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A Perturbation Solution to the Full Poisson-Nernst-Planck
Equations Yields an Asymmetric Rectified Electric Field†

S. M. H. Hashemi Amrei,a Gregory H. Miller,a‡ Kyle J. M. Bishop,b§ and William D. Ristenparta∗

We derive a perturbation solution to the one-dimensional Poisson-Nernst-Planck (PNP) equations be-
tween parallel electrodes under oscillatory polarization for arbitrary ionic mobilities and valences. Treat-
ing the applied potential as the perturbation parameter, we show that the second-order solution yields a
nonzero time-average electric field at large distances from the electrodes, corroborating the recent dis-
covery of Asymmetric Rectified Electric Fields (AREFs) via numerical solution to the full nonlinear PNP
equations [Hashemi Amrei et al. Phys. Rev. Lett., 2018, 121, 185504]. Importantly, the first-order solution
is analytic, while the second-order AREF is semi-analytic and obtained by numerically solving a single
linear ordinary differential equation, obviating the need for full numerical solutions to the PNP equations.
We demonstrate that at sufficiently high frequencies and electrode spacings the semi-analytical AREF
accurately captures both the complicated shape and the magnitude of the AREF, even at large applied
potentials.

1 Introduction
The dynamic response of a fluid to an applied oscillatory elec-
tric potential is of fundamental importance in many electroki-
netic systems, including induced-charge electrokinetics (ICEK),1–5

ac electroosmosis,6–9 electrohydrodynamic manipulation of col-
loids,10–15 electroconvection,16 and ionic winds in atmospheric
plasmas.17,18 In continuum theory, analysis of such systems is
based on the Poisson-Nernst-Planck (PNP) equations, also referred
to as the standard electrokinetic model.19 The Poisson equation re-
lates the free charge density to the Laplacian of the electric poten-
tial via Gauss’s law, and the transport of dissolved ions is governed
by the electromigrative and diffusive fluxes.

The PNP equations are nonlinear and coupled; as a result, re-
searchers have often invoked simplifying assumptions to solve
them. The most common of these assumptions is that the applied
potential (φ0) is less than the thermal potential, i.e., φ0 � kBT/e
where kB, T , and e are the Boltzmann constant, absolute tempera-
ture, and elementary charge, respectively. This assumption allows
linearization of the problem via a perturbation expansion, written
in terms of Φ0 = φ0e/(kBT )� 1. In most cases, the solution is as-
sumed to include an equilibrium contribution (unperturbed) plus a
perturbation linear in the applied potential (i.e., first-order expan-
sion, O(Φ0)). White and coworkers20–22 and Hinch et al.23 were
among the first to follow this procedure in their analysis of dilute
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colloidal suspensions, obtaining information about the dipole co-
efficient and electrophoretic mobility of spherical colloids subject
to an oscillating electric field.

Researchers have also focused on finding the dynamic response
of quiescent electrolytes (no colloids) between parallel electrodes.
Hollingsworth and Saville24 used a first-order perturbation expan-
sion to derive an analytical approximate solution to the electric
potential. Note that for a sinusoidal applied potential, a first-order
perturbation expansion invariably yields a single-mode sinusoidal
solution, albeit with a phase lag and amplitude that depend on lo-
cation and system properties. It was later shown, however, that the
nonlinear terms in the PNP equations yield multimodal solutions
for Φ0 > 1.25–27 Olesen et al.25 numerically solved the PNP equa-
tions to show the significance of nonlinear terms at high potentials.
This multimodal behavior, which was later corroborated by analyt-
ical solutions at asymptotically high26 and moderate potentials,27

casts doubt on the common interpretation of electrokinetic systems
based on linearized theories.

Even more counterintuitively, recent work has revealed that
electrolytes with non-equal mobilities generate multimodal elec-
tric fields with a long-range, nonzero time-average.28,29 In other
words, an oscillatory electric potential can induce a steady elec-
tric field within the liquid. Referred to as an Asymmetric Rectified
Electric Field (AREF), the steady field in essence results from the
mismatch in the ionic mobilities; the uneven magnitudes of the
oscillatory motion of the ions give rise to a net free charge den-
sity, in turn creating a steady field component. The spatial dis-
tribution and magnitude of the AREF depends sensitively on the
applied frequency and magnitude of the ionic mobility mismatch.
Notably, the induced AREF persists several microns away from the
electrodes, with a characteristic diffusive length scale `D ∼ 1–10
µm. This long-range behavior of AREF is at odds with the common
assumption that most of the important electrokinetic phenomena
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Fig. 1 Two-ion model illustrating AREF. Top row: oscillation of a
pair of ions (x± vs time) with diffusivities D± in response to an
electric field E(t) = E0 cos(ωt) for D+ > D−, D+ = D−, and D+ <
D−. The dotted curves show the oscillation of the center of charge.
Bottom row: induced electric field (∆E) at an arbitrary point x f >|
x± | due to the ion oscillations vs. time. The horizontal dashed
lines show the time-average electric field 〈∆E〉.

are governed solely by the Debye length scale (κ−1 ∼ 1–100 nm).
Importantly, the calculated AREF is consistent with observations of
colloidal levitation against gravity,30 and is potentially responsi-
ble for the otherwise unexplained observations of flow reversal in
ICEK systems.31

Hashemi Amrei et al. demonstrated that even a toy model of
two ions undergoing asymmetric harmonic oscillation could yield
an AREF.28 Consider two ions, one positive and one negative, os-
cillating (as x±(t)) in response to an external sinusoidal electric
field as illustrated in Fig. 1. When the two ions have equal dif-
fusivities (D+ = D−), they oscillate with the same amplitude in
response to the external electric field. However, when there is a
mismatch between the ion diffusivities, the fast moving ion under-
goes an oscillation with a higher amplitude compared to the slow
moving one. Then one can use Coulomb’s law to evaluate an in-
duced electric field (∆E) due to the ion oscillations at an arbitrary
point x f >| x± |. It turns out that when D+ = D−, the induced elec-
tric field is symmetrical in time with a zero time-average. However,
for D+ 6=D−, a non-zero time-average electric field is induced. One
can illustrate that this non-zero steady field component varies to
leading order as the square of the applied field, i.e., ∆E ∝ E2

0 (cf.
Hashemi Amrei et al.28).

