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external loads can be disrupted by increasing the bath temperature or by applying tensile forces,

leading to spontaneous strand separation known as DNA melting. Here, continuum mechanics of
a 2D birod is combined with statistical mechanics to formulate a unified framework for studying
both thermal melting and tensile force induced melting of double-stranded molecules: it predicts the
variation of melting temperature with tensile load, provides a mechanics-based understanding of the

cooperativity observed in melting transitions, and reveals an interplay between solution electrostatics

and micromechanical deformations of DNA which manifests itself as an increase in the melting

temperature with increasing ion concentration. This novel predictive framework sheds light on the

micromechanical aspects of DNA melting and predicts trends that were observed experimentally or

extracted phenomenologically using the Clayperon equation.

1 Introduction

Double-stranded DNA (dsDNA) consists of two helical sugar-
phosphate backbones held together by complementary base pair-
ing. DNA melting or DNA denaturation is the separation of ds-
DNA into two single strands (ssDNA). The transition can be trig-
gered by increasing the bath temperature or by applying tensile
loads on the molecule. DNA melting is important in various bi-
ological processes such as DNA replication and DNA transcrip-
tion, and ultimately impacts gene-expression. The first step in
gene expression is the transcription of DNA to mRNA—it initi-
ates via localized DNA melting caused by the protein RNA poly-
merasel. DNA replication and repair also initiate via localized
melting caused by DNA helicases?3. Several experimental tech-
niques®® such as fluorescence microscopy, optical tweezers and
calorimetry provide evidence for in-vitro DNA melting-both ther-
mal and force-induced?8. The transition of a single base pair
from bound to melted state is impacted by neighbouring base
pairs; if the neighbouring base pairs are melted, it has higher
probability of melting-this property is known as cooperativity. Ex-
periments suggest that the dSDNA—ssDNA transition is strongly
cooperative. This property manifests itself as a sudden melt-
ing transition resembling a first-order phase transition; the in-
crease in inter-strand distance with temperature is sudden as op-
posed to a mere incremental linear thermal expansion. We illus-
trate this point in the appendix by a simple model which embodies
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the basic concept and outcomes of cooperativity.

Here, a double-stranded elastic rod model™ is combined
with statistical mechanics™? to capture various characteristics
of the melting transition. Although thermal melting of DNA
has been studied extensively for some decades now1314 4
mechanics-based model which simultaneously captures both
temperature-driven and tensile force-driven melting is yet to
be explored. The novelty in the model proposed here is three
fold: i) it goes beyond the existing Clausius-Clayperon based
phenomenological description and provides a unified statistical-
mechanics based framework to explain both temperature-driven
and force-driven strand separation, ii) the model provides a
mechanical basis for cooperativity in the melting transition
by relating it to the bending resistance of the base pairs, and
iii) the model accounts for the dependence of the electrostatic
energy on the mircromechanical deformation of the birod which
ultimately leads to familiar trends in melting temperature versus
ion concentration and melting force versus ion concentration.

The sharp transition characterizing cooperative DNA melting
depends on various factors® such as i) the internal base pair
sequence: DNA fragments with higher GC content have higher
melting temperatures, ii) the tensile force: experimental evidence
suggests that the melting temperature decreases as the tensile
load increases, and iii) the ion concentration: the melting force
and melting temperature both increase with an increase in ion
concentration. Most attempts to model the melting transition
rely on using the Clausius-Clayperon equation to get empirical re-
lations between the various quantities of interest such as melting
temperature versus tensile force or over-stretching force versus
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the ion concentration et cetera’®12. Since these empirical models
interface directly with the experimental data, they have superior
predictive capabilities and produce experimentally verifiable
predictions. However, this approach abstracts out the underlying
mechanics and biochemistry driving the process. To circumvent
this drawback to some extent, several statistical mechanics based
models1®17 have been proposed which begin by positing an
energy functional that reproduces the characteristics of the coop-
erative melting transition observed experimentally. The detailed
description sheds light on the underlying mechanism-cooperative
H-bond disruption-and enables one to clearly discern the effect
of various parameters such as, the cooperativity parameter and
asymmetric interactions, on the melting transition. However,
the inherent analytical intractability involved in evaluating the
path integrals central to these approaches limits their application
to relatively simple energy functionals. Molecular dynamics
simulations have also been used to study several problems
related to the melting transition, unzipping of DNA, and other
structural transformations in DNAZ812,  The interaction poten-
tials are available for various chemical bonds in DNA thereby
permitting a very detailed description of the structure, shape,
and chemistry crucial to the problem. The results from the
simulations agree well with the experimental data, but they
entail a large computational burden.

Here, DNA is modelled as a 2D elastic birod. The elastic birod
model has previously been used to study phenomenon such
as allosteric interactions in DNA2%2Ll where the double-helical
geometry and micromechanical deformations of base pairs are
important. In this paper, DNA is assumed to be a straight
ladder-like birod for analytical tractability. We import ideas from
statistical mechanics to show that the average distance between
the two strands in a birod increases steeply in an unbounded
fashion as the temperature reaches the melting point. A similar
effect can be achieved by increasing the tensile load while
keeping the temperature constant. A non-quadratic interaction
between the strands is essential to achieve this effect. For a
quadratic interaction, the equipartition theorem implies that the
average change in the distance between the two strands is zero
even as the temperature increases. Despite simplifying assump-
tions, the model presented here captures the key mechanical
characteristics of DNA such as the entropic elasticity of long
oligomers, the cooperative melting transition, and the effect of
tensile force and ion concentration on melting.

The paper is organised as follows:

1. Kinematics and energetics: The section discusses the devel-
opment of the model by highlighting key kinematic variables
and their respective elastic constitutive relations.

2. Force-extension curve: The force-extension curve for a birod
is computed and the key features of the entropic elasticity
exhibited by the birod are demonstrated.

3. Melting transition: Temperature-driven and tensile force-
driven melting transitions are discussed in detail. The focus

2| Journal Name, [year], [vol.], 1

is to quantitatively describe these transitions within the pre-
sented framework, and examine the interplay between the
tensile force and the melting temperature.

