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Statistical mechanics of a double-stranded rod model for DNA melt-
ing and elasticity

Jaspreet Singh∗†, Prashant K. Purohit∗

The double-helical topology of DNA molecules observed at room temperature in the absence of any
external loads can be disrupted by increasing the bath temperature or by applying tensile forces,
leading to spontaneous strand separation known as DNA melting. Here, continuum mechanics of
a 2D birod is combined with statistical mechanics to formulate a unified framework for studying
both thermal melting and tensile force induced melting of double-stranded molecules: it predicts the
variation of melting temperature with tensile load, provides a mechanics-based understanding of the
cooperativity observed in melting transitions, and reveals an interplay between solution electrostatics
and micromechanical deformations of DNA which manifests itself as an increase in the melting
temperature with increasing ion concentration. This novel predictive framework sheds light on the
micromechanical aspects of DNA melting and predicts trends that were observed experimentally or
extracted phenomenologically using the Clayperon equation.

1
1 Introduction2

Double-stranded DNA (dsDNA) consists of two helical sugar-3

phosphate backbones held together by complementary base pair-4

ing. DNA melting or DNA denaturation is the separation of ds-5

DNA into two single strands (ssDNA). The transition can be trig-6

gered by increasing the bath temperature or by applying tensile7

loads on the molecule. DNA melting is important in various bi-8

ological processes such as DNA replication and DNA transcrip-9

tion, and ultimately impacts gene-expression. The first step in10

gene expression is the transcription of DNA to mRNA—it initi-11

ates via localized DNA melting caused by the protein RNA poly-12

merase1. DNA replication and repair also initiate via localized13

melting caused by DNA helicases2,3. Several experimental tech-14

niques4–6 such as fluorescence microscopy, optical tweezers and15

calorimetry provide evidence for in-vitro DNA melting–both ther-16

mal and force-induced7,8. The transition of a single base pair17

from bound to melted state is impacted by neighbouring base18

pairs; if the neighbouring base pairs are melted, it has higher19

probability of melting–this property is known as cooperativity. Ex-20

periments suggest that the dsDNA→ssDNA transition is strongly21

cooperative9,10. This property manifests itself as a sudden melt-22

ing transition resembling a first-order phase transition; the in-23

crease in inter-strand distance with temperature is sudden as op-24

posed to a mere incremental linear thermal expansion. We illus-25

trate this point in the appendix by a simple model which embodies26
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the basic concept and outcomes of cooperativity. 27

Here, a double-stranded elastic rod model11 is combined 28

with statistical mechanics12 to capture various characteristics 29

of the melting transition. Although thermal melting of DNA 30

has been studied extensively for some decades now13,14, a 31

mechanics-based model which simultaneously captures both 32

temperature-driven and tensile force-driven melting is yet to 33

be explored. The novelty in the model proposed here is three 34

fold: i) it goes beyond the existing Clausius-Clayperon based 35

phenomenological description and provides a unified statistical- 36

mechanics based framework to explain both temperature-driven 37

and force-driven strand separation, ii) the model provides a 38

mechanical basis for cooperativity in the melting transition 39

by relating it to the bending resistance of the base pairs, and 40

iii) the model accounts for the dependence of the electrostatic 41

energy on the mircromechanical deformation of the birod which 42

ultimately leads to familiar trends in melting temperature versus 43

ion concentration and melting force versus ion concentration. 44

45

The sharp transition characterizing cooperative DNA melting 46

depends on various factors4 such as i) the internal base pair 47

sequence: DNA fragments with higher GC content have higher 48

melting temperatures, ii) the tensile force: experimental evidence 49

suggests that the melting temperature decreases as the tensile 50

load increases, and iii) the ion concentration: the melting force 51

and melting temperature both increase with an increase in ion 52

concentration. Most attempts to model the melting transition 53

rely on using the Clausius-Clayperon equation to get empirical re- 54

lations between the various quantities of interest such as melting 55

temperature versus tensile force or over-stretching force versus 56
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the ion concentration et cetera8,15. Since these empirical models57