The two-ion model serves as a toy model only to provide some
intuition about the importance of ionic mobility mismatch. As
such, it lacks some fundamental aspects of an electrokinetic sys-
tem such as the ion-ion interactions and the influence of thermal
energy. To capture these effects, one must invoke the PNP equa-
tions. Consequently, all quantitative predictions to date have de-
pended on complicated and time-consuming numerical solutions
to the PNP equations. Progress assessing the impact of AREFs on

other systems has been hindered by the lack of analytical insight.
Note that AREF is necessarily a nonlinear effect; therefore, first-
order perturbation schemes cannot capture AREF, even when con-
sidering the asymmetry of electrolytes.20–23 Additionally, Hashemi
Amrei et al. demonstrated that AREF is identically zero for sym-
metric electrolytes;28,29 as a result, prior studies considering the
nonlinear effects at high potentials but neglecting the asymme-
try of ions could not predict the AREFs either.25–27 In short, only
solutions to the full nonlinear PNP equations for asymmetric elec-
trolytes predict AREF.

In this work, we provide a new, simpler, solution to the PNP
equations for a 1-D system with arbitrary ionic mobilities and va-
lences. We use a perturbation approach for small applied oscil-
latory potentials to find an exact analytical solution accurate to
first-order. The first-order solution provides insight on how mobil-
ity mismatches alter the charge and potential distributions versus
time and position. Furthermore, we derive a governing ordinary
differential equation (ODE) for the time-average second-order so-
lution, i.e., the AREF. We demonstrate that in the limit of small
applied potentials this analytical AREF asymptotically converges
in both spatial dependence and magnitude to numerical solutions
of the full PNP equations. This approach yields the first indepen-
dent theoretical corroboration of the existence of AREFs, and fur-
thermore provides researchers with a rapid means of calculating
the AREF without requiring a numerical solution to the full PNP
system of equations.

The paper is organized as follows. We start by reviewing the
PNP equations in Sec. 2. A detailed derivation of the approximate
perturbation solution is provided in Sec. 3. The results for the first
and second order solutions are presented and discussed in Sec. 4.
We finish with some concluding remarks on the key results and
implications for the electrokinetics community in Sec. 5.

2 Theory

2.1 Poisson-Nernst-Planck equations

We consider a binary electrolyte confined by two parallel elec-
trodes separated by distance 2` as depicted in Fig. 2. The Laplacian
of the electric potential φ(x, t) is related to the free charge density
ρ(x, t) by the Poisson equation

− ε
∂ 2φ

∂x2 = ρ = e(z+n++ z−n−). (1)

Here subscripts± stand for positive and negative ions and the sym-
bols denote liquid permittivity, ε; elementary charge, e; charge
numbers, z±; and ion concentrations, n±. The transport of ions is
governed by the Nernst-Planck equation

∂n±
∂ t

+
∂ j±
∂x

= 0, (2)

where the ion flux j±(x, t) accounts for transport due both to dif-
fusion and electromigration in the electric field:

j±(x, t) =−D±
∂n±
∂x
− z±eD±

kBT
n±

∂φ

∂x
, (3)

2
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Fig. 2 Schematic diagram of the problem and not-to-scale com-
parison of different characteristic length scales, i.e., Debye length
(κ−1), diffusive length scale (`D), and electrode spacing (`). A
single-mode oscillatory electric potential of ∓φ0 sin(ωt) is applied
on the parallel electrodes at x =±`.

where D± and kBT are the ion diffusivities and thermal energy,
respectively.

Initially, no electric potential is applied and the electrolyte is
spatially homogeneous,

n±(x,0) = n∞
± =∓z∓n∞, (4)

where n∞ is the bulk number concentration of the electrolyte. An
oscillatory potential of amplitude φ0 and angular frequency ω is
applied across the electrodes such that

φ(±`, t) =∓φ0 sin(ωt). (5)

Note that field-induced ion motion depends only on the potential
gradient (not the potential itself). We can therefore measure the
potential from any time-dependent reference we choose without
altering the system dynamics. For example, we can add φ0 sin(ωt)
to the applied potential at ±` in eqn (5) to describe the common
experimental scenario of a grounded electrode at one boundary
(namely, x = `). However, this antisymmetric boundary condition,
along with placing the origin at the midplane and electrodes at
x =±` (cf. Fig. 2), significantly simplifies the analytical analysis.