4. Effect of cooperativity: The bending resistance of the base
pairs is identified to be the cause of cooperativity observed
in the melting transition. By varying only one parameter in
the model, we are able to capture the experimental trends
in both force- and temperature-driven melting transitions.

5. Effect of ion concentration The section uses the Poisson-
Boltzmann formalism to compute the electrostatic energy for
the birod. By accounting for the dependence of the electro-
static energy on the outer-radius of DNA in the birod model,
it can be shown that both the melting temperature and melt-
ing force increase with ion concentration.

The model improves upon the existing statistical mechanics ap-
proaches1®17 by computing (as opposed to positing) the energy
functional from the kinematic description of the birod, so that the
key features — temperature-induced melting, force-induced melt-
ing and the cooperativity — emerge naturally.

2 Kinematics and energetics

We closely follow the birod framework presented in Moakher and
Maddocks Y, We envision a straight ladder-like birod acted upon
by an external force F as shown in fig[I] We assume small dis-
placements throughout and confine ourselves to deformations in
a plane. The two outer strands and the web connecting them are

(a)

Fig. 1 (a) Cartoon of a straight birod acted upon by identical forces
on both the strands. The two strands are referred to as + strands. (b)
Attachment of base pairs to the outer-strands.The short web representing
the base pairs is welded to the outer strands.

elastic. The birod lies in e; — e, plane as shown in fig[l] The axial
coordinate x is along e;: x € [0,L] where L is the contour length.
The reference configuration of the + outer strands denoted by r(j)[
is

ry = xe| tae,. )

For a general 2-D deformation in the e; — e, plane, the deformed
configuration of the strands is:

ri:/ox(l—o—é')dl dx=+ (a+v)dy +udy, 2

d; = cosfe; + sinfe;, and d, = —sinOe; + cosbe,.
= Jg(1+ §)d; dx denotes the deformed

where,
Note that r = ﬁ%
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centerline (global/macro displacement), while # and v denote
the displacements of the + strands relative to the centerline
(micro-displacements). They are related to the shearing and
stretching of the base pairs, respectively. In the entire paper,
we use a small strain assumption? together with a moderate
rotation approximation©324 which means: 62,v,6, ~ O(¢), which
implies cos 6 ~ 1 — %2 and sin® ~ 6. Any terms higher than O(¢)
such as vOy, 66,, and u6, are neglected. The moderate rotation
hypothesis is applicable when the applied force is large, which is
indeed the case for DNA melting.

Heretofore, (), denotes derivative w.r.t x. Hence, dj, = 6;d;
and dy, = —6,d;. Now, rf = (1+¢ £ u, Fab)d; £vdy. We
assume that the outer strands are inextensible which implies
Irf| = 1. Hence, ¢ +u, Fab, = 0, which gives { =0, and u, = a6,.
Or, u = af. For the + strands, the tangent is t* = d; % v,d,, so
the curvature is k= = |t5| = 0, & vy, respectively.

We now focus on the stretching, shearing and bending of the
base pairs. Here we assume that the small rods-representing the
base pairs—are welded to the outer long strands-representing the
phosphate backbones (fig[T|(b)). Such an arrangement permits
the base pairs to exert both force and bending moment on the
strands. For DNA, the base pairs are stacked on top of each other
in a regular fashion, the space constraints and repulsion from
neighbouring bases in this crowded environment prevents the
bases from moving freely. A simplistic approach is to penalize the
relative motions of the bases via elastic bending and stretching
potentials, as done in this paper. This approach is similar to sev-
eral previous studies2>"28 where elasticity of base pairs has been
shown to play an important role. A detailed study regarding the
actual nature of the bonds is beyond the scope of the current work

As mentioned, the tangent vectors to the + strands are t* =
d; + v.d,, hence the respective normal vectors are n* = Fv,d; +
d,. The rotation matrices Q* = [t¥,n*] can be decomposed as,

4 cos® —sin6 1 Fvy
= 3
Q Lin@ cos 6 +v, 1 3
cos® —sin6 .
= lgne 0 depends on the deformation of the center-
sin cos
line, while n ¥1Vx depends only on the displacements of
Vx

the strands about the center-line. Q* can be used to compute the
micro-rotation tensor P and macro-rotation tensor Q (for details
seelll),

P =Q Q7 =7(la+

0 2 T
Z 4
o ] )zt )

where I, is the identity tensor. Hence,

P [1 ‘“‘} , )
Vy 1

Soft Matter

and

Q=PQ =Z=d,Re;+dr®e,. ()

The stretching and shearing of the base pairs are propor-

. + —ro
tional to & = Q7w — wy'l, where w =T =, Wo = o 2r° , and

& =abe| +ve;.

Just like the stretching and shearing of the base pairs can
be computed from the difference in the displacements of the
outer-strands, the bending of the base pairs can be computed
from the rotations on the + and — strand. In fact, the moment
transferred by the web is proportional to the Gibbs vector of
the micro-rotation tensor P, In a 2D-setting, this moment
can be easily computed; since the directions of the rotations are
fixed, there is no twisting, and bending is proportional to v, (see
fig[T|(b) for details).

We now discuss the energy associated with each kinematic de-
viation from the reference configuration. The bending energy
per unit length for the outer + strands is E; = %(K+2 +x72) =
EI(6% +v2,) where EI is the bending resistance of the outer
strands. The energy associated with shearing the base pairs is
E, = L1a%62, where L, is the associated elastic constant. For the
stretching of the base pairs, we use an assymetric energy profile
of the form f(x) = (e~** —1)2— known as the Morse potential.
This approach is meant to penalize the steric hindrance between
the two strands and has been previously used in literature1®17,
Hence, the energy per unit length required to stretch the base
pairs Eg = Lz(e*}“" —1)2. The energy associated with the bending
of the base pairs is Ej, = H|v2. Altogether, the energy of the birod
is,

L
E, =/0 dx (Ep+Egy + Eg + Epy)
. @)
:/ dx (EI(02 +12) + L1202 + Ly(e ** — 1)2 + Hyv?),
0

where both v and 0 are functions of x. This energy will enter the
statistical mechanical model for the birod. We use the following

values of elastic constants: EI = 0.15 pNnm?, Ly = 80 pN/nm?,

o—1
L, = 1280 pN/nm?, Hy =0.33 pN, a=1 nm, and A = 0.5A .

