−1 or Wic ≈ 1.1. (c) Root mean square pressure fluctuations

upstream of the cross-channel show the onset of flow fluctuation occurs at strain rate of 4 s−1.

We can quantify the onset of the instability modes and symmetry breaking in the z

direction by measuring the amplitude of each instability mode. We define the amplitude of

the nth mode as the integral dot product with the orthogonal sinusoidal modes:

An =
∣∣∣ ∫ H

0

y∗ sin(nπy∗/H) dz
∣∣∣, n = 1, 2, 3, ... (1)

where y∗(z) is the profile for the separatrix. This amplitude can be averaged over all observed

samples (∼500 individual realizations from 3-D velocity field) and the first five modes are

shown in Fig. 4 (a) for various extensional rates. For Newtonian flow at high strain rates

(gray curve), the flow is steady and all mode amplitudes are close to zero on par with system

noise level. The viscoelastic flow at low extensional rates is similar to the Newtonian case,

without mode excitation. Once the extensional rate exceeds ε̇ & ε̇c, however, a sudden onset

of instability modes occurs. The amplitudes increase markedly for all modes. The dominant
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mode is the second mode and its strength is relatively independent of Wi. By contrast,

the higher order modes saw clear increase in strength, relative to the second mode, as Wi

number increases. This indicates increasing excitation of the higher order modes.

The onset of the transition can be captured by the summed average mode amplitude of the

first 5 instability modes, plotted in Fig. 4 (b). As extensional rate increases, the Newtonian

total amplitude remains close to zero as expected. For the viscoelastic fluid, however, the

total mode power transitions to a branch with high level of mode amplitudes at around a

critical strain rate of ε̇c ≈ 4 s−1 or an extensional Weissenberg number of Wic ≈ 1.1, where

the separatrix transitions from flat to curved. The total mode amplitude then saturates for

ε̇ > 15 s−1.

The instability in separatrix waveforms and loss of symmetry in z occurs at a critical

extensional rate ε̇c that coincides with the onset of flow unsteadiness. In Fig. 4 (c) the root

mean square (rms) of pressure fluctuations P ′ = P−〈P 〉 is shown as a function of extensional

rate. First, the rms fluctuation for the Newtonian fluid remains constant (∼20 Pa) for all

ε̇. This level of fluctuation is also similar to the viscoelastic flow in unperturbed straight

channel (without cross flow). The viscoelastic case, on the other hand, sees significant

increase in pressure fluctuations for ε̇c ≈ 4 s−1, the onset of unsteady flow in our system.

This also corresponds to the approximate strain rate below which, the mode amplitude is

not measurable, i.e. close to Newtonian level and system noise. We also note that near the

onset of unsteady flow, the characteristic period of the flow switching diverges, see SI Fig.6.

The mechanism for the onset of secondary velocity components in the core flow is anal-

ogous to the development of classic toroidal rolls in the curvilinear Taylor-Couette flow[1],

except that the streamline curvature is produced by the 90◦ bend from inflow to outflow.

Beyond a critical flow rate and a sufficiently large streamline curvature produced by the

bend around the cross-channel center, secondary hoop stresses, from normal stress imbal-

ance, lead to azimuthal toroidal flow cells, arranged along the z axis. At higher flow rates,

finer wavelengths of the rolls and hence higher order separatrix modes can be observed[1].

We have shown that the onset of separatrix instability coincides with the onset of pres-

sure fluctuations. Yet the temporal dynamics associated with the complex flow structures

observed in the cross-channel, and whether such distance can propagate throughout the

flow domain remained unknown. Next, we report evidence that the flow disturbance orig-

inating at the cross-channel can induce chaotic fluctuations spanning many timescales and

9
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FIG. 5. (a) Pressure signals measured upstream of the cross-channel show large irregular fluc-

tuations for viscoelastic fluids at high extension rates ε̇ & 4 s−1. (b) Power spectra of pressure

fluctuations for the corresponding extensional rates.

can propagate far upstream. Birefringence measurements showed that the region of high

polymer stretching contains the hyperbolic points and aligns downstream along the unsta-

ble manifold [19, 22]. However, in light of recent observations of elastic waves propagating

against the mean flow [11, 32], the question arises whether such stress disturbance remains

localized near the hyperbolic points. To investigate this, we measured pressure signals 50W

upstream of the cross-channel center. Figure 5(a) shows that for the viscoelastic fluid at

low strain rates ε̇ . 4 s−1, the pressure is comparable to the system noise (black, Newtonian

ε̇ = 34 s−1). As the viscoelastic flow rate increases beyond the critical Wic ≈ 1, however,

large pressure fluctuations P ′ are observed. At ε̇ = 33 s−1 (red in Fig. 5 a), the amplitude

of the viscoelastic fluctuations is 20 times the Newtonian counterpart. Our previous work

showed that the fluctuations in velocity decay rapidly upstream of the flow perturbation,

and reduces to the unperturbed system noise level in about 12W for flow around a single

cylindrical obstable [11] and fluids similar to that used here. In contrast, the fluctuation in

pressure and elastic stresses persist much farther upstream.

Further, the irregular pressure fluctuations are activated at many time scales. Figure 5

(b) shows the power spectra of pressure fluctuations. A power law decay in the frequency
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(f) power spectrum is observed f−α, reaching a fully developed scaling of α = 4 for ε̇ & 33

s−1. The decay law here (α & 3) is characteristic of elastic turbulence, yet steeper than that

of pressure signal spectra (f−3) measured experimentally in elastic turbulence in a parallel

swirling flow [33]. It is also slightly higher than the power law (f−3.5 to f−4) obtained from

axial velocity fluctuations 1W downstream of the cross-channel outlet from experiment with

channel aspect ratio similar to that used here [8]. We hypothesize that power f−4 upstream

of the hyperbolic region is steeper since energies at higher frequency are more prone to

damping compared to those at lower frequencies, similar to the spatial transition found in

the velocity power spectra in parallel channel flow[9]. Modeling and experiments of entrance

flow of shear banding wormlike micelle fluids, a system dominated by low frequency pressure

and velocity fluctuations, suggest that f−4 decay may arise from two-sided exponential pulses

of random durations [34].

Elastic turbulence in mixed-type flows, consisting of shearing by curvilinear flow and

stretching via hyperbolic regions, are widely seen in many systems such as jets, T-junctions,

and flow around obstables. Using holographic particle tracking, we identified the 3-D flow

structures that underly the transition and early stages of elastic turbulence in a model mixed

flow type system. We find that the onset of out-of-plane velocity components in the core

flow directly cooperates with the tertiary symmetry breaking and apparent “buckling” of

the separatrix waveforms associated with the hyperbolic point. Analogous to the reduction

in wavelength in viscoelatic Taylor-Couette flow, fine scales and higher order modes occur.

Such complex structures situate normal to the extensional x-y plane and ellude simple planar

measurements. Our results imply a generic pathway by which transition to elastic turbulence

can occur in mixed flow systems.
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