To close the problem, we assume no ion flux at the electrodes
(i.e., no electrochemistry),

j±(±`, t) = 0. (6)

We acknowledge the fact that the assumption of negligible elec-
trochemistry is justified only at low applied potentials. Addition-
ally, we neglect the possible creation of a compact Stern layer at
the electrodes which is known to cause a considerable potential
drop between the electrode and electrolyte.25 Also note that we
focus on dilute electrolytes where the system dynamics is governed
solely by the transport of the dissolved ions. For concentrated so-
lutions, Stefan-Maxwell equations are required to account for the
transport of all components including the solvent.32,33

2.2 Dimensionless form
The diffusivities D+ and D− can be expressed by two parameters
characterizing the diffusivity magnitude D and the diffusivity dif-

ference β as

D =
2D+D−

D++D−
and β =

D+−D−
D++D−

, (7)

where −1≤ β ≤ 1. Similarly, the charge numbers z+ and z− can be
expressed by a magnitude parameter z and a difference parameter
γ:

z = 1
2 (z+− z−) and γ =

z++ z−
z+− z−

, (8)

where −1 ≤ γ ≤ 1. Note that the charge numbers z± are signed
quantities and γ = 0 for equal-valence (z+ =−z− = z) electrolytes.
The two difference parameters β and γ will play a central role in
characterizing asymmetries in the binary electrolyte.

We nondimensionalize the governing equations using the fol-
lowing characteristic scales. Lengths are scaled by the Debye
length

κ
−1 =

√
εkBT

2e2z2n0
, (9)

where the concentration n0 is defined as

n0 =
1

2z2 (z
2
+n∞

++ z2
−n∞
−) =

1
2z2 (z+z2

−− z2
+z−)n∞. (10)

All concentrations are scaled by n0. The electric potential is scaled
by kBT/(ze), and time is scaled by 1/(κ2D). Using these scalings,
the dimensionless variables are obtained as

x̃ = κx, t̃ = tκ2D, ñ± =
n±
n0

, φ̃ =
φze
kBT

. (11)

There are also five dimensionless parameters β , γ, κ`, Φ0 =

φ0ze/(kBT ), and Ω = ω/(κ2D) that uniquely describe the system.

Using the above dimensionless groups, the dimensionless gov-
erning equations become

∂ ñ±
∂ t̃

=
1

1∓β

[
∂ 2ñ±
∂ x̃2 ± (1± γ)

∂

∂ x̃

(
ñ±

∂ φ̃

∂ x̃

)]
, (12)

−∂ 2φ̃

∂ x̃2 = ρ̃ = 1
2 (1+ γ)ñ+− 1

2 (1− γ)ñ− . (13)

The dimensionless initial and boundary conditions are

ñ±(x̃,0) =
1

1± γ
, (14)

φ̃(±κ`, t̃) =∓Φ0 sin(Ωt̃), (15)

j̃±(±κ`, t̃) = 0. (16)

Here the dimensionless ion flux is

j̃± =
j±

κDn0
=− 1

1∓β

[
∂ ñ±
∂ x̃
± (1± γ)

(
ñ±

∂ φ̃

∂ x̃

)]
. (17)

3 Approximate Solution

As discussed before, the system of equations given by eqns (12)–
(16) is coupled and nonlinear with significant disparity of length
and time scales. In particular, accounting for ionic mobility and va-
lence mismatches complicates the numerical solution to the prob-
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lem.28,29 Alternatively, using a perturbation expansion, we can de-
rive an approximate analytical solution that captures the system
behavior, especially for asymmetric cases (i.e., β 6= 0 and/or γ 6= 0).

3.1 Perturbation expansion in Φ0

In the limit of small potentials (Φ0 � 1), the solution can be ap-
proximated by the power series

ñ±(x̃, t̃) = ñ(0)± (x̃, t̃)+Φ0ñ(1)± (x̃, t̃)+Φ
2
0ñ(2)± (x̃, t̃)+ . . . (18)

φ̃(x̃, t̃) = φ̃
(0)(x̃, t̃)+Φ0φ̃

(1)(x̃, t̃)+Φ
2
0φ̃

(2)(x̃, t̃)+ . . . (19)

We substitute these expansions into the governing equations and
initial/boundary conditions, and collect like powers of Φ0. Below,
we solve for the zeroth-order solution, the first-order solution, and
the time-average second-order electric field.

3.1.1 Zeroth-order

One can show that the zeroth-order solution is simply

ñ(0)± (x̃, t̃) =
1

1± γ
, (20)

φ̃
(0)(x̃, t̃) = 0. (21)

Here, we have neglected the intrinsic zeta potential of the elec-
trodes for simplicity. Therefore, the zeroth-order solution is spec-
ified by the initial conditions of the problem. However, inclusion
of a zeta potential is straightforward; the zeroth-order solution
can be replaced by an analytical solution to the equilibrium prob-
lem with constant potential boundary condition. Nonetheless, we
should emphasize that this assumption affects only the solution at
the Debye scale (close to the electrodes), while we are particularly
interested in the behavior of the system at the micron scale (sev-
eral Debye lengths to microns away from the electrodes).

3.1.2 First-order

Using the zeroth-order solution, the first-order system of equations
can be expressed as

∂ ñ(1)±
∂ t̃

+
∂ j̃ (1)±

∂ x̃
= 0, (22)

− ∂ 2φ̃ (1)

∂ x̃2 = 1
2 (1+ γ)ñ(1)+ − 1

2 (1− γ)ñ(1)− , (23)

subject to the following boundary conditions:

φ̃
(1)(±κ`, t̃) =∓sin(Ωt̃), (24a)

j̃ (1)± (±κ`, t̃) = 0. (24b)

Here, the first-order ion flux j̃ (1)± (x̃, t̃) is

j̃ (1)± (x̃, t̃) =− 1
1∓β

[
∂ ñ(1)±

∂ x̃
± ∂ φ̃ (1)

∂ x̃

]
. (25)

We consider solutions of the form

ñ(1)± (x̃, t̃) = Im
[
n̂(1)± (x̃)eiΩt̃

]
, φ̃

(1)(x̃, t̃) = Im
[
φ̂
(1)(x̃)eiΩt̃

]
. (26)