The values of the constants were chosen in a way that melting
temperature of DNA at zero tensile force is approximately 75°C
(fig. 3 of the main text). Also, the constants were tweaked to
get the variation of the melting temperature with tensile force in
the right region (fig.5(c) of the main text). One could use other
criteria as well, such as the persistence length of B-DNA at room
temperature and stretch moduli of B-DNA et cetera. However, the
experimental values are for a 3D helical DNA which might not
give the correct melting temperature in our model. Since, the fo-
cus here is on the melting of DNA, we chose to stick to the former.
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3 Force-extension curve for a thermally fluctuating
birod

In this section, we discuss the force-displacement curve for the
ladder-like birod. We already have the elastic energy of the birod
given by eqn. Next we need to compute the work done by
external force F distributed equally on both strands. For + strand,
the displacement at the free end is,

L
A*:/O (t".e; — 1) dx
®)

"L L g2
:/ (cos® —sinf vy — 1) dx:/ (——= —06vy) dx.
0 0 2
Similarly, for — strand, A* = fo t~.e; dx— L, which upon simplifi-
cation yields A~ = fo (— 2 + 6vy) dx. Summing up the individual
contributions from the strands yields,

F, . L g2
W, =~ = — 7 dx. 9
=5 (A" +47) F/O 5 dx )

Hence, the potential energy functional of the birod is,

E=E,—W,=E(6(x),v(x))

F
- 1)2+H1v§+§92).

(10

L
- /0 dx (E1(62 +12) + L1a26% + Ly(e ™™

The average end-to-end extension is,

y= /cos@dx~/ 17—

where we assumed that 8 is a moderate rotation. The average
end-to-end distance (y) is,

(1D

L92

— dx} (12)

y)=L—

o) =L~([
where () denotes the ensemble average. We need to evaluate the
partition function to compute the above average. The partition
function of the birod is a path-integral given as follows,

Z= /@9 /.@v exp(— ( (x),v(x))

kpT
The above partition function Z can be multiplicatively decom-
posed: Z = Z,Zy, where Z, comprises the path-integral over the
function v(x), while Zy over 6(x).

SASAZ A (13)

E,
297/@9 exp(—kB—T), and Z, 7/@\1 exp(— is T)
14
where,
L F
Eez/ dx (E16} +(Lia* +3)6%),  and

0

(15)

L
EV:/ dx (ED2 +Ly(e ™ — 1)2+ Hpp?).
0

4| Journal Name, [year], [vol.], 1

Now,
L92
(|5 a0 Z/@e /@v

Summing over all the admissible functions v(x) and canceling the
common factor Z, yields,

Za /99 /OL%Z dx) exp(—w),

Ly ” ) exp(
A x ) exp( KsT

(16)

L g2
( 6—dx

Jo 2 7

ksT

The above expression can be evaluated by differentiating the log-
arithm of the partition function.

L92 81nZe
_ 18
<0 dx) kBT 8F ( )
which gives,
aanQ
19
(y) =L+kgT 3F (19)

Notice that the remaining functional is only a function of 6(x).
Following Su and Purohit??, we discretize the domain x € [0,L]
into n—segments (x;,x;,1], where 0 <i < n, such that 6, = %
where 6 = % For the energy functional Eg, the integral over the
domain can be expressed as a quadratic expression in terms of
6;’s:

n

Ef = Z'()‘[EI(%)Z—FLWZG?—Q—%G[Z
i=0 ( 2 0)

_[EI 2, F _
,9.[§A+5(L1a +§I)]979-K997

where 6 = [0, 6, ...6,]7, I is an identity matrix, and A is another
matrix as follows:
M1 -1 0 0 0 07
-1 2 -1 0 0 0
0 -1 2 -1 0 0
Apsn = .
0 0 o -1 2 -1
L O 0 0 0 -1 1]

Notice that Ky is a constant depending only on the elastic prop-
erties of the birod. This enables us to transform the path integral
Zy into a n—dimensional integral as follows:

/@9 X) exp ——)

:Jj)(/:; /d(-) exp(— 9)

To evaluate the above integral conveniently, we change the lim-
its from —7, 7 to —eo, 0, which transforms the above expression
into a n—dimensional Gaussian integral which can be computed

(2D

) exp(—

E(8(x).0(x) |

Page 4 of 14

254

255

256

257

258

259

260

261

262

263

266

267

268

269

270

271



Page 5 of 14

284

285

286

208

299

300

301

302

303

304

305

306

307

308

309

310

analytically as follows,

6.Kg6 (kgT)"/?
zn:/ 40 exp(— 20y _ qn/2(KBE) 7 22
o (—o0,00)1 exp( kpT )=* detKq (22)
Substituting it in eqn. [19] gives,
dInZy kpT dlogdetKy
=L+kgT =L-—— 23
) =LtksT =5 2 oF (23)

An analytical derivation based on Fourier integral techniques=%31

is presented in appendix A2. The plot for the force-extension re-
lation for the birod is shown in ﬁga). At large forces (F > 20
pN), it can be approximated by a WLC model®2 with persistence
length 100 nm. As shown in fig. |2| (b), the end-to-end distance
decreases with an increase in temperature-a typical entropic elas-
ticity characteristic. The decrease in the variance of the transverse
displacement (w(x) = [;'sin@ dx) with an increase in tensile force
shown in fig. [2| (c) is yet another signature of entropic elasticity=1
(For analytical expression of (w?) see Purohit et al.®1).