interface directly with the experimental data, they have superior58

predictive capabilities and produce experimentally verifiable59

predictions. However, this approach abstracts out the underlying60

mechanics and biochemistry driving the process. To circumvent61

this drawback to some extent, several statistical mechanics based62

models16,17 have been proposed which begin by positing an63

energy functional that reproduces the characteristics of the coop-64

erative melting transition observed experimentally. The detailed65

description sheds light on the underlying mechanism–cooperative66

H-bond disruption–and enables one to clearly discern the effect67

of various parameters such as, the cooperativity parameter and68

asymmetric interactions, on the melting transition. However,69

the inherent analytical intractability involved in evaluating the70

path integrals central to these approaches limits their application71

to relatively simple energy functionals. Molecular dynamics72

simulations have also been used to study several problems73

related to the melting transition, unzipping of DNA, and other74

structural transformations in DNA18,19. The interaction poten-75

tials are available for various chemical bonds in DNA thereby76

permitting a very detailed description of the structure, shape,77

and chemistry crucial to the problem. The results from the78

simulations agree well with the experimental data, but they79

entail a large computational burden.80

81

Here, DNA is modelled as a 2D elastic birod. The elastic birod82

model has previously been used to study phenomenon such83

as allosteric interactions in DNA20,21 where the double-helical84

geometry and micromechanical deformations of base pairs are85

important. In this paper, DNA is assumed to be a straight86

ladder-like birod for analytical tractability. We import ideas from87

statistical mechanics to show that the average distance between88

the two strands in a birod increases steeply in an unbounded89

fashion as the temperature reaches the melting point. A similar90

effect can be achieved by increasing the tensile load while91

keeping the temperature constant. A non-quadratic interaction92

between the strands is essential to achieve this effect. For a93

quadratic interaction, the equipartition theorem implies that the94

average change in the distance between the two strands is zero95

even as the temperature increases. Despite simplifying assump-96

tions, the model presented here captures the key mechanical97

characteristics of DNA such as the entropic elasticity of long98

oligomers, the cooperative melting transition, and the effect of99

tensile force and ion concentration on melting.100

101

The paper is organised as follows:102

1. Kinematics and energetics: The section discusses the devel-103

opment of the model by highlighting key kinematic variables104

and their respective elastic constitutive relations.105

2. Force-extension curve: The force-extension curve for a birod106

is computed and the key features of the entropic elasticity107

exhibited by the birod are demonstrated.108

3. Melting transition: Temperature-driven and tensile force-109

driven melting transitions are discussed in detail. The focus110

is to quantitatively describe these transitions within the pre- 111

sented framework, and examine the interplay between the 112

tensile force and the melting temperature. 113

4. Effect of cooperativity: The bending resistance of the base 114

pairs is identified to be the cause of cooperativity observed 115

in the melting transition. By varying only one parameter in 116

the model, we are able to capture the experimental trends 117

in both force- and temperature-driven melting transitions. 118

5. Effect of ion concentration The section uses the Poisson- 119

Boltzmann formalism to compute the electrostatic energy for 120

the birod. By accounting for the dependence of the electro- 121

static energy on the outer-radius of DNA in the birod model, 122

it can be shown that both the melting temperature and melt- 123

ing force increase with ion concentration. 124

The model improves upon the existing statistical mechanics ap- 125

proaches16,17 by computing (as opposed to positing) the energy 126

functional from the kinematic description of the birod, so that the 127

key features – temperature-induced melting, force-induced melt- 128

ing and the cooperativity – emerge naturally. 129

2 Kinematics and energetics 130

We closely follow the birod framework presented in Moakher and 131

Maddocks11. We envision a straight ladder-like birod acted upon 132

by an external force F as shown in fig.1. We assume small dis- 133

placements throughout and confine ourselves to deformations in 134

a plane. The two outer strands and the web connecting them are

Fig. 1 (a) Cartoon of a straight birod acted upon by identical forces
on both the strands. The two strands are referred to as ± strands. (b)
Attachment of base pairs to the outer-strands.The short web representing
the base pairs is welded to the outer strands.

135

elastic. The birod lies in e1−e2 plane as shown in fig.1. The axial 136

coordinate x is along e1: x ∈ [0,L] where L is the contour length. 137

The reference configuration of the ± outer strands denoted by r±0 138

is 139

r±0 = xe1±ae2. (1)

For a general 2-D deformation in the e1− e2 plane, the deformed 140

configuration of the strands is: 141

r± =
∫ x

0
(1+ζ )d1 dx± (a+ v)d2±ud1, (2)

where, d1 = cosθe1 + sinθe2, and d2 = −sinθe1 + cosθe2. 142

Note that r = r++r−
2 =

∫ x
0 (1 + ζ )d1 dx denotes the deformed 143
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centerline (global/macro displacement), while u and v denote144

the displacements of the ± strands relative to the centerline145

(micro-displacements). They are related to the shearing and146

stretching of the base pairs, respectively. In the entire paper,147

we use a small strain assumption22 together with a moderate148

rotation approximation23,24 which means: θ 2,v,θx ∼O(ε), which149

implies cosθ ∼ 1− θ 2

2 and sinθ ∼ θ . Any terms higher than O(ε)150

such as vθx, θθx, and uθx are neglected. The moderate rotation151

hypothesis is applicable when the applied force is large, which is152

indeed the case for DNA melting.153

154

Heretofore, ()x denotes derivative w.r.t x. Hence, d1x = θxd2155

and d2x = −θxd1. Now, r±x = (1 + ζ ± ux ∓ aθx)d1 ± vxd2. We156

assume that the outer strands are inextensible which implies157

|r±x |= 1. Hence, ζ ±ux∓aθx = 0, which gives ζ = 0, and ux = aθx.158

Or, u = aθ . For the ± strands, the tangent is t± = d1± vxd2, so159

the curvature is κ± = |t±x |= θx± vxx, respectively.160

161

We now focus on the stretching, shearing and bending of the162

base pairs. Here we assume that the small rods–representing the163

base pairs–are welded to the outer long strands–representing the164

phosphate backbones (fig.1(b)). Such an arrangement permits165

the base pairs to exert both force and bending moment on the166

strands. For DNA, the base pairs are stacked on top of each other167

in a regular fashion, the space constraints and repulsion from168

neighbouring bases in this crowded environment prevents the169

bases from moving freely. A simplistic approach is to penalize the170

relative motions of the bases via elastic bending and stretching171

potentials, as done in this paper. This approach is similar to sev-172

eral previous studies25–28 where elasticity of base pairs has been173

shown to play an important role. A detailed study regarding the174

actual nature of the bonds is beyond the scope of the current work175

176

As mentioned, the tangent vectors to the ± strands are t± =177

d1± vxd2, hence the respective normal vectors are n± = ∓vxd1 +178

d2. The rotation matrices Q± = [t±,n±] can be decomposed as,179

Q± =

[
cosθ −sinθ

sinθ cosθ

][
1 ∓vx

±vx 1

]
. (3)

Z =

[
cosθ −sinθ

sinθ cosθ

]
depends on the deformation of the center-180

line, while

[
1 ∓vx

±vx 1

]
depends only on the displacements of181

the strands about the center-line. Q± can be used to compute the182

micro-rotation tensor P and macro-rotation tensor Q (for details183

see11).184

P2 = Q+Q−T = Z
(

I2×2 +

[
0 −2vx

2vx 0

])
ZT , (4)

where I2×2 is the identity tensor. Hence,185

P =

[
1 −vx

vx 1

]
, (5)

and 186

Q = PQ− = Z = d1⊗ e1 +d2⊗ e2. (6)

The stretching and shearing of the base pairs are propor- 187

tional to ξ = QT w−w0
11, where w = r+−r−

2 , w0 =
r+0 −r−0

2 , and 188

ξ = aθe1 + ve2. 189

190

Just like the stretching and shearing of the base pairs can 191

be computed from the difference in the displacements of the 192

outer-strands, the bending of the base pairs can be computed 193

from the rotations on the + and − strand. In fact, the moment 194

transferred by the web is proportional to the Gibbs vector of 195

the micro-rotation tensor P11. In a 2D-setting, this moment 196

can be easily computed; since the directions of the rotations are 197

fixed, there is no twisting, and bending is proportional to vx (see 198

fig.1(b) for details). 199

200

We now discuss the energy associated with each kinematic de- 201

viation from the reference configuration. The bending energy 202

per unit length for the outer ± strands is Es =
EI
2 (κ+2 +κ−2) = 203

EI(θ 2
x + v2

xx) where EI is the bending resistance of the outer 204

strands. The energy associated with shearing the base pairs is 205

Esh = L1a2θ 2, where L1 is the associated elastic constant. For the 206

stretching of the base pairs, we use an assymetric energy profile 207

of the form f (x) = (e−λx − 1)2– known as the Morse potential. 208

This approach is meant to penalize the steric hindrance between 209

the two strands and has been previously used in literature16,17. 210

Hence, the energy per unit length required to stretch the base 211

pairs Est = L2(e−λv−1)2. The energy associated with the bending 212

of the base pairs is Ebb = H1v2
x . Altogether, the energy of the birod 213

is, 214

Ee =
∫ L

0
dx
(
Eb +Esh +Est +Ebb

)
=
∫ L

0
dx
(
EI(θ 2

x + v2
xx)+L1a2

θ
2 +L2(e−λv−1)2 +H1v2

x
)
,

(7)