The complex amplitudes n̂(1)± (x̃) and φ̂ (1)(x̃) are governed by

iΩn̂(1)± =
1

1∓β

[
∂ 2n̂(1)±

∂ x̃2 ±
∂ 2φ̂ (1)

∂ x̃2

]
, (27)

−∂ 2φ̂ (1)

∂ x̃2 = 1
2 (1+ γ)n̂(1)+ − 1

2 (1− γ)n̂(1)− . (28)

The corresponding boundary conditions are

φ̂
(1)(±κ`) =∓1, (29a)

− 1
1∓β

[
∂ n̂(1)±

∂ x̃
± ∂ φ̂ (1)

∂ x̃

]
±κ`

= 0. (29b)

Note that this problem has odd symmetry about x̃ = 0 (n̂(1)± (0) =
φ̂ (1)(0) = 0). Substituting eqn (28) for the potential into eqn (27)
for the ion concentrations, we obtain an eigenvalue problem from
which one can derive the following solution for n̂(1)± (x̃)

n̂(1)+ (x̃) = A(−γ + s)sinh(λ−x̃)+B(1− γ)sinh(λ+x̃), (30)

n̂(1)− (x̃) = A(1+ γ)sinh(λ−x̃)−B(−γ + s)sinh(λ+x̃), (31)

with
s = 2iβΩ+

√
∆, (32a)

∆ = 1−4βΩ(iγ +βΩ). (32b)

The eigenvalues λ± are

λ± =
1√
2

(
1+2iΩ±

√
∆

)1/2
. (33)

Substituting the solutions from eqns (30) and (31) for the ion con-
centrations into eqn (28) and subsequent integration yields

φ̂
(1)(x̃) =Cx−A(1+ γ)(s−1)

sinh(λ−x̃)
2λ 2
−

−B(1− γ)(s+1)
sinh(λ+x̃)

2λ 2
+

. (34)

The constants A, B, and C are determined by the boundary condi-
tions at x̃ = κ`:

A =
s−1

λ−κ`cosh(λ−κ`)Γ
, B =

s+1
λ+κ`cosh(λ+κ`)Γ

, (35)

C =
1

κ`

(
−1+A(1+ γ)(s−1)

sinh(λ−κ`)

2λ 2
−

+B(1− γ)(s+1)
sinh(λ+κ`)

2λ 2
+

)
. (36)

Here the parameter Γ is

Γ = s2−2γs+1− 1
2κ`

[
(γ +1)(s−1)2(λ−κ`− tanh(λ−κ`))

λ 3
−

− (γ−1)(s+1)2(λ+κ`− tanh(λ+κ`))

λ 3
+

]
. (37)
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Finally, having the zeroth and first order perturbation terms, the
overall first-order solution (denoted by superscript [1]) becomes:

ñ[1]± (x̃, t̃) = ñ(0)± (x̃, t̃)+Φ0ñ(1)± (x̃, t̃), (38)

φ̃
[1](x̃, t̃) = φ̃

(0)(x̃, t̃)+Φ0φ̃
(1)(x̃, t̃). (39)

One can show that for the special case of symmetric electrolytes
(i.e., β = γ = 0), this first-order solution becomes identical to the
solution provided by Hollinsworth and Saville.24

Note that many electrolytes have z+ = |z−| for which γ = 0 (e.g.,
NaCl, NaOH, KCl, KOH, etc.). For such electrolytes, ∆ = 1−4β 2Ω2

(cf. eqn (32b)). Then an interesting case occurs when β 2Ω2 = 1
4 ,

yielding ∆ = 0 and hence, λ+ = λ−. In this case a separate solution
is necessary; please see Appendix B for details. Our independent
numerical calculations (not shown) and our separate analytical so-
lution (Appendix B) indicate that the solution behavior does not
qualitatively change when γ = 0 and β 2Ω2 = 1

4 , i.e., there is no
special physical significance to this combination of parameter val-
ues.

3.1.3 Second-order

The second-order governing equations for ñ(2)± and φ̃ (2) are

∂ ñ(2)±
∂ t̃

+
∂ j̃ (2)±

∂ x̃
= 0, (40)

− ∂ 2φ̃ (2)

∂ x̃2 = 1
2 (1+ γ)ñ(2)+ − 1

2 (1− γ)ñ(2)− , (41)

where

j̃ (2)± (x̃, t̃) =− 1
1∓β

[
∂ ñ(2)±

∂ x̃
± ∂ φ̃ (2)

∂ x̃
± (1± γ)ñ(1)±

∂ φ̃ (1)

∂ x̃

]
. (42)

The boundary conditions are

φ̃
(2)(±κ`, t̃) = 0, (43a)

j̃ (2)± (±κ`, t̃) = 0. (43b)

One can show that the time-average of eqn (40) over a period
of the applied potential (i.e., t̃ = 0 to 2π/Ω) yields:

∂ 〈 j̃ (2)± 〉
∂ x̃

= 0,→ 〈 j̃ (2)± 〉= constant (44)

with

〈 j̃ (2)± 〉=−
1

1∓β

[
∂ 〈ñ(2)± 〉

∂ x̃
± ∂ 〈φ̃ (2)〉

∂ x̃

∓ 1
4 (1± γ)

(
n̂(1)± Ē(1)+ n̄(1)± Ê(1)

)]
. (45)

Here 〈X〉 is the time-average of X , Ê(1) = −∂ φ̂ (1)/∂ x̃, and over-
bars denote complex conjugates, e.g., Ē(1) = conj(Ê(1)). All electric
fields (E =−∂φ/∂x) are scaled by kBT κ/(ze).