4 Thermal melting

At room temperature under zero tensile loads, the DNA molecule
exhibits a double-helical structure. However, as the temperature
increases and reaches the melting temperature, the complemen-
tary base pairing is disrupted and the two strands spontaneously
disintegrate into two single strands. This melting transition is
highly cooperative®3| and the temperature at which it occurs is
referred to as the melting temperature. Aside from the sequence
dependence, the melting temperature is also highly sensitive to
the tensile loads and the ionic concentration of the solution®12l
Experimental evidence suggests that the melting temperature in-
creases with the increase in ionic concentration and drops with
the increase in tensile loads on the molecule. Thermodynamics
based studies relying on Clausius-Clayperon equation have led to
various empirical relations among these quantities®1233, To pro-
vide a rough idea about the melting temperature, for the Na™ con-
centration of 0.075 M, the melting temperature is approximately
75°C34 (see reference for the exact bp-sequence). Using the birod
model, we seek a relation between the average inter-strand dis-
tance (v) and the temperature 7. In this section, we assume no
tensile forces on the molecule, hence the elastic potential energy
functional E is,

L
E:/ dx (EI(02 +V2) + L1ad*0 + Ly(e ™ —1)2 + Hp?). (24)
JO

The average distance between the strands can be computed as
follows:

E(6(x),v(x))

e

(25)

1 rL
0

vy = %/.Qe(x)/Qv(x) (z/ v(x)dx) exp(—

where the expression for the energy E and the partition function
Z can be found in eqn. [7] and eqn[I3] respectively. As done in
the previous section, we discretize the domain into n-elements
which transforms the integrals into sums and the path integrals

Soft Matter

into n-dimensional integrals:

n 0. )2 Ay Ly )2
E"226{E1((91 692171) +(Vt+1 2;‘4‘1)171))

i=0

+ L1170 + Ly(e i —

1)2+H1M],

52
(26)

n

" T dv;) exp(— L
Z —gj</(_m7m)zd6,dv,> exp( kBT)’

1 E"

(v) = 7= ,‘Ij) (/(.790@)2 d@idv,-) <% ZVZ') exp(—kB—T).

In contrast to the last section where the discretization to-
gether with quadratic energy functional enabled us to analytically
evaluate the partition function, the partition function above can
not be evaluated analytically because of the non-quadratic term
(e~*' —1)2. Hence, we use Monte-Carlo simulations to compute
(v) as a function of the bath temperature 7. We use the Metropo-
lis algorithm®? to perform the MC simulations (for more details
see appendix A3). The results are recorded in fig. [3| Each individ-
ual marker x is one simulation. We find that as the temperature
increases the average inter-strand distance increases strongly in
a nonlinear fashion, hence can not be alluded to as mere ther-
mal expansion. The asymmetry in the nonlinear interaction term
((e‘b’ - 1)2) is crucial for achieving this effect; if quadratic in-
teraction is used the average inter-strand distance is zero even as
the temperature increases.

We fit a continuous spline to (v) vs T data to indicate the trend.
In reference configuration, the average inter-strand distance is
10 A. We assume that the melting of a single discrete unit as
shown in fig[3]occurs at 50% strain, i.e. when the unit is stretched
to 15A or when v; = 5A. The oligomer is considered melted when
more than 50% of the units are melted. We plot the fraction of
melted DNA f,, = L ¥ | I(v; > 5A), where I(v; > 5A) = 1 if v; > 5A
and 0 otherwise, as a function of temperature 7T in the inset. The
data for f,, vs T is fit using a logistic function g(x) = m
to read off the melting temperature from the plot: 7, ~ 360K,
which is quite close to the results for dsSDNA documented in liter-
ature815B4 The melted (v; > 5A) and unmelted (v; < 5A) units
and the corresponding v; are shown for 7 = 250K and T = 425K.
The contiguous strands of unmelted DNA and melted DNA ob-
served below and above the melting temperature, respectively,
indicate cooperative interactions. Although the melting criterion
vi = 5A was deliberately chosen so that the results from the model
agree with the experimental data, our main message is that the
birod model has the essential ingredients to account for the coop-
erative melting transition and these crucial factors emerge natu-
rally from the kinematic description of the birod.

5 Tensile force-induced melting

In this section, the effect of tensile force on the melting temper-
ature is explored. We consider the birod shown in fig[d] Here,
we apply the force on one strand as previous studies® have in-
dicated. As before, we need to compute the potential energy of
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801 X Computations
— WLC1it, [, =100 nm 100
60
Z z
240 £ w0
F 59
20
20
0
0.80 0.85 0.90 0.95 0.94

<y>JL
(a)

— T=300K
T=400K
— T=500K —~
o~
IS
=
A 0.2
o~
=
Vo1 —— F=0.0 pN
F=16.0 pN
—— F=32.0 pN
0.0 P
0.97 0.0 0.5 1.0
<y>/L x/L
(b) ()

Fig. 2 (a) For large force, force-extension curve of the birod is similar to a WLC model with a persistence length of [, = 100 nm. (b) Effect of increase
in temperature on the force-extension curve is in agreement with expectations of entropic elasticity. (c) (w?) vs x for various values of tensile force
F. The boundary conditions for (a) and (b) are fixed-free while for (c) it is hinged-hinged. The values of parameters in the energy functional are

o—1
EI=0.15 pNnm?, Ly =80 pN/nm?, L, = 1280 pN/nm?, Hy =0.33 pN, a=1 nm, and L =0.5A . For these calculations L =200 nm and n = 300.