where both v and θ are functions of x. This energy will enter the 215

statistical mechanical model for the birod. We use the following 216

values of elastic constants: EI = 0.15 pNnm2, L1 = 80 pN/nm2, 217

L2 = 1280 pN/nm2, H1 = 0.33 pN, a = 1 nm, and λ = 0.5Å
−1

. 218

The values of the constants were chosen in a way that melting 219

temperature of DNA at zero tensile force is approximately 75◦C 220

(fig. 3 of the main text). Also, the constants were tweaked to 221

get the variation of the melting temperature with tensile force in 222

the right region (fig.5(c) of the main text). One could use other 223

criteria as well, such as the persistence length of B-DNA at room 224

temperature and stretch moduli of B-DNA et cetera. However, the 225

experimental values are for a 3D helical DNA which might not 226

give the correct melting temperature in our model. Since, the fo- 227

cus here is on the melting of DNA, we chose to stick to the former. 228

229
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3 Force-extension curve for a thermally fluctuating230

birod231

In this section, we discuss the force-displacement curve for the232

ladder-like birod. We already have the elastic energy of the birod233

given by eqn. 7. Next we need to compute the work done by234

external force F distributed equally on both strands. For + strand,235

the displacement at the free end is,236

∆
+ =

∫ L

0
(t+.e1−1) dx

=
∫ L

0
(cosθ − sinθ vx−1) dx =

∫ L

0
(−θ 2

2
−θvx) dx.

(8)

Similarly, for − strand, ∆− =
∫ L

0 t−.e1 dx−L, which upon simplifi-237

cation yields ∆− =
∫ L

0 (− θ 2

2 +θvx) dx. Summing up the individual238

contributions from the strands yields,239

We =
F
2
(∆++∆

−) = F
∫ L

0
−θ 2

2
dx. (9)

Hence, the potential energy functional of the birod is,240

E =Ee−We = E(θ(x),v(x))

=
∫ L

0
dx
(
EI(θ 2

x + v2
xx)+L1a2

θ
2 +L2(e−λv−1)2 +H1v2

x +
F
2

θ
2).

(10)

The average end-to-end extension is,241

y =
∫ L

0
cosθ dx≈

∫ L

0

(
1− θ 2

2

)
dx, (11)

where we assumed that θ is a moderate rotation. The average242

end-to-end distance 〈y〉 is,243

〈y〉= L−〈
∫ L

0

θ 2

2
dx〉, (12)

where 〈〉 denotes the ensemble average. We need to evaluate the244

partition function to compute the above average. The partition245

function of the birod is a path-integral given as follows,246

Z =
∫

Dθ(x)
∫

Dv(x) exp(−E(θ(x),v(x))
kBT

). (13)

The above partition function Z can be multiplicatively decom-247

posed: Z = ZvZθ , where Zv comprises the path-integral over the248

function v(x), while Zθ over θ(x).249

Zθ =
∫

Dθ(x) exp(− Eθ

kBT
), and Zv =

∫
Dv(x) exp(− Ev

kBT
),

(14)

where,250

Eθ =
∫ L

0
dx
(
EIθ

2
x +(L1a2 +

F
2
)θ 2), and

Ev =
∫ L

0
dx
(
EIv2

xx +L2(e−λv−1)2 +H1v2
x
)
.

(15)

Now, 251

〈
∫ L

0

θ 2

2
dx〉= 1

Z

∫
Dθ(x)

∫
Dv(x)

(∫ L

0

θ 2

2
dx
)

exp(−E(θ(x),v(x))
kBT

).

(16)

Summing over all the admissible functions v(x) and canceling the 252

common factor Zv yields, 253

〈
∫ L

0

θ 2

2
dx〉= 1

Zθ

∫
Dθ(x)

(∫ L

0

θ 2

2
dx
)

exp(−Eθ (θ(x))
kBT

), (17)

The above expression can be evaluated by differentiating the log- 254

arithm of the partition function. 255

〈
∫ L

0

θ 2

2
dx〉=−kBT

∂ lnZθ

∂F
, (18)

256

which gives, 257

〈y〉= L+ kBT
∂ lnZθ

∂F
. (19)

Notice that the remaining functional is only a function of θ(x). 258

Following Su and Purohit29, we discretize the domain x ∈ [0,L] 259

into n−segments (xi,xi+1], where 0 ≤ i ≤ n, such that θx =
θi−θi−1

δ
260

where δ = L
n . For the energy functional Eθ , the integral over the 261

domain can be expressed as a quadratic expression in terms of 262

θi’s: 263

En
θ
=

n

∑
i=0

δ

[
EI
(

θi−θi−1

δ

)2
+L1a2

θ
2
i +

F
2

θ
2
i

]

= θ .
[EI

δ
A+δ (L1a2 +

F
2

I)
]
θ = θ .Kθ θ ,

(20)

where θ = [θ0,θ2, ...θn]
T , I is an identity matrix, and A is another 264

matrix as follows: 265

An×n =



1 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
...

. . .
...

0 0 . . . 0 −1 2 −1
0 0 . . . 0 0 −1 1


.

Notice that Kθ is a constant depending only on the elastic prop- 266

erties of the birod. This enables us to transform the path integral 267

Zθ into a n−dimensional integral as follows: 268

Zn
θ
=
∫

Dθ(x)exp(− Eθ

kBT
)

=
n

∏
i=0

(∫ π

−π

dθi

)
exp(−

En
θ

kBT
) =

∫
dθ exp(−θ .Kθ θ

kBT
).