Note that eqn (44) combined with the time-average of the ion

flux boundary condition (i.e., 〈 j̃ (2)± 〉±κ` = 0) imply that 〈 j̃ (2)± 〉 = 0
everywhere. Therefore using eqn (45) one can write

∂ 〈ñ(2)± 〉
∂ x̃

=±〈Ẽ(2)〉± 1
4 (1± γ)

(
n̂(1)± Ē(1)+ n̄(1)± Ê(1)

)
. (46)

On the other hand, the time-average of eqn (41) becomes

− ∂ 2〈φ̃ (2)〉
∂ x̃2 = 1

2 (1+ γ)〈ñ(2)+ 〉− 1
2 (1− γ)〈ñ(2)− 〉, (47)

which can be differentiated with respect to x̃ as

∂ 2〈Ẽ(2)〉
∂ x̃2 = 1

2 (1+ γ)
∂ 〈ñ(2)+ 〉

∂ x̃
− 1

2 (1− γ)
∂ 〈ñ(2)− 〉

∂ x̃
. (48)

Then substituting ∂ 〈ñ2
±〉/∂ x̃ from eqn (46) yields the following

ODE for the time-average electric field:

∂ 2〈Ẽ(2)〉
∂ x̃2 −〈Ẽ(2)〉= f , (49)

where

f = 1
8

[(
(1+ γ)2n̂(1)+ +(1− γ)2n̂(1)−

)
Ē(1)

+
(
(1+ γ)2n̄(1)+ +(1− γ)2n̄(1)−

)
Ê(1)

]
. (50)

At the boundaries x̃ =±κ`, we assume 〈Ẽ(2)〉±κ` = 0 to close the
problem. Note that this assumption is consistent with all of our
numerical solutions for single-mode sinusoidal applied potentials.

The right hand side f in eqn (49) is known from the first-order
solution. However we could not find an explicit expression for this
complicated function in terms of the dimensionless parameters and
variables. Therefore, we numerically solve this ODE to find a semi-
analytical approximation to AREF. (Please refer to Appendix A for
details of the corresponding numerical solution.)

4 Results and Discussion
In the following subsections, we present and discuss the results
of first-order and second-order solutions, focusing mainly on the
impacts of β and γ. We also compare these low-potential approx-
imate solutions with the numerical solution to the full nonlinear
PNP equations. For visual purposes, we change the origin of the
spatial domain from midplane to the left electrode, i.e., y = x+ `

with y ∈ [0,2`].

4.1 First-order solution

Fig. 3 compares the first-order (eqns (38) and (39)) and numer-
ical solutions to the ion concentrations and electric potential at
different voltages. (Detail of the numerical solution algorithm are
provided elsewhere.28) The values are normalized by Φ0 to ren-
der the analytical solution independent of the applied potential.
Time variations of excess positive and negative ion concentrations
and electric potential are depicted in Fig. 3(a)–(c) at a certain lo-
cation of κy = 1 (i.e., at the edge of the Debye layer). The highly
multimodal numerical solutions approach the analytical solution
by decreasing the applied potential to Φ0 ∼ 1. As expected, the
first-order analytical solution is sinusoidal, oscillating at the same
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Fig. 3 Comparison of the first-order approximate and full numer-
ical solutions to the PNP equations. (a,b,c) Time variations of the
normalized ion concentrations (a, b) and potential (c) for the ap-
proximate solution and numerical solution at different potentials
(Φ0 = 20,10,5,1), evaluated at a fixed location of κy = 1 (i.e., one
Debye layer away from the left electrode). (d) Normalized norm
of the difference between approximate and numerical solutions vs
potential. Parameters: β =−1/3, γ =−1/3, κ`= 100, Ω = 0.01.

frequency as the applied potential (i.e., Ω), with its amplitude and
phase lag depending on location and other dimensionless groups.
Fig. 3(d) quantitatively compares the numerical and analytical so-
lutions in the time and space domains. The integral norm of the
difference, defined as∥∥∥X̃ [1]− X̃N

∥∥∥= 1
(2κ`)( 2π

Ω
)

∫ 2π

Ω

0

∫ 2κ`

0

∣∣∣X̃ [1]− X̃N
∣∣∣
ỹ,t̃

dỹdt̃, (51)

is plotted against Φ0, where the superscripts [1] and N denote the
first-order and numerical solutions, respectively, and X = n±,φ .
Note that the observed convergence rate is O(Φ0) as expected for
this first-order approximation.

The effect of β on the first-order solution is demonstrated in
Fig. 4 for γ = 0. The excess ion concentrations, free charge den-
sity, and electric potential are shown vs position at a certain time
of Ωt̃ = π/2 (i.e., when the applied potential reaches to its peak
magnitude). For symmetric electrolytes (β = 0, thick black curves)
the ion concentrations reach to the bulk values after a few Debye
layers. However, for β 6= 0, where there is a mismatch between
the mobilities of ions, a non-monotonic behavior is observed. The
ion concentrations oscillate spatially with an amplitude decaying
to zero at the midplane (Fig. 4(a) and (b)). (Please see the sup-
plementary animated movie for the time variations of the spatial
distributions.†) Far away from the electrode (insets in Fig. 4(a)
and (b)), the negative and positive ions appear to have the same
distribution and dependency on the β value. But an analysis of the

Fig. 4 Effect of β on the first-order solution. Spatial variations of
the normalized positive and negative ion concentrations (a,b), free
charge density (c), and potential (d) for different β , evaluated at a
fixed time of Ωt̃ = π/2. The black curves in all figures correspond
to β = 0. Note that the insets in (a) and (b) look very similar but
are quantitatively distinct. Parameters: γ = 0, κ`= 100, Ω = 0.01.