T=250K T=425K
3 5
A A;
S:/ 0 [me cmmem e | Olme ooe o o aee o
/>\ 1 i 50 1 i 50
50 50
\"
< T e ‘. X
S S| oe, e e
. ° "-.‘ '.'.0.. .
100 200 300 400 Of-&&&% Olsece " ° % o
T (K) i 1 i 50
(a) (b) ©

Fig. 3 (a) (v) vs T curve. Each green x marker is (v) computed from an
individual MC simulation at that temperature, while the solid green line
is a smoothed univariate spline curve plotted to indicate the trend. The
inset shows the corresponding data for the melted fraction f,,, which is fit
using a logistic function to compute the melting temperature (7;, = 360
K). (b) vi and I(v; >5A) vs i (1 <i<n) at T =425 K. Red o and blue
o markers denote the melted (v; > 5A) and unmelted (v; < 5A) discrete
units at T =250 K. The corresponding v; are also shown; here the solid
black line shows v; = 5A for reference. (c) v; and I(v; > 5A) at T =425
K. The data in (b) and (c) are computed at the end of N = 1000000
MC steps. We observe contiguous strands of unmelted DNA below the
melting temperature and melted DNA above the melting temperature,
indicating cooperative interactions. Further details on MC simulations
are given in appendix A3.

the birod in this configuration. The elastic energy of the birod is
available in eqn[7] The work done by external force F is,

L
Wg:F/O dx (t e —1). 27)

Now, t~ =d; —v,d,, hence t.e; =cos 6 +v,sinf ~ 1—02/2+1,6.
This implies,
L 92
We:F/ dx(fi +v,0). (28)
0

6| Journal Name, [year], [vol.], 1

Fig. 4 The birod cartoon for studying DNA melting. Note that the force
is applied only on one strand.

The elastic potential energy E is,

E=E,—W,

oL
= [Cax (B0} 420 + L+ D)6+ (29)
0

Lo(e ™ —1)2 + Hiv} — F,8).

The term Fv,0 is responsible for coupling the force F and the
inter-strand distance v. Now for a given 6(x), the probability
of observing a configuration with interstand distance v(x) at
force F is eF"0/ks7T times the probability of observing the same
configuration at F = 0. Granted, as the force F increases the
birod straightens out and 6 decreases as can be inferred from
fig[2J(b). However, for high forces (> 15 pN), the DNA molecule
with a persistence length 50 nm is mostly straight. In other
words, the 0(x) does not change much as the force increases
from 15 pN to 40 pN, however this makes the higher values of
v(x) much more likely. Based upon this qualitative argument we
expect that the melting temperature should decrease with an
increase in tensile load F.

The (v) vs T curves are presented in ﬁga) for various tensile
forces F, and we indeed observe that for a given temperature, the
inter-strand separation increases with increasing tensile loads.
We use the same criteria for computing the melting temperature
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T, as in the previous section: the temperature at which the
fraction of melted DNA f, exceeds 0.5. We fit the f,, vs T data
using a logistic function g(x) = ﬁ as done previously to
get the melting temperature 7,, for various values of external
load F. We find that 7;, decreases with an increase in F as shown
in ﬁgc). We use the experimental data from Zhang et al to
conclude that the trend is correct. The slope of the line depends
on the elastic constants of the birod and for the values chosen

here a quantitative match is also achieved.

Figd) shows that at a constant temperature (7 = 300 K), the
average inter-strand distance (v) increases with an increase in
tensile load F indicating force-induced melting. We fit the sim-
ulation data using a smooth spline to highlight the trend. The
corresponding melted fraction f, vs tensile load F is plotted in
the inset. The logistic function fitted to the data reveals that at
F =40 pN f,, =0.5 i.e. DNA has melted. The critical force at
which the DNA melts is sometimes referred to as overstretching
force'l®. Experimental data shows that this force driven melting
transition occurs at F = 60 pNZ3Z (for exact details regarding the
PH, sequence dependence and salt concentration see references),
hence the value predicted by our model is in the correct region.
Note that we modelled DNA using a straight ladder-like birod in-
stead of a helical one, and we restricted the formulation to planar
deformations—these assumptions could be causing this deviation.

6 Effect of cooperativity parameter

The structural transition from dsDNA—ssDNA is known to be
highly cooperative3, The cooperativity exerts a strong influence
on the mechanical behavior such as determining the sharp-
ness of the force-extension curves and influences the melting
temperature and overstretching force. One phenomenological
approach accounting for cooperativity comes from authors’
previous work=® in which interfacial energy among various
phases of DNA makes the transition among them cooperative.
Yet, another approach is to postulate an energy functional which
includes terms proportional to the gradient of the inter-strand
distancel®17, The motivation for such approaches comes from
Cahn-Hilliard formulation®? widely used to study nucleation
and spoinodal decompositions in phase field modelling, where
the phase boundaries are energetically penalized using a term
proportional to the square of the gradient of the order parameter
(~ (V¢)?). A similar idea for penalizing the gradients is also used
in the Landau-Ginzburg approach? to study superfluidity and
superconductivity transitions. In the birod formulation presented
here, the gradient terms proportional to v2 emerge from the
bending rigidity of the base pairs which imparts cooperativity
to the model. We demonstrate the effects and outcomes of
cooperativity using a simple model in appendix Al.

We plot the fraction of melted DNA f,, versus the temperature
T and tensile load F in fig. E](a) and (b), respectively. As the
bending resistance of base pairs (cooperativity parameter) H; in-
creases, the melting temperature and overstretching force both
increase. Experimental evidence documented in Zhang et al

Soft Matter

shows that as the GC content of the molecule increases, so does
the overstretching force and melting temperature. Higher values
of H| represent higher GC content since GC base pairs consist of 3
hydrogen bonds compared to 2 hydrogen bonds in AT base pairs
and are consequently stiffer. Higher GC content can have other ef-
fects such as increasing the constants L; and L, as well; we deal
with this issue in appendix A4. In case of force-driven melting,
the transition becomes sharper too. This is demonstrated by fit-
ting the logistic function g(x) = m to f,, vs F transitions
and observing that the parameter ay which quantifies the width of
the transition increases monotonically with H;. The phenomeno-
logical evidence for the sharpening can be found in authors’ pre-
vious work=8 in which higher interfacial energies representing
higher cooperativity parameters (therefore higher H;) correspond
to sharper transitions.