(21)

To evaluate the above integral conveniently, we change the lim- 269

its from −π,π to −∞,∞, which transforms the above expression 270

into a n−dimensional Gaussian integral which can be computed 271
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analytically as follows,272

Zn
θ
=
∫
(−∞,∞)n+1

dθ exp(−θ .Kθ θ

kBT
) = π

n/2 (kBT )n/2
√

detKθ

. (22)

Substituting it in eqn. 19 gives,273

〈y〉= L+ kBT
∂ lnZθ

∂F
= L− kBT

2
∂ logdetKθ

∂F
. (23)

An analytical derivation based on Fourier integral techniques30,31274

is presented in appendix A2. The plot for the force-extension re-275

lation for the birod is shown in fig.2(a). At large forces (F > 20276

pN), it can be approximated by a WLC model32 with persistence277

length 100 nm. As shown in fig. 2 (b), the end-to-end distance278

decreases with an increase in temperature–a typical entropic elas-279

ticity characteristic. The decrease in the variance of the transverse280

displacement (w(x) =
∫ x

0 sinθ dx) with an increase in tensile force281

shown in fig. 2 (c) is yet another signature of entropic elasticity31282

(For analytical expression of 〈w2〉 see Purohit et al.31).283

4 Thermal melting284

At room temperature under zero tensile loads, the DNA molecule285

exhibits a double-helical structure. However, as the temperature286

increases and reaches the melting temperature, the complemen-287

tary base pairing is disrupted and the two strands spontaneously288

disintegrate into two single strands. This melting transition is289

highly cooperative33, and the temperature at which it occurs is290

referred to as the melting temperature. Aside from the sequence291

dependence, the melting temperature is also highly sensitive to292

the tensile loads and the ionic concentration of the solution8,15.293

Experimental evidence suggests that the melting temperature in-294

creases with the increase in ionic concentration and drops with295

the increase in tensile loads on the molecule. Thermodynamics296

based studies relying on Clausius-Clayperon equation have led to297

various empirical relations among these quantities8,15,33. To pro-298

vide a rough idea about the melting temperature, for the Na+ con-299

centration of 0.075 M, the melting temperature is approximately300

75◦C 34 (see reference for the exact bp-sequence). Using the birod301

model, we seek a relation between the average inter-strand dis-302

tance 〈v〉 and the temperature T . In this section, we assume no303

tensile forces on the molecule, hence the elastic potential energy304

functional E is,305

E =
∫ L

0
dx
(
EI(θ 2

x + v2
xx)+L1a2

θ
2 +L2(e−λv−1)2 +H1v2

x
)
. (24)

The average distance between the strands can be computed as306

follows:307

〈v〉= 1
Z

∫
Dθ(x)

∫
Dv(x)

( 1
L

∫ L

0
v(x)dx

)
exp(−E(θ(x),v(x))

kBT
),

(25)

where the expression for the energy E and the partition function308

Z can be found in eqn. 7 and eqn.13, respectively. As done in309

the previous section, we discretize the domain into n-elements310

which transforms the integrals into sums and the path integrals311

into n-dimensional integrals: 312

En =
n

∑
i=0

δ

[
EI
( (θi−θi−1)

2

δ 2 +
(vi+1−2vi + vi−1)

2

δ 4

)

+L1a2
θ

2
i +L2(e−λvi −1)2 +H1

(vi− vi−1)
2

δ 2

]
,

Zn =
n

∏
i=0

(∫
(−∞,∞)2

dθidvi

)
exp(− En

kBT
),

〈v〉= 1
Zn

n

∏
i=0

(∫
(−∞,∞)2

dθidvi

)(1
n ∑vi

)
exp(− En

kBT
).

(26)

In contrast to the last section where the discretization to- 313

gether with quadratic energy functional enabled us to analytically 314

evaluate the partition function, the partition function above can 315

not be evaluated analytically because of the non-quadratic term 316

(e−λvi −1)2. Hence, we use Monte-Carlo simulations to compute 317

〈v〉 as a function of the bath temperature T . We use the Metropo- 318

lis algorithm35 to perform the MC simulations (for more details 319

see appendix A3). The results are recorded in fig. 3. Each individ- 320

ual marker × is one simulation. We find that as the temperature 321

increases the average inter-strand distance increases strongly in 322

a nonlinear fashion, hence can not be alluded to as mere ther- 323

mal expansion. The asymmetry in the nonlinear interaction term 324

((e−λv− 1)2) is crucial for achieving this effect; if quadratic in- 325

teraction is used the average inter-strand distance is zero even as 326

the temperature increases. 327

328

We fit a continuous spline to 〈v〉 vs T data to indicate the trend. 329

In reference configuration, the average inter-strand distance is 330

10 Å. We assume that the melting of a single discrete unit as 331

shown in fig.3 occurs at 50% strain, i.e. when the unit is stretched 332

to 15Å or when vi = 5Å. The oligomer is considered melted when 333

more than 50% of the units are melted. We plot the fraction of 334

melted DNA fm = 1
n ∑

n
i=1 I(vi > 5Å), where I(vi > 5Å) = 1 if vi > 5Å 335

and 0 otherwise, as a function of temperature T in the inset. The 336

data for fm vs T is fit using a logistic function g(x) = 1
1+e−a0(x−a1)

337

to read off the melting temperature from the plot: Tm ≈ 360K, 338

which is quite close to the results for dsDNA documented in liter- 339

ature8,15,34. The melted (vi > 5Å) and unmelted (vi < 5Å) units 340

and the corresponding vi are shown for T = 250K and T = 425K. 341

The contiguous strands of unmelted DNA and melted DNA ob- 342

served below and above the melting temperature, respectively, 343

indicate cooperative interactions. Although the melting criterion 344

vi = 5Å was deliberately chosen so that the results from the model 345

agree with the experimental data, our main message is that the 346

birod model has the essential ingredients to account for the coop- 347

erative melting transition and these crucial factors emerge natu- 348

rally from the kinematic description of the birod. 349

5 Tensile force-induced melting 350

In this section, the effect of tensile force on the melting temper- 351

ature is explored. We consider the birod shown in fig.4. Here, 352

we apply the force on one strand as previous studies36 have in- 353

dicated. As before, we need to compute the potential energy of 354
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(a) (b) (c)

Fig. 2 (a) For large force, force-extension curve of the birod is similar to a WLC model with a persistence length of lp = 100 nm. (b) Effect of increase
in temperature on the force-extension curve is in agreement with expectations of entropic elasticity. (c) 〈w2〉 vs x for various values of tensile force
F. The boundary conditions for (a) and (b) are fixed-free while for (c) it is hinged-hinged. The values of parameters in the energy functional are

EI = 0.15 pNnm2, L1 = 80 pN/nm2, L2 = 1280 pN/nm2, H1 = 0.33 pN, a = 1 nm, and λ = 0.5Å
−1
. For these calculations L = 200 nm and n = 300.