free charge density distribution (ρ [1]) reveals a systematic differ-
ence (Fig. 4(c)). For a symmetric electrolyte the free charge den-
sity approaches to zero after a few Debye layers. For β 6= 0 how-
ever, ρ [1] spatially oscillates to become identically zero at the mid-
plane. Note that the free charge density is three orders of magni-
tude smaller than the nominal ion concentrations. However it was
shown that, despite its small magnitude, it yields electrophoretic
forces (AREF-induced) that are several orders of magnitude higher
than gravitational and colloidal forces in electrokinetic systems.28

Finally, Fig. 4(d) shows the impact of β on the electric potential
distribution. Regardless of β , a considerable portion of the poten-
tial drop occurs within a few Debye layers from the electrodes. The
screening strength of the Debye layer seems to increase for β 6= 0,
further dropping the potential toward zero in the bulk.

Fig. 5(a) shows the impact of γ on the free charge density distri-
bution for β = 0 and −1/2. We consider the most common values
of γ = −1/3,0,1/3 which correspond to 1–2, 1–1, and 2–1 elec-
trolytes, respectively. Interestingly, when β = 0, γ has no effect on
the spatial distribution of free charge density. Similar to the results
illustrated in Fig. 4(c), ρ [1] approaches to zero within a few Debye
layers away from the electrodes. When β 6= 0, the valence mis-
match becomes important. For this representative example shown
in Fig. 5(a), γ can even qualitatively change the spatial oscillation
of the distribution, e.g., dashed red curve (γ =−1/3) changes sign
(charge reversal) near the midplane which does not happen for the

6
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Fig. 5 Effects of γ and β on the first-order solution. (a) Spatial
variations of the normalized free charge density for different γ and
two different β values of 0 and −1/2, evaluated at a fixed time
of Ωt̃ = π/2. The arrow points to the tiny charge reversal that
occurs for β =−1/2,γ =−1/3 near the midplane. (b) Normalized
Free charge density vs β for different γ values, evaluated at fixed
time and location of Ωt̃ = π/2 and κy = 50. Parameters: κ`= 100,
Ω = 0.01.

other two γ cases. Note that depending on the applied frequency
and the electrolyte type, multiple charge reversals can occur. The
results presented here serve as a representative example. (Please
see Hashemi Amrei et al.29 for a detailed analysis of charge rever-
sals.) Additionally, γ = 0 seems to provide the maximum nonzero
free charge density in the bulk. A notable observation in Fig. 4(c)
and (d) is that | β | (not β) governs the system behavior. For ex-
ample, cases of β = −1/3 (D− = 2D+) and β = 1/3 (D+ = 2D−)
yield the same results. As shown in Fig. 5(b), this behavior breaks
when γ 6= 0. At fixed location of κy = 50 and time of Ωt̃ = π/2, the
free charge density is plotted vs β for different γ values. We no-
tice that for γ = 0, it is the absolute value of β that determines the
system behavior, consistent with the results in Fig. 4(c). But when
γ 6= 0, the corresponding curves of positive and negative γ are mir-
rored about β = 0, and the system is governed by the product βγ.
Moreover, for β = 0, the free charge density at the micron scale is
zero for all γ values, in accordance to the spatial distributions in
Fig. 5(a).

4.2 Second-order solution

The semi-analytical AREF from eqn (49) is compared to that ob-
tained from numerical solution to the PNP equations in Fig. 6 at
different applied potentials. Hereafter, we refer to these two AREFs
as semi-analytical (〈Ẽ〉sA) and numerical (〈Ẽ〉N), respectively. The
AREF is normalized by Φ2

0 to make the semi-analytical AREF in-
dependent of the applied potential. (Note that 〈Ẽ〉sA = Φ2

0〈Ẽ(2)〉.)
Fig. 6(a) shows the comparison for Ω = 0.001. We realize that
as Φ0 gets smaller, the numerical AREF approaches to the semi-
analytical one. More importantly at the micron scale, which is
of interest to most researchers, the semi-analytical solution accu-
rately captures the complicated spatial structure of AREF. As a mat-
ter of fact, the curves of different Φ0 collapse under appropriate
normalization. This behavior is robust, even at higher frequencies
(Fig. 6(b)) where AREF has multiple sign changes. In other words,
the semi-analytical solution correctly predicts the AREF sign and

Fig. 6 Comparison of the second-order approximate (semi-
analytical) and numerically calculated AREF (i.e., time-average
electric field, 〈Ẽ〉). Spatial variations of the normalized AREF for
approximate solution and numerical solution at different poten-
tials (Φ0 = 10,7,5,1) and for Ω = 0.001 (a) and Ω = 0.01 (b). Pa-
rameters: β =−1/3, γ =−1/3, κ`= 100.

zeros. Therefore, instead of the complicated numerical solution to
the PNP equations, researchers can safely use this approximation
to find the direction of AREF-induced electrophoretic force. (We
will discuss these issues in more detail; cf. Fig. 9 and the corre-
sponding discussion.)