7 Effect of ion concentration

Both force-induced and temperature-induced melting transitions
are sensitive to the ion concentration of the solution. Here, the
effect of changes of ion concentration on these melting transi-
tions is explored. The phosphate backbone of DNA is negatively
charged, hence the positive ions in the solution cluster around
it. This stabilizes the double-stranded form of DNA. Therefore,
the melting temperature and melting force should increase with
an increase in ion concentration, as suggested by experimental
evidence®. Empirical relations based on the Clausius-Clayperon
equation connecting the melting force and melting temperature
to the ion concentration have been proposed®4%. In this sec-
tion we account for the effect of electrostatic interactions on the
melting temperature and melting force by means of a Poisson-
Boltzmanm equation based polyelectrolyte model of DNAL,

We use a highly simplified 1D Poisson-Boltzman equation to
describe the electrostatics. For a detailed description refer Frank-
Kamenetskii et al.#L. The purpose of what follows is to compute
the electrostatic energy of the rod in a configuration described
by 6(x), v(x) and clearly highlight the underlying assumptions.
To compute the electrostatic energy, we assume that the DNA
molecule is almost straight i.e. the effect of 6(x) is negligible-a
complete description of electrostatics for bent DNA is beyond the
scope of the current study. Secondly, we assume that the radius
of the DNA molecule in a configuration described by v(x) is a+ v,
where v, = 1 J&v(x)dx. This assumption transforms the 2D PDE
into a 1D ODE. We consider only monovalent ions such as K™ and
Na™. Within the scope of these assumptions, the boundary value
problem for the electrostatic potential U(y) can be written as,

2
dw Zsinh(w),
dy?
(30)
w(a+ve) = 24 w(R)—=0 as R—oo
YAy, '

. . . . . U .
Here, y is the coordinate perpendicular to x in fig.1, w = 6T s

the nondimensional potential, ¢ is the electronic charge, and a +
vq is the average radius of the DNA helix. The dimensionless
2 . . .
charge ¢ = %, where Ig = 57 is the Bjerrum’s length, b is the
length of the cylinder containing negative charge e, &j is vacuum
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17.5 . 360 5
F,, ~ 40pN
15.0 340 °
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>~ 75 £300
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Fig. 5 (a) Average inter-strand distance (v) vs temperature T curves for different values of tensile force F. Here each marker x denotes one MC
simulation and the solid lines are smooth splines being fit to the MC simulation data to indicate the trend. (b) Fraction of melted DNA f, vs
temperature T for different tensile loads. The MC simulation data is fitted using a logistic function to compute the melting temperature. (c) Melting
temperature T;, vs tensile force F as computed from fig. (b). The experimental data is from*. (d) Average inter-strand distance (v) vs tensile force F
(x) at 300 K fitted using a smooth spline (solid line). The inset shows the corresponding melted fraction f;, (x) fitted using a logistic function (solid
line). F ~40 pN when f,, =0.5.

0.6
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—— HyHy=10,a,=5.7 —— HiHy=10,a0=9.7
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Fig. 6 (a) Effect of the cooperativity parameter H; on temperature driven transition. Here Hy = 0.33pN (b) Effect of the cooperativity parameter H;

on force driven transition. The simulation data represented by marker X is fit using the logistic function g(x) = m Increasing the bending
e

resistance of the base pairs leads to an increase in melting temperature and increases in the overstretching force. It also sharpens the force-driven

transitions shown by the increasing values of ag as H) increases. The units of ag are K~! in (a) and pN~! in (b).

permittivity, and D is the dielectric constant of the solvent. ¢y tion of melted DNA f,,, versus the temperature T is computed for

. . 2 . . .
is the concentration of monovalent ions, and 2 = ngc(:};T. The various concentrations ¢y = 0.018mol/L to 0.15 mol/L. The sim-
associated electrostatic energy £ per unit length is obtained by ~ulation results (x) plotted in fig[7] (a) are fitted using a logistic
incrementally charging the backbone from 0 to ¢4L: function f(x) = m The melting temperature is reached
when f,, > 0.5. The simulations indicate that melting tempera-
1 . . . .
! (co,a+va) = —2kgT / dt witq). (31) ture 7,, increases as the concentration ¢ increases as shown in
0

fig[7(b). Next, we consider force-induced melting. The simula-
tion data x and the respective logistic fits are shown in fig[7|(c).
We find that the melting force increases as the concentration in-
creases, see ﬁgd). Previous works such as®49 have used ther-

Note that the boundary condition on the average radius of the
DNA backbone couples the electrostatic energy to the mechanical

deformation of the birod. Hence, total energy per unit length i ’ ] )
e(8(x),v(x)) is the sum of the elastic (eqn) and electrostatic modynamic analysis based on the Clausius-Clayperon equation

energy (eqn[3T): togethe.r with experimental data.to analyse tl.1e effect of con-
centration on thermal and force-induced melting and have re-

F . . _ . .
e(0(x),v(x)) =EI(0% +v2,) + (Lia*+ E)92 + ported similar results—the melting force and temperature increase

(32) with increasing ion concentration. In the analysis presented here
the effect of ion concentration emerges from the coupling be-
tween the micromechanical deformations of the birod v(x) and
the Poisson-Boltzman electrostatic model of DNA. Although, we
were able to account for the effect of electrostatics using an ele-
mentary Poisson-Boltzmann model, there are several drawbacks:
i) the assumption that the rod is straight can not be true at force
F =0, ii) the Poisson-Boltzmann model works only for weak ionic

Ly(e™ =12 + H\v2 — Fv,0 + e

Having set this up, we wish to compute effect of the ion con-
centration on the melting temperature and melting force. There
is only one parameter in the entire electrostatic formulation: g.
We choose ¢ = 0.05 for the computations. We start by examin-
ing the effect of ion concentration on thermal melting. The frac-
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concentrations at 7' << T, iii) eqn assumes that the positive
ions are a non-interacting Boltzmann gas which is not true in the
vicinity of DNA helix where ion-ion correlations must be consid-
ered and iv) eqn[30] neglects the effect of divalent ions such as
Mg+? and Ca™2. For a detailed discussion, we refer the reader to
the existing literature on solution electrostatics#42,