Fig. 3 (a) 〈v〉 vs T curve. Each green × marker is 〈v〉 computed from an
individual MC simulation at that temperature, while the solid green line
is a smoothed univariate spline curve plotted to indicate the trend. The
inset shows the corresponding data for the melted fraction fm, which is fit
using a logistic function to compute the melting temperature (Tm = 360
K). (b) vi and I(vi > 5Å) vs i (1 ≤ i ≤ n) at T = 425 K. Red ◦ and blue
◦ markers denote the melted (vi > 5Å) and unmelted (vi < 5Å) discrete
units at T = 250 K. The corresponding vi are also shown; here the solid
black line shows vi = 5Å for reference. (c) vi and I(vi > 5Å) at T = 425
K. The data in (b) and (c) are computed at the end of N = 1000000
MC steps. We observe contiguous strands of unmelted DNA below the
melting temperature and melted DNA above the melting temperature,
indicating cooperative interactions. Further details on MC simulations
are given in appendix A3.

the birod in this configuration. The elastic energy of the birod is355

available in eqn.7. The work done by external force F is,356

We = F
∫ L

0
dx (t−.e1−1). (27)

Now, t− = d1−vxd2, hence t−.e1 = cosθ +vx sinθ ≈ 1−θ 2/2+vxθ .357

This implies,358

We = F
∫ L

0
dx (−θ 2

2
+ vxθ). (28)

Fig. 4 The birod cartoon for studying DNA melting. Note that the force
is applied only on one strand.

The elastic potential energy E is, 359

E =Ee−We

=
∫ L

0
dx
(
EI(θ 2

x + v2
xx)+(L1a2 +

F
2
)θ 2+

L2(e−λv−1)2 +H1v2
x −Fvxθ

)
.

(29)

The term Fvxθ is responsible for coupling the force F and the 360

inter-strand distance v. Now for a given θ(x), the probability 361

of observing a configuration with interstand distance v(x) at 362

force F is eFvxθ/kBT times the probability of observing the same 363

configuration at F = 0. Granted, as the force F increases the 364

birod straightens out and θ decreases as can be inferred from 365

fig.2(b). However, for high forces (> 15 pN), the DNA molecule 366

with a persistence length 50 nm is mostly straight. In other 367

words, the θ(x) does not change much as the force increases 368

from 15 pN to 40 pN, however this makes the higher values of 369

v(x) much more likely. Based upon this qualitative argument we 370

expect that the melting temperature should decrease with an 371

increase in tensile load F . 372

373

The 〈v〉 vs T curves are presented in fig.5(a) for various tensile 374

forces F , and we indeed observe that for a given temperature, the 375

inter-strand separation increases with increasing tensile loads. 376

We use the same criteria for computing the melting temperature 377
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Tm as in the previous section: the temperature at which the378

fraction of melted DNA fm exceeds 0.5. We fit the fm vs T data379

using a logistic function g(x) = 1
1+e−a0(x−a1)

as done previously to380

get the melting temperature Tm for various values of external381

load F . We find that Tm decreases with an increase in F as shown382

in fig.5(c). We use the experimental data from Zhang et al4 to383

conclude that the trend is correct. The slope of the line depends384

on the elastic constants of the birod and for the values chosen385

here a quantitative match is also achieved.386

387

Fig.5(d) shows that at a constant temperature (T = 300 K), the388

average inter-strand distance 〈v〉 increases with an increase in389

tensile load F indicating force-induced melting. We fit the sim-390

ulation data using a smooth spline to highlight the trend. The391

corresponding melted fraction fm vs tensile load F is plotted in392

the inset. The logistic function fitted to the data reveals that at393

F = 40 pN fm = 0.5 i.e. DNA has melted. The critical force at394

which the DNA melts is sometimes referred to as overstretching395

force15. Experimental data shows that this force driven melting396

transition occurs at F = 60 pN7,37 (for exact details regarding the397

pH, sequence dependence and salt concentration see references),398

hence the value predicted by our model is in the correct region.399

Note that we modelled DNA using a straight ladder-like birod in-400

stead of a helical one, and we restricted the formulation to planar401

deformations–these assumptions could be causing this deviation.402

403

6 Effect of cooperativity parameter404

The structural transition from dsDNA→ssDNA is known to be405

highly cooperative33. The cooperativity exerts a strong influence406

on the mechanical behavior such as determining the sharp-407

ness of the force-extension curves and influences the melting408

temperature and overstretching force. One phenomenological409

approach accounting for cooperativity comes from authors’410

previous work38 in which interfacial energy among various411

phases of DNA makes the transition among them cooperative.412

Yet, another approach is to postulate an energy functional which413

includes terms proportional to the gradient of the inter-strand414

distance16,17. The motivation for such approaches comes from415

Cahn–Hilliard formulation39 widely used to study nucleation416

and spoinodal decompositions in phase field modelling, where417

the phase boundaries are energetically penalized using a term418

proportional to the square of the gradient of the order parameter419

(∼ (∇φ)2). A similar idea for penalizing the gradients is also used420

in the Landau-Ginzburg approach12 to study superfluidity and421

superconductivity transitions. In the birod formulation presented422

here, the gradient terms proportional to v2
x emerge from the423

bending rigidity of the base pairs which imparts cooperativity424

to the model. We demonstrate the effects and outcomes of425

cooperativity using a simple model in appendix A1.426

427

We plot the fraction of melted DNA fm versus the temperature428

T and tensile load F in fig. 6(a) and (b), respectively. As the429

bending resistance of base pairs (cooperativity parameter) H1 in-430

creases, the melting temperature and overstretching force both431

increase. Experimental evidence documented in Zhang et al4432

shows that as the GC content of the molecule increases, so does 433

the overstretching force and melting temperature. Higher values 434

of H1 represent higher GC content since GC base pairs consist of 3 435

hydrogen bonds compared to 2 hydrogen bonds in AT base pairs 436

and are consequently stiffer. Higher GC content can have other ef- 437

fects such as increasing the constants L1 and L2 as well; we deal 438

with this issue in appendix A4. In case of force-driven melting, 439

the transition becomes sharper too. This is demonstrated by fit- 440

ting the logistic function g(x) = 1
1+e−a0(x−a1)