We have analyzed the impact of β on the semi-analytical AREF
in Fig. 7 when γ = 0 and −1/3. For γ = 0, Fig. 7(a) and (b) show
a non-monotonic β dependence of the AREF peak magnitude. By
increasing the | β | from 0 (identically zero AREF) to 1, AREF peak
magnitude at the micron scale first ascends to a maximum and
then drops. Notably, when | β |→ 1 the spatial structure is signifi-
cantly affected and the peak disappears (curves a and f in Fig. 7(a)
and (b), respectively). Similar observations were reported for the
numerical AREF calculation.29 The problem gets more intricate
for a nonzero γ. A representative case of γ = −1/3 is depicted
in Fig. 7(c) and (d). When β < 0, changing the γ from 0 to −1/3
slightly affects the AREF distribution, decreasing its magnitude (cf.
curves in Fig. 7(a) and (c)). However, when β > 0, a qualitative
difference is observed between cases of γ = 0 and −1/3 (e.g., com-
pare j curves in Fig. 7(b) and (d)). As pointed out by Hashemi
Amrei et al.,29 when the faster ion has a smaller valence (and vice
versa), there will be a competition between ionic mobility and va-
lence mismatches to determine the sign of AREF. In the context of
this study, the competition exists when βγ < 0. When βγ > 0, the
both sources of asymmetry work in accord to determine the AREF
sign. Another notable observation is that when β = 0, regardless
of γ, AREF is identically zero at the micron scale.

It would be helpful to compare the AREF for actual electrolytes
of different (β ,γ) combinations (Fig. 8). The diffusivity of an ion
can be expressed in terms of its drag coefficient (λi) as20,23,24

Di =
kBT
λi

, λi =
NAe2 | zi |

Λ∞
i

, (52)

where Λ∞
i is the limiting conductance of the ion and NA is the Avo-

gadro’s number. Limiting conductance data of different ions can
be found in physical chemistry textbooks.34 NaOH has the high-
est negative β value (D− > D+) among the selected electrolytes
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Fig. 7 Effect of β on the second-order approximate (semi-
analytical) AREF (i.e., time-average electric field, 〈Ẽ〉) for γ = 0
(a,b) and γ = −1/3 (c,d). The black curves in all figures corre-
spond to β = 0. Parameters: κ`= 100, Ω = 0.01.

and provides the maximum positive peak. As β gets closer to
zero, the AREF peaks at lower magnitudes; e.g., compare NaCl
with β =−0.21 to NaOH with β =−0.6. As expected, electrolytes
with positive β (HCl, β = 0.64) have negative peaks. An inter-
esting case would be KCl with a nearly zero ionic mobility mis-
match (β = −0.02) for which the AREF is nearly zero. However,
recall that the β effect on AREF peak magnitude is non-monotonic
(Fig. 7), a behavior that was explained at length by Hashemi Am-
rei et al.29 Using a different set of dimensionless parameters (e.g.,
δ =D−/D+ instead of β as a measure for ionic mobility mismatch),
they showed that δmax for which AREF has its maximum peak de-
pends on Φ0. By increasing Φ0, δmax gets indefinitely closer to 1
(equivalently, βmax gets closer to 0). Therefore, at high applied po-
tentials, KCl may have a higher peak than NaOH. It is worth men-
tioning that for the dimensionless parameters used in the present
study, the βmax is not governed solely by Φ0. Finally, electrolytes
with valence mismatch (γ 6= 0) show intriguing behavior (CaCl2
and H2SO4). As discussed in discussion of Fig. 7, a balance be-
tween asymmetries due to β and γ determines the AREF distribu-
tion.

Finally, we comprehensively analyze the collapse of numerical
AREF curves for different potentials in Fig. 9. Fig. 9(a) shows the
numerical AREF distribution for different voltages normalized by
their corresponding peak values (dashed curves of different color
intensities), along with the semi-analytical AREF plotted as solid.
Each color corresponds to a different dimensionless frequency (Ω).
We notice that by increasing the Ω, a better collapse is obtained.

Fig. 8 Spatial variations of the second-order approximate (semi-
analytical) AREF (i.e., time-average electric field, 〈Ẽ〉) for differ-
ent electrolytes. Dimensional parameters: ` = 25 µm, ε = 78,
T = 298.15 K, n∞ = 6.022×1021 m−3 (10−5 M), f = 100 kHz.

Additionally, the ratio of numerical to semi-analytical AREF peak
is plotted versus Φ0 in Fig. 9(b) for different Ω. Interestingly, as Ω

increases, the ratio decays to nearly 1, even at very high voltages.
We perform a similar analysis by changing the κ`. We find that
collapse of data improves by increasing the κ` value (Fig. 9(c)).
Moreover, semi-analytical solution appears to accurately predict
the AREF peak magnitude at high κ` (Fig. 9(d)). Therefore, we
conclude that at high Ω and κ` values, semi-analytical solution ac-
curately captures 1) the spatial structure of AREF (better collapse),
and 2) the AREF magnitude.

It appears that regardless of the system properties, there is a
‘threshold’ Φ0 above which the numerical AREF curves do not col-
lapse, and this threshold tends to increase with Ω or κ`. At low
applied potentials and fixed other system properties, all AREF dis-
tributions collapse onto the semi-analytical solution; but as Φ0

passes the threshold potential, the shape of AREF at the micron
scale starts deviating from the semi-analytical solution. For suf-
ficiently large Ω or κ` values, this threshold potential is simply
beyond the considered Φ0 range. However, the underlying physics
behind the collapse of the AREF distributions and its sensitivity to
Ω and κ` remain unclear.

Parameters Ω and κ` can be combined into one dimensionless
parameter as

LD =
`D

`
=

√
1

Ω(κ`)2 =

√
D/ω

`
. (53)
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Fig. 9 Collapse of AREF (i.e., time-average electric field, 〈Ẽ〉) spa-
tial distribution at different voltages. Dashed (with different color
intensities) and solid curves in (a,c) show the numerical AREF at
different potentials and semi-analytical AREF, respectively. (a,b)
Collapse of AREF curves for different Ω values and κ`= 400. (c,d)
Collapse of AREF curves for different κ` values and Ω = 5×10−3.
Parameters: β =−1/3, γ = 0.