8 Conclusion

The theory of elastic birods is deployed to study temperature
driven and tensile force driven melting transitions in DNA. The
paper begins by discussing how the birod model embodies typi-
cal characteristics of entropic elasticity. Next, the model is used
to study temperature induced DNA melting. The average inter-
strand distance is found to increase monotonically with tempera-
ture in a nonlinear unbounded fashion. The nonlinear asymmet-
ric interaction between the strands is crucial to correctly model
the melting transition; for a linear-elastic interaction, leading to
a quadratic energy functional, the average increase in the inter-
strand distance is zero-independent of changes in temperature.
Next, the model is used to study the effect of tensile force on the
melting temperature. The model predicts that the melting tem-
perature decreases with increasing tensile force and by appropri-
ately choosing the elastic parameters the prediction can be shown
to even match quantitatively with experimental data. The model
shows that at a fixed temperature an increase in tensile load also
leads to a melting transition and the critical force corresponding
to this transition predicted by the model is 40 pN whereas the ex-
perimentally observed value is 60 pN. Various assumptions such
as using a straight birod to model double-helical DNA and restrict-
ing to deformations on a plane could be responsible for the devi-
ations. Furthermore, the birod model predicts that an increase in
GC content causes an increase in cooperativity leading to higher
melting temperature and melting forces. Finally, the interplay be-
tween the statistical mechanics of the birod model together with
electrostatics from a Poisson-Boltzmann formulation accounts for
the increase in melting temperatures and melting force with ion
concentration.

This work demonstrates the ability of the elastic birod model to
accurately describe the mechanics of the DNA melting transition
in three ways: i) cooperativity in the melting transition, well
documented in literature®81617  emerges naturally from the
elasticity of the base pairs, ii) the birod model can successfully
account for the intertwined effect of temperature and tensile
force on the melting transition, and iii) the model can be coupled
to the Poisson-Boltzmann formulation to account for the effect of
ion concentration. However, using a straight ladder-like birod to
model double-helical DNA is at best a first order approximation.
Such a model is unable to account for the 1.7 times stretching
during the melting transition accomplished by unwinding the
DNA helix. The derivation of the energy functional assumes
that the change in inter-strand distance is small, however this
is not true during the melting transition. Further study is
required to examine the effect of nonlinear coupling terms in the
model. In our formulation, the asymmetry in the applied force
is responsible for coupling the stretch (0) with the interstrand
distance (v). As such, if equal force is applied on both ends

Soft Matter

the stretch and inter-strand distance are decoupled. However,
this is because the DNA is modeled using a straight non-helical
birod. The authors’ previous work (see sec. 4 in supplementary
materials?Y) on double-helical birods shows how the stretch is
coupled to the inter-strand distance. Other crucial features of
DNA arising out of double-helical topology, such as twist-stretch
coupling, are absent in the straight ladder. Although, such a
model can explain the melting transition, it can not explain other
well documented®43 transitions among various DNA phases
such B-DNA — S-DNA and B-DNA — P-DNA. Hence, a natural
extension of this work is to study the statistical mechanics of a
double-helical birod.
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Appendix

A1: A simple model illustrating cooperativity

The concept and effects of cooperativity are demonstrated using
an elastic bar under a tensile load. The understanding derived
from this exercise helps us rationalize the observations reported
in the main text. Let the strain variable be v(x), hence the energy
functional of the bar under a tensile load is E = fodeg —FA,
where L is the contour length and A is the displacement at the
free end which can be expressed an an integral over the strain—
A= fOL vdx. Now, we add a cooperativity term proportional to
v2. This is analogous to the surface energy term in the Allen-
Cahn energy functional®® and gradient term in Landau-Ginzburg
energy functional’?. In view of the above discussion, the energy
functional is,

L 22
— Xy 33
E /de<k2+2 Fv). (33)
To get the (v) vs F curve for the bar, we have:
1, 1 /L E(v(x))
(v) = 7 /Qv(x) <Z/0 v(x)dx) exp (— kl;iT) (B34

where Z = [Pv(x)exp( — %) is the partition function.
Similarly, (v) vs T curves can also be obtained.

For simplicity, assume v(x) can either be relaxed or stretched:
v € {0,1}. Using the assumption, together with techniques used
in the main text to numerically evaluate the partition function,
we can compute the (v) vs F and (v) vs T curves. We focus on the
effect of the cooperativity parameter k on the curves. The results
are shown in fig[9] Fig[9](a) shows that for a fixed temperature T,
(v) decreases with an increase in the cooperativity parameter k, a
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Fig. 7 Effect of ion concentration (a) Fraction of melted DNA f,, versus the temperature T for various ion concentration, F =0 (b) Monotonically
increase in melting temperature 7, with the ion concentration ¢y. (c) Fraction of melted DNA f,versus the applied tensile load F, T = 300K. (d)

Monotonically increasing melting force F,, with the ion concentration c¢.

e X A F
|t rrrfrj—
v(z)

Fig. 8 An elastic bar undergoing a cooperative phase transition. Here
v(x) is the strain variable.

similar trend is observed by increasing H; as shown in fig. 6(a)
of the main text. Regarding the force driven stretching, fig. [0}(b)
shows that the width of the transition decreases with increasing
k: {v) vs F curve is almost linear for k = 0 while for k = 3.0 it is sig-
moidal. This happens because for large cooperativity coefficient
k = 3.0, the units stretch simultaneously. To illustrate this point,
we present the stretched and unstretched units in fig[T0] for val-
ues of F below and above the melting force (F = 0.8,1.2) using
cooperativity parameters k = 0 and k = 3.0. Similar sharpening
of transition is also observed by increasing H; in fig. 6(b) of the
main text. While in this simple model, the sharpening effect of co-
operativity can be clearly seen as shown in fig[9(b), and fig[I0] in
sec.6, we need to fit logistic curves to the MC simulation data to
quantify the sharpness. One point of departure between the two
models, is that the melting force increases with H; in fig. 6(b), on
the other hand it remains constant with increasing k in fig[9|(b).
This is because in the main text, the work done by the external
force F is proportional to Fv,0 and 6 decreases as F increases,
consequently a larger force is required to melt the DNA. Based
upon these two similarities, we claim that H is the cooperativity
parameter in the birod model in the main text.

