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Shape and size changes of adherent elastic epithelia

Benjamin Loewea†, Francesco Serafinb†, Suraj Shankarc†, Mark J. Bowickd , and
M. Cristina Marchettia

Epithelial tissues play a fundamental role in various morphogenetic events during development
and early embryogenesis. Although epithelial monolayers are often modeled as two-dimensional
(2D) elastic surfaces, they distinguish themselves from conventional thin elastic plates in three
important ways- the presence of an apical-basal polarity, spatial variability of cellular thickness,
and their nonequilibrium active nature. Here, we develop a minimal continuum model of a planar
epithelial tissue as an active elastic material that incorporates all these features. We start from
a full three-dimensional (3D) description of the tissue and derive an effective 2D model that cap-
tures, through the curvature of the apical surface, both the apical-basal asymmetry and the spatial
geometry of the tissue. Crucially, variations of active stresses across the apical-basal axis lead to
active torques that can drive curvature transitions. By identifying four distinct sources of activity,
we find that bulk active stresses arising from actomyosin contractility and growth compete with
boundary active tensions due to localized actomyosin cables and lamellipodial activity to gener-
ate the various states spanning the morphospace of a planar epithelium. Our treatment hence
unifies 3D shape deformations through the coupled mechanics of apical curvature change and
in-plane expansion/contraction of substrate-adhered tissues. Finally, we discuss the implications
of our results for some biologically relevant processes such as tissue folding at the onset of lumen
formation.

Living tissues are capable of remarkable deformations and dra-
matic shape changes key to many developmental processes1,2.
The diversity of resulting morphogenetic motifs arises from a rich
interplay of cell-cell interactions, morphogen gradients and cy-
toskeletal activity3,4. While the appearance of form along with
functionality in living organisms over the course of development
involves a plethora of complex biochemical and physiological pro-
cesses, it has become increasingly clear that mechanics and ma-
terial approaches offer useful principles to understand the collec-
tive organization of cellular matter5,6. In this regard, an impor-
tant goal of tissue mechanics is to characterize and classify the
mechanisms by which thin 2D sheets of cells can fold and deform
into 3D shapes. Understanding how shape in biological systems
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emerges from the spontaneous organization of active processes
at the molecular scale remains a grand challenge in biology. It
additionally has far reaching implications for the design of self-
shaping functional materials7–10.

A common approach to modeling epithelial tissue mechanics is
in analogy with thin sheets of passive elastic or fluid media11,12.
An important distinction though is that cells actively consume en-
ergy to remodel the tissue architecture, thereby allowing the tis-
sue to realize exotic nonequilibrium mechanical properties, rang-
ing from active jammed states13 to ultradeformable14,15 and rup-
ture resistant solids16. In addition, epithelial tissues are intrin-
sically polarized along the apical-basal axis of the constituent
cells, with the basal surface often adhered via a basement mem-
brane to a substrate. This polar asymmetry in conjunction with
bulk active stresses, either due to actomyosin contractility17,18 or
growth19,20, can lead to geometric incompatibilities that shape
the tissue21,22. Importantly, apicobasal polarized active stresses
act as torques that compete with both cell-cell and cell-substrate
adhesion to pattern differential spatial curvature in the tissue
by locally varying the cellular thickness. Previous work has ad-
dressed this in the context of the 3D morphology of single epithe-
lial cells23, while continuum modeling on the tissue scale has pri-
marily been restricted to constant thickness shape changes24–29
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or free monolayers neglecting substrate adhesion30,31. In the
context of wound healing assays and micropatterned tissue cul-
tures, epithelial spreading32–36 and dewetting37–39 driven by cel-
lular migration and boundary localized active tensions have also
been analyzed in the plane without regard to 3D tissue morphol-
ogy. In the very different context of active suspensions, the wet-
ting properties and shapes of orientationally ordered liquid crys-
talline drops have been shown to be controlled by an active dis-
joining pressure and depend on the kinds of topological defects
present40.