to fm vs F transitions 441

and observing that the parameter a0 which quantifies the width of 442

the transition increases monotonically with H1. The phenomeno- 443

logical evidence for the sharpening can be found in authors’ pre- 444

vious work38 in which higher interfacial energies representing 445

higher cooperativity parameters (therefore higher H1) correspond 446

to sharper transitions. 447

7 Effect of ion concentration 448

Both force-induced and temperature-induced melting transitions 449

are sensitive to the ion concentration of the solution. Here, the 450

effect of changes of ion concentration on these melting transi- 451

tions is explored. The phosphate backbone of DNA is negatively 452

charged, hence the positive ions in the solution cluster around 453

it. This stabilizes the double-stranded form of DNA. Therefore, 454

the melting temperature and melting force should increase with 455

an increase in ion concentration, as suggested by experimental 456

evidence4. Empirical relations based on the Clausius-Clayperon 457

equation connecting the melting force and melting temperature 458

to the ion concentration have been proposed8,40. In this sec- 459

tion we account for the effect of electrostatic interactions on the 460

melting temperature and melting force by means of a Poisson- 461

Boltzmanm equation based polyelectrolyte model of DNA41. 462

We use a highly simplified 1D Poisson-Boltzman equation to 463

describe the electrostatics. For a detailed description refer Frank- 464

Kamenetskii et al.41. The purpose of what follows is to compute 465

the electrostatic energy of the rod in a configuration described 466

by θ(x), v(x) and clearly highlight the underlying assumptions. 467

To compute the electrostatic energy, we assume that the DNA 468

molecule is almost straight i.e. the effect of θ(x) is negligible–a 469

complete description of electrostatics for bent DNA is beyond the 470

scope of the current study. Secondly, we assume that the radius 471

of the DNA molecule in a configuration described by v(x) is a+va, 472

where va = 1
L
∫ L

0 v(x)dx. This assumption transforms the 2D PDE 473

into a 1D ODE. We consider only monovalent ions such as K+ and 474

Na+. Within the scope of these assumptions, the boundary value 475

problem for the electrostatic potential U(y) can be written as, 476

d2w
dy2 = χ

2 sinh(w),

w′(a+ va) =
2q

a+ va
, w(R)→ 0 as R→ ∞.

(30)

Here, y is the coordinate perpendicular to x in fig.1, w = eU
kBT is 477

the nondimensional potential, e is the electronic charge, and a+ 478

va is the average radius of the DNA helix. The dimensionless 479

charge q = lB
b , where lB = e2

DkBT is the Bjerrum’s length, b is the 480

length of the cylinder containing negative charge e, ε0 is vacuum 481
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(a) (b) (c) (d)

Fig. 5 (a) Average inter-strand distance 〈v〉 vs temperature T curves for different values of tensile force F. Here each marker × denotes one MC
simulation and the solid lines are smooth splines being fit to the MC simulation data to indicate the trend. (b) Fraction of melted DNA fm vs
temperature T for different tensile loads. The MC simulation data is fitted using a logistic function to compute the melting temperature. (c) Melting
temperature Tm vs tensile force F as computed from fig. (b). The experimental data is from4. (d) Average inter-strand distance 〈v〉 vs tensile force F
(×) at 300 K fitted using a smooth spline (solid line). The inset shows the corresponding melted fraction fm (×) fitted using a logistic function (solid
line). F ≈ 40 pN when fm = 0.5.

(a) (b)

Fig. 6 (a) Effect of the cooperativity parameter H1 on temperature driven transition. Here H0 = 0.33pN (b) Effect of the cooperativity parameter H1
on force driven transition. The simulation data represented by marker × is fit using the logistic function g(x) = 1

1+e−a0(x−a1)
. Increasing the bending

resistance of the base pairs leads to an increase in melting temperature and increases in the overstretching force. It also sharpens the force-driven
transitions shown by the increasing values of a0 as H1 increases. The units of a0 are K−1 in (a) and pN−1 in (b).

permittivity, and D is the dielectric constant of the solvent. c0482

is the concentration of monovalent ions, and χ2 = 2c0e2

Dε0kBT . The483

associated electrostatic energy Eel per unit length is obtained by484

incrementally charging the backbone from 0 to q41:485

eel(c0,a+ va) =−2kBT
∫ 1

0
dt w(tq). (31)

Note that the boundary condition on the average radius of the486

DNA backbone couples the electrostatic energy to the mechanical487

deformation of the birod. Hence, total energy per unit length488

e(θ(x),v(x)) is the sum of the elastic (eqn.29 ) and electrostatic489

energy (eqn.31):490

e(θ(x),v(x)) =EI(θ 2
x + v2

xx)+(L1a2 +
F
2
)θ 2+

L2(e−λv−1)2 +H1v2
x −Fvxθ + eel

(32)

Having set this up, we wish to compute effect of the ion con-491

centration on the melting temperature and melting force. There492

is only one parameter in the entire electrostatic formulation: q.493

We choose q = 0.05 for the computations. We start by examin-494

ing the effect of ion concentration on thermal melting. The frac-495

tion of melted DNA fm versus the temperature T is computed for 496

various concentrations c0 = 0.018mol/L to 0.15 mol/L. The sim- 497

ulation results (×) plotted in fig.7 (a) are fitted using a logistic 498

function f (x) = 1
1+e−a0(x−a1)

. The melting temperature is reached 499

when fm ≥ 0.5. The simulations indicate that melting tempera- 500

ture Tm increases as the concentration c0 increases as shown in 501

fig.7(b). Next, we consider force-induced melting. The simula- 502

tion data × and the respective logistic fits are shown in fig.7(c). 503

We find that the melting force increases as the concentration in- 504

creases, see fig.7(d). Previous works such as8,40 have used ther- 505

modynamic analysis based on the Clausius-Clayperon equation 506

together with experimental data to analyse the effect of con- 507

centration on thermal and force-induced melting and have re- 508

ported similar results–the melting force and temperature increase 509

with increasing ion concentration. In the analysis presented here 510

the effect of ion concentration emerges from the coupling be- 511

tween the micromechanical deformations of the birod v(x) and 512

the Poisson-Boltzman electrostatic model of DNA. Although, we 513

were able to account for the effect of electrostatics using an ele- 514

mentary Poisson-Boltzmann model, there are several drawbacks: 515

i) the assumption that the rod is straight can not be true at force 516

F = 0, ii) the Poisson-Boltzmann model works only for weak ionic 517
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concentrations at T << Tm, iii) eqn.30 assumes that the positive518