A2: Analytical derivation of the force-extension curve

Here, we use Fourier integral techniqueg|to get an analytical ex-
pression for the force-extension curve®%31, The energy functional

+ We thank a reviewer for this suggestion.
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in sec.3 is,

F
E- /dx<E193 + (5 +Lia%)6%). 35)
A 2

Define,

0(q) = %/xdxef"qxﬂ(x) and 0(x)= /t]dqeiqxﬂ(q). (36)

Noting that 6(x)? = A fzidqldqzeiq"‘e*iqzxé(ql)é(qz) and
Jodxe@—®)¥ =g, _ . into eqn we get,
F ~
E= /dq(E1q2+ (5 +L|a2))92~ 37
q 2

The above expression is quadratic in 6(g), hence, using equipar-
tition one can evaluate

kT

0(g)>y = — "5~
(6(q)7) Bl +(E1 L) (38)
Parseval’s identity—[, 6(x)?dx = ﬁfqé(q)qu—together with the
above equation yield the following expression for the average

end-to-end distance:

kgT ) . (39)

8\/EI(F |2+ Lyd?)

In the limit F >> L;a?, the persistence length ¢, can be obtained

by comparing the above expression to the WLC formula ({y) =
L-L _ 8EI

’;BT:): {p = 7,7 We verify this assumption by performing a
simple calculation shown in fig[TT} We can not do this calculation
in sec. 3 to obtain the persistence length because the assumption

F >> Lja? does not hold true, instead F ~ L;a*. For a similar
calculation of (w?(x)), we direct the reader to Purohit et al. 3L,

<y>:L<17

A3: Details of MC simulations

The Monte Carlo simulations were performed using the
Metropolis-Hastings algorithm®>.  The DNA oligomer was
modeled using a 2D birod fixed on one end and free on the other
as shown in fig.1 of the main text. The length of oligomers was
L =40 nm and was discretized into n = 50 elements which gives
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Fig. 9 Here x are the MC simulations while the solid lines are the smoothed spline being fit to the MC simulation data. (a) (v) vs T curves at F =0,

(b) (v) vs F curves at kgT =0.5.
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Fig. 10 Here o denotes melted (= 1) or unmelted (= 0) state of i unit at the end of the simulation (N = 100000 steps). We see a sudden transition
from F = 0.8 to F = 1.2 when the cooperativity parameter is large (k=3) in (c) and (d), respectively. On the other hand, we see smooth cross over
when cooperativity parameter is low (k=0). The values of k and F are given in the figure titles and kg7 = 0.5.

X  Discretized evaluation
e  TFourier Transform

125 — WLC fit, l,;:%: 1.6

0.7 0.8 0.9
<y>|/L

Fig. 11 Using kgT =5, Ly =1, EI=1, and L =10. Here x data is
obtained by discretizing the birod into n = 100 elements.

m = 100 dof: (6;,v;) 0 <i < n. The total number of MC moves
was N = 1000000. At each move, a random degree of freedom
was chosen and the magnitude of perturbation was normally
distributed with mean 0 and standard deviation o, if the chosen
dof is v; and oy if the chosen dof is 6;. The perturbed state is
accepted if ¢ iT > a, where AE is the energy difference between
the initial state and perturbed (AE = Eperturbed — Einitial) and @ is
a random floating point number uniformly distributed between 0
and 1 (o~ U(0,1)). We checked for the saturation of the energy
to ensure steady-state. The averages were computed on the last
N /2 states to discount the effects of burn-in process. The values of

0, (~0.25 nm) and oy (= 0.2) were chosen such that the accepted
fraction of states lies between 20 — 40%. The melted fraction
fm= 1Y I(v; > 5R), where I(v; > 5A) = 1 if v; > 5A and 0 oth-
erwise. The DNA oligomer is considered melted when f;,, > 0.5.
For f, = 0.5, we will always have (v) > 510%, since there will be
melted links where v; > 104, while for unmelted units 0 < v; < 5A.

To access the impact of concentration, we need to compute the
electrostatic free energy per unit length E¢(a+v,) as a function
of the average birod radius a +v,. Note that v, changes with each
MC move, and solving the ODE at each move is computationally
expensive. To circumvent the issue, E¢/ (a4 v,) was computed for
various values of a + v, and an exponential curve was fit to the
data. The fitted exponential curve was then used to compute E¢
in the MC simulations. For reference, we show E¢ vs a+ v, and
the fitted exponential curve for solution concentration ¢y = 0.1M
and T = 300K in fig[12]

A4: Effect of increasing GC content

In sec.6, the effect of the cooperativity parameter H; is discussed.
It was observed that the melting temperature increases with in-
crease in the value of H;, which in turn, is due to higher GC con-
tent. Higher GC content can have many other effects as well,
such as higher stretch moduli L; and shear moduli L;, and the
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Fig. 12 Plot of E¢ vs a+v,. The fitted exponential curve is used to
compute E¢ in MC simulations.

combined inter-play could be much more complex and beyond
the scope of the paper. Since, the section focusses on the effect of
cooperativity, we increased only H; and left L; and L, unchanged.
Here we change all the parameters H;, L; and L, and show simi-
lar trends.

— == =1 T,=33K
— == =2T,=635K
— pL=f={=3T,=049K
— == =4,T,=1190K

o 200 400 600 800 1000

T (K)

Fig. 13 Fraction of melted DNA f,, vs temperature T. Here, instead of
changing only Hj, we change all the parameters Lj,L, and H;. As the
stiffness of the base pairs increases, the melting temperature T,, increases.
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f Fraction of melted DNA
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