In this paper we derive an effective 2D description for epithe-
lial tissues that accounts for apical-basal polarity, cell-cell interac-
tions and cell-substrate adhesion within an active elastic contin-
uum model. A central feature, apical-basal polarity affects both
passive and active sectors of tissue mechanics, allowing active
torques in the latter. By exploiting the separation of scales in
a thin monolayer, we perform a systematic reduction of the 3D
equations of active mechanics to 2D, while retaining the cellular
thickness as a dynamical variable. The structure of our equations
is consistent with a recently proposed general phenomenologi-
cal description of active surfaces28, with the inclusion of traction
forces due to cell-substrate interactions and an explicit deriva-
tion of model parameters. By incorporating four distinct sources
of cellular activity through nonequilibrium stresses and boundary
tensions, our model allows a unified treatment of planar size and
apical shape change of substrate-adhered tissues. In particular,
we include i) nonequilibrium contributions from bulk contractile
stresses due to the apical-medial actomyosin cytoskeleton, ii) ex-
tensile stresses generated by cell growth, iii) an apically localized
supracellular actomyosin cable that serves as a “purse-string”, and
iv) polarized lamellipodial activity that promotes cell migration at
the free boundary of the tissue. The competition of extensile and
contractile forces between the boundary and the bulk of the tis-
sue determines its morphology as a function of tissue size and
the stiffness of the focal adhesions bound to the substrate. Im-
portantly, differential contractility along the apicobasal axis gen-
erates active torques that drive curvature change of the tissue.
Working within a simplified 1D setting, we obtain steady-state
solutions of our equations that characterize the different possi-
ble shapes through the curvature of the apical surface and the
in-plane contraction or expansion of the tissue. A cartoon of the
shapes predicted by our model is shown in Fig. 1.

In Sec. 1 we introduce the continuum description of an ad-
herent tissue and outline the reduction from 3D to an effective
2D model that incorporates in-plane deformations and variations
in the shape of the apical surface. Some details of the tissue
parametrization are given in Appendix A. In Sec. 2 we exam-
ine stationary profiles of the apical surface, tissue deformation
and the cellular stress obtained analytically for a one dimensional
(1D) geometry corresponding to a tissue layer homogeneous in
one of the in-plane directions. In Sec. 3 we examine the compe-
tition of various active extensile and contractile stresses in con-
trolling tissue shape and identify two transitions, one associated
with change in shape of the apical surface, the other with change
of in-plane tissue size. Finally we conclude in Sec. 4 with a brief
discussion of the relevance of our model to in-vitro experiments

Fig. 1 A sketch of the different tissue morphologies that are possible
in our model. The red dashed lines mark the extent of the undeformed
tissue.

of tissue folding and lumen formation.

1 The model

We model an epithelial tissue as a 3D elastic material that is thin
in one dimension and adhered to a planar rigid substrate. In the
absence of inertia, mechanical equilibrium implies force balance
for the 3D stress tensor Σαβ which gives ∂β Σαβ = 0. Here and
in the following, Greek indices run over all three material coordi-
nates {x,y,z}, while Roman indices run over only two dimensions,
orthogonal to the thin direction, which we take to be z. Writing
out the force balance equations, we then have

∂ jΣi j +∂zΣiz = 0 , (1)

∂ jΣz j +∂zΣzz = 0 . (2)

The rest configuration of the tissue has a linear dimension given
by 2L0 and thickness h0. In the Lagrangian frame, z ∈ [0,h0],
where z = 0 is identified with the basal surface of the tissue and
z = h0 is the apical surface (see Fig. 2). Slowly varying defor-
mations in the {x,y} plane then occur on the scale ∼ L0, while
deformations along z are more rapid, varying on the scale of h0.
As h0/L0� 1, Eqs. 1, 2 generate a heirarchy of stress scales in the
bulk of the tissue

Σzz� Σiz� Σi j . (3)

This geometric separation of scales underlies the reduction of the
3D model to an effective 2D one, just as for passive shells and
plates41. Integrating over z, the average 2D stress (σσσ) and bend-
ing moment (M) appear as the first two moments of ΣΣΣ,

σi j =
∫ h0

0
dz Σi j , (4)

Mi j =
∫ h0

0
dz z Σi j . (5)

Averaging Eq. 1 over z, we obtain an equation for in-plane force
balance42

∂ jσi j = Ti , (6)
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Fig. 2 A cartoon of an epithelial monolayer cross-section on a substrate.
The apical surface (blue line) is in direct contact with the fluid environment
outside and the tissue adheres to the substrate through focal adhesions
at the basal surface that bind to the extracellular matrix (ECM), a thin
polymeric gel that coats the substrate. The undeformed tissue adopts its
rest configuration with linear size 2L0 and uniform thickness h0 as shown.