ions are a non-interacting Boltzmann gas which is not true in the519

vicinity of DNA helix where ion-ion correlations must be consid-520

ered and iv) eqn.30 neglects the effect of divalent ions such as521

Mg+2 and Ca+2. For a detailed discussion, we refer the reader to522

the existing literature on solution electrostatics41,42.523

8 Conclusion524

The theory of elastic birods is deployed to study temperature525

driven and tensile force driven melting transitions in DNA. The526

paper begins by discussing how the birod model embodies typi-527

cal characteristics of entropic elasticity. Next, the model is used528

to study temperature induced DNA melting. The average inter-529

strand distance is found to increase monotonically with tempera-530

ture in a nonlinear unbounded fashion. The nonlinear asymmet-531

ric interaction between the strands is crucial to correctly model532

the melting transition; for a linear-elastic interaction, leading to533

a quadratic energy functional, the average increase in the inter-534

strand distance is zero–independent of changes in temperature.535

Next, the model is used to study the effect of tensile force on the536

melting temperature. The model predicts that the melting tem-537

perature decreases with increasing tensile force and by appropri-538

ately choosing the elastic parameters the prediction can be shown539

to even match quantitatively with experimental data. The model540

shows that at a fixed temperature an increase in tensile load also541

leads to a melting transition and the critical force corresponding542

to this transition predicted by the model is 40 pN whereas the ex-543

perimentally observed value is 60 pN. Various assumptions such544

as using a straight birod to model double-helical DNA and restrict-545

ing to deformations on a plane could be responsible for the devi-546

ations. Furthermore, the birod model predicts that an increase in547

GC content causes an increase in cooperativity leading to higher548

melting temperature and melting forces. Finally, the interplay be-549

tween the statistical mechanics of the birod model together with550

electrostatics from a Poisson-Boltzmann formulation accounts for551

the increase in melting temperatures and melting force with ion552

concentration.553

This work demonstrates the ability of the elastic birod model to554

accurately describe the mechanics of the DNA melting transition555

in three ways: i) cooperativity in the melting transition, well556

documented in literature4,8,16,17, emerges naturally from the557

elasticity of the base pairs, ii) the birod model can successfully558

account for the intertwined effect of temperature and tensile559

force on the melting transition, and iii) the model can be coupled560

to the Poisson-Boltzmann formulation to account for the effect of561

ion concentration. However, using a straight ladder-like birod to562

model double-helical DNA is at best a first order approximation.563

Such a model is unable to account for the 1.7 times stretching564

during the melting transition accomplished by unwinding the565

DNA helix. The derivation of the energy functional assumes566

that the change in inter-strand distance is small, however this567

is not true during the melting transition. Further study is568

required to examine the effect of nonlinear coupling terms in the569

model. In our formulation, the asymmetry in the applied force570

is responsible for coupling the stretch (θ) with the interstrand571

distance (v). As such, if equal force is applied on both ends572

the stretch and inter-strand distance are decoupled. However, 573

this is because the DNA is modeled using a straight non-helical 574

birod. The authors’ previous work (see sec. 4 in supplementary 575

materials20) on double-helical birods shows how the stretch is 576

coupled to the inter-strand distance. Other crucial features of 577

DNA arising out of double-helical topology, such as twist-stretch 578

coupling, are absent in the straight ladder. Although, such a 579

model can explain the melting transition, it can not explain other 580

well documented4,43 transitions among various DNA phases 581

such B-DNA → S-DNA and B-DNA → P-DNA. Hence, a natural 582

extension of this work is to study the statistical mechanics of a 583

double-helical birod. 584
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Appendix 593

A1: A simple model illustrating cooperativity 594

The concept and effects of cooperativity are demonstrated using 595

an elastic bar under a tensile load. The understanding derived 596

from this exercise helps us rationalize the observations reported 597

in the main text. Let the strain variable be v(x), hence the energy 598

functional of the bar under a tensile load is E =
∫ L

0 dx v2

2 − F∆, 599

where L is the contour length and ∆ is the displacement at the 600

free end which can be expressed an an integral over the strain– 601

∆ =
∫ L

0 vdx. Now, we add a cooperativity term proportional to 602

v2
x . This is analogous to the surface energy term in the Allen- 603

Cahn energy functional44 and gradient term in Landau-Ginzburg 604

energy functional12. In view of the above discussion, the energy 605

functional is, 606

E =
∫ L

0
dx
(

k
v2

x
2
+

v2

2
−Fv

)
. (33)

607

To get the 〈v〉 vs F curve for the bar, we have: 608

〈v〉= 1
Z

∫
Dv(x)

( 1
L

∫ L

0
v(x)dx

)
exp
(
− E(v(x))

kBT

)
(34)

where Z =
∫

Dv(x)exp
(
− E(v(x))

kBT
)

is the partition function. 609

Similarly, 〈v〉 vs T curves can also be obtained. 610

611

For simplicity, assume v(x) can either be relaxed or stretched: 612

v ∈ {0,1}. Using the assumption, together with techniques used 613

in the main text to numerically evaluate the partition function, 614

we can compute the 〈v〉 vs F and 〈v〉 vs T curves. We focus on the 615

effect of the cooperativity parameter k on the curves. The results 616

are shown in fig.9. Fig.9 (a) shows that for a fixed temperature T , 617

〈v〉 decreases with an increase in the cooperativity parameter k, a 618
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(a) (b) (c) (d)

Fig. 7 Effect of ion concentration (a) Fraction of melted DNA fm versus the temperature T for various ion concentration, F = 0 (b) Monotonically
increase in melting temperature Tm with the ion concentration c0. (c) Fraction of melted DNA fmversus the applied tensile load F, T = 300K. (d)
Monotonically increasing melting force Fm with the ion concentration c0.