Hashemi Amrei et al.29 showed that this dimensionless diffusive
length scale governs the location of peak AREF for a wide range
of parameter space. Note that small LD corresponds to large Ω

and κ`. Hence, the semi-analytical solution can be used to predict
the both shape and magnitude of AREF when LD� 1. This is ex-
tremely important since for most practical cases in electrokinetics
LD is indeed very small.

5 Conclusions

Following the discovery of AREF by Hashemi Amrei et al.,28 we
have demonstrated by a new approach that a steady electric field
may be induced by an applied oscillatory potential. We have de-
veloped an analytical approximate solution to the PNP equations
at low applied potentials. Specifically, we focused on the impacts
of ionic mobility and valence mismatches to find approximations
to the one-dimensional AREF between parallel electrodes.28 In this
regard, we have shown that the second-order perturbation solution
corroborates the existence of AREF. Interestingly, at sufficiently
small LD =

√
D/ω/` (dimensionless diffusive length scale), this

simple approximate solution accurately predicts both the compli-
cated spatial structure and the magnitude of AREF, even at ex-
tremely high potentials. We emphasize that for most electrokinetic
systems LD � 1. Hence, researchers can safely use this approxi-
mate solution to calculate AREF. It is significant, considering the
extremely complicated alternative of finding AREF via numerical
solution to the full nonlinear PNP equations.
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Appendix A: Numerical solution to eqn (49)

Here we explain a numerical algorithm for solving the eqn (49).
For most practical cases, the electrode spacing is several thousands
of the Debye length. Under such conditions, using uniform grids
for discretization is inefficient. Covering the entire domain with a
uniform grid, fine enough to capture the sharp gradients within the
Debye layer (∼ κ−1/100), would require a total of several hundred
thousands grids. Instead we use a stretched grid. Consider a one-
dimensional domain of x̃ ∈ [−κ`,κ`] discretized nonuniformly as x̃i

for i = 1, . . . ,2N +1 (face centered grid, i.e., x1 =−κ`, x2N+1 = κ`)
and hi = x̃i+1− x̃i. We set h1 = h2N ∼ 0.01 (corresponding to having
100 grid points within the Debye layer), and gradually increase the
grid size as xi → 0. Using Newton’s tableau for 3 arbitrary points
at locations x̃i−1, x̃i, x̃i+1 and corresponding values of, respectively,
〈Ẽ(2)〉i−1,〈Ẽ(2)〉i,〈Ẽ(2)〉i+1, one can find the Laplacian stencil as

∂ 2〈Ẽ(2)〉i
∂ x̃2 =

2〈Ẽ(2)〉i−1

hi−1(hi +hi−1)
− 2

hihi−1
〈Ẽ(2)〉i +

2〈Ẽ(2)〉i+1

hi(hi +hi−1)
. (A1)

Using the obtained Laplacian stencil, the discretized form of
eqn (49) becomes:

ai〈Ẽ(2)〉i−1 +bi〈Ẽ(2)〉i + ci〈Ẽ(2)〉i+1 = fi, (A2)

where
ai =

2
hi−1(hi +hi−1)

, (A3a)

bi =−
(

2
hihi−1

+1
)
, (A3b)

ci =
2

hi(hi +hi−1)
. (A3c)

In matrix form, the system of algebraic equations can be expressed
as

b2 c2

a3 b3 c3
. . .

a2N−1 b2N−1 c2N−1

a2N b2N




〈Ẽ(2)〉2
〈Ẽ(2)〉3

...
〈Ẽ(2)〉2N−1

〈Ẽ(2)〉2N

=


f2
f3
...

f2N−1

f2N

, (A4)

which can be solved by standard iterative schemes or simply in-
verting the coefficient matrix.

Appendix B: first-order solution (γ = 0, β 2Ω2 = 1
4 )

As discussed, characteristic equation of the first-order eigenvalue
problem has repeated roots for γ = 0 and βΩ = 1

4 . For this special
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case, the general solution to the first-order problem becomes:

n̂(1)+ (x̃) = Asinh(λ x̃)− iS
4λ

(A+B)x̃cosh(λ x̃), (B1)

n̂(1)− (x̃) = iSBsinh(λ x̃)− 1
4λ

(A+B)x̃cosh(λ x̃), (B2)

φ̂
(1)(x̃) =Cx+(iSB−A)

sinh(λ x̃)
2λ 2

+(A+B)(iS−1)
λ x̃cosh(λ x̃)−2sinh(λ x̃)

8λ 4 . (B3)

with
λ =

1√
2
(1+2iΩ)1/2 , (B4a)

S = sgn(β ). (B4b)

The constants A, B, and C are determined as

A =
4iλ 2

Γ

[((
4λ

2−1
)

S+ i
)

cosh(λκ`)

−(S− i)λκ`sinh(λκ`)
]
, (B5)

B =
4iλ 2

Γ

[(
S+
(

4λ
2−1

)
i
)

cosh(λκ`)

+(S− i)λκ`sinh(λκ`)
]
, (B6)

C =−
8iSλ

(
2λ 4−2λ 2 +1

)
cosh2(λκ`)

Γ
. (B7)

The parameter Γ is

Γ = 2iSλκ`
[
4(λ 4−λ

2 +1)+2
(

2λ
4−2λ

2 +1
)

cosh(2λκ`)

+
(

4λ
2−3

) sinh(2λκ`)

λκ`

]
. (B8)
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