Fig. 8 An elastic bar undergoing a cooperative phase transition. Here
v(x) is the strain variable.

similar trend is observed by increasing H1 as shown in fig. 6(a)619

of the main text. Regarding the force driven stretching, fig. 9(b)620

shows that the width of the transition decreases with increasing621

k: 〈v〉 vs F curve is almost linear for k = 0 while for k = 3.0 it is sig-622

moidal. This happens because for large cooperativity coefficient623

k = 3.0, the units stretch simultaneously. To illustrate this point,624

we present the stretched and unstretched units in fig.10 for val-625

ues of F below and above the melting force (F = 0.8,1.2) using626

cooperativity parameters k = 0 and k = 3.0. Similar sharpening627

of transition is also observed by increasing H1 in fig. 6(b) of the628

main text. While in this simple model, the sharpening effect of co-629

operativity can be clearly seen as shown in fig.9(b), and fig.10, in630

sec.6, we need to fit logistic curves to the MC simulation data to631

quantify the sharpness. One point of departure between the two632

models, is that the melting force increases with H1 in fig. 6(b), on633

the other hand it remains constant with increasing k in fig.9(b).634

This is because in the main text, the work done by the external635

force F is proportional to Fvxθ and θ decreases as F increases,636

consequently a larger force is required to melt the DNA. Based637

upon these two similarities, we claim that H1 is the cooperativity638

parameter in the birod model in the main text.639

A2: Analytical derivation of the force-extension curve640

Here, we use Fourier integral techniques∗ to get an analytical ex-641

pression for the force-extension curve30,31. The energy functional642

∗We thank a reviewer for this suggestion.

in sec.3 is, 643

E =
∫

x
dx
(

EIθ
2
x +(

F
2
+L1a2)θ 2

)
. (35)

Define, 644

θ̃(q) =
1

2π

∫
x

dxe−iqx
θ(x) and θ(x) =

∫
q

dqeiqx
θ(q). (36)

Noting that θ(x)2 =
∫

q
∫

q dq1dq2eiq1xe−iq2xθ̃(q1)θ̃(q2) and 645∫
x dxei(q1−q2)x = δq1−q2 into eqn.35, we get, 646

E =
∫

q
dq
(

EIq2 +(
F
2
+L1a2)

)
θ̃

2. (37)

The above expression is quadratic in θ̃(q), hence, using equipar- 647

tition one can evaluate 648

〈θ̃(q)2〉= kBT
EIq2 +(F

2 +L1a2)
. (38)

Parseval’s identity–
∫

x θ(x)2dx = 1
2π

∫
q θ̃(q)2dq–together with the 649

above equation yield the following expression for the average 650

end-to-end distance: 651

< y >= L
(

1− kBT

8
√

EI(F/2+L1a2)

)
. (39)

In the limit F >> L1a2, the persistence length `p can be obtained 652

by comparing the above expression to the WLC formula (〈y〉 = 653

L− L
2

√
kBT
F`p

): `p =
8EI
kBT . We verify this assumption by performing a 654

simple calculation shown in fig.11. We can not do this calculation 655

in sec. 3 to obtain the persistence length because the assumption 656

F >> L1a2 does not hold true, instead F ∼ L1a2. For a similar 657

calculation of 〈w2(x)〉, we direct the reader to Purohit et al.31. 658

A3: Details of MC simulations 659

The Monte Carlo simulations were performed using the 660

Metropolis-Hastings algorithm35. The DNA oligomer was 661

modeled using a 2D birod fixed on one end and free on the other 662

as shown in fig.1 of the main text. The length of oligomers was 663

L = 40 nm and was discretized into n = 50 elements which gives 664
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(a) (b)

Fig. 9 Here × are the MC simulations while the solid lines are the smoothed spline being fit to the MC simulation data. (a) 〈v〉 vs T curves at F = 0,
(b) 〈v〉 vs F curves at kBT = 0.5.

(a) (b) (c) (d)

Fig. 10 Here ◦ denotes melted (= 1) or unmelted (= 0) state of ith unit at the end of the simulation (N = 100000 steps). We see a sudden transition
from F = 0.8 to F = 1.2 when the cooperativity parameter is large (k = 3) in (c) and (d), respectively. On the other hand, we see smooth cross over
when cooperativity parameter is low (k = 0). The values of k and F are given in the figure titles and kBT = 0.5.

Fig. 11 Using kBT = 5, L1 = 1, EI = 1, and L = 10. Here × data is
obtained by discretizing the birod into n = 100 elements.

m = 100 dof: (θi,vi) 0 ≤ i < n. The total number of MC moves665

was N = 1000000. At each move, a random degree of freedom666

was chosen and the magnitude of perturbation was normally667

distributed with mean 0 and standard deviation σv if the chosen668

dof is vi and σθ if the chosen dof is θi. The perturbed state is669

accepted if e−
∆E

kBT > α, where ∆E is the energy difference between670

the initial state and perturbed (∆E = Eperturbed−Einitial) and α is671

a random floating point number uniformly distributed between 0672

and 1 (α ∼U(0,1)). We checked for the saturation of the energy673

to ensure steady-state. The averages were computed on the last674

N/2 states to discount the effects of burn-in process. The values of675

σv (≈ 0.25 nm) and σθ (≈ 0.2) were chosen such that the accepted 676

fraction of states lies between 20− 40%. The melted fraction 677

fm = 1
n ∑

n
i=1 I(vi > 5Å), where I(vi > 5Å) = 1 if vi > 5Å and 0 oth- 678

erwise. The DNA oligomer is considered melted when fm > 0.5. 679

For fm = 0.5, we will always have 〈v〉 > 5Å, since there will be 680

melted links where vi > 10Å, while for unmelted units 0 < vi < 5Å. 681

682

To access the impact of concentration, we need to compute the 683

electrostatic free energy per unit length Eel(a+ va) as a function 684

of the average birod radius a+va. Note that va changes with each 685

MC move, and solving the ODE at each move is computationally 686

expensive. To circumvent the issue, Eel(a+ va) was computed for 687

various values of a+ va and an exponential curve was fit to the 688

data. The fitted exponential curve was then used to compute Eel 689

in the MC simulations. For reference, we show Eel vs a+ va and 690

the fitted exponential curve for solution concentration c0 = 0.1M 691

and T = 300K in fig.12. 692

A4: Effect of increasing GC content 693

In sec.6, the effect of the cooperativity parameter H1 is discussed. 694

It was observed that the melting temperature increases with in- 695

crease in the value of H1, which in turn, is due to higher GC con- 696

tent. Higher GC content can have many other effects as well, 697

such as higher stretch moduli L1 and shear moduli L2, and the 698
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Fig. 12 Plot of Eel vs a+ va. The fitted exponential curve is used to
compute Eel in MC simulations.

combined inter-play could be much more complex and beyond699

the scope of the paper. Since, the section focusses on the effect of700

cooperativity, we increased only H1 and left L1 and L2 unchanged.701

Here we change all the parameters H1, L1 and L2 and show simi-702

lar trends.703

Fig. 13 Fraction of melted DNA fm vs temperature T . Here, instead of
changing only H1, we change all the parameters L1,L2 and H1. As the
stiffness of the base pairs increases, the melting temperature Tm increases.
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