where we use Σiz|z=h0 = 0 as the apical surface is a free surface
typically in contact with a fluid, and Ti ≡ Σiz|z=0 is the traction
force exerted by the tissue on the substrate. Doing the same for
the bending moment, we can integrate by parts and use Eqs. 1, 2
to get the torque balance as

∂i∂ jMi j = fn , (7)

where we employ the symmetry of the stress tensor (Σi j =Σ ji) and
set fn ≡ Σzz|z=0−Σzz|z=h0 as the net normal force exterted by the
tissue. Note that, in the simplest setting within the reduced 2D
description, we have three relevant degrees of freedom to capture
the total deformation of the tissue, two in-plane displacements
and the thickness of the tissue. Eqs. 6 and 7 provide a sufficient
number of constraints to solve the problem, ensuring it is well-
posed. If we wish to retain more degrees of freedom to describe
the tissue deformation within an effective 2D model, we can do
so by deriving further balance equations for higher moments of
Σi j to obtain a consistent description. Given the general setup,
we now specialize to the case at hand with a specific constitutive
model for the tissue as an active solid.

1.1 Constitutive relations
The stress tensor has contributions from both passive elasticity
and active stresses (ΣΣΣ = ΣΣΣ

el +ΣΣΣ
a). Assuming a Hookean constitu-

tive law for an isotropic solid, the elastic stress is given by

Σ
el
αβ

= 2µ̄εαβ + λ̄ δαβ ενν , (8)

where εαβ is the full 3D strain tensor and µ̄, λ̄ are the 3D Lamé
parameters∗. The active stress43,44 includes two terms, a contrac-
tile stress arising from force dipoles exerted by the actomyosin cy-
toskeleton and an extensile stress accounting for cellular growth.
Apicobasal polarity allows us to distinguish the active stress in the

∗We allow the tissue to be compressible; the incompressible limit can be recovered by
taking λ̄ → ∞.

z direction versus in the plane, so we separately write

Σ
a
i j = mζ⊥δi j +Ωδi j , Σ

a
zz = mζ‖ , (9)

where m is the local density of contractile units, such as phospho-
rylated myosin motors bound to actin filaments. For simplicity,
we take the actomyosin network to be isotropic in the plane with
ζ⊥,ζ‖ > 0 controlling the average contractile activity in the plane
and along the apicobasal axis respectively. Growth enters as an
isotropic extensile pressure (Ω < 0) solely in the plane, and we
disregard growth in the z direction. An important feature of api-
cobasal polarity is that the actomyosin cortex is spatially localized
near the apical surface. Neglecting any basal myosin for simplic-
ity, we write

m(z) =
m0

h0

sinh(z/`)
sinh(h0/`)

, (10)

where m0 is the concentration of active units at the apical sur-
face and ` is a localization length. Note the important feature
here is the spatial asymmetry of the myosin profile along the
apicobasal axis. Such a profile can also be obtained by solv-
ing a dynamical equation for the volumetric actomyosin density,
∂tm ' D(∂ 2

z +∇2)m−m/τ (∇2 = ∂ 2
x + ∂ 2

y ) that combines spatial
diffusion (D) and turnover of actomyosin units on a time scale
τ, while additionally imposing a fixed average m in the cell to
capture the mean pool of functional actomyosin whose value is
tightly regulated by the cell. For simplicity, we neglect any strain
coupling here. For t � τ and to lowest order in ∇2, m adopts the
same profile as in Eq. 10, with the localization length `=

√
Dτ.

To complete the model reduction to 2D, we follow the standard
Kirchoff-Love procedure41 and set Σzz ≈ 0 in the tissue interior, as
justified by the heirarchy in Eq. 3. This gives,

εzz =−
Σa

zz + λ̄ εkk

2µ̄ + λ̄
. (11)

Next we set Σiz ≈ 0 =⇒ εiz ≈ 0. This permits us to parametrize
the z dependence of the strain εi j (see Appendix A for derivation)
as,

εi j(z) =
1
2
(
∂iu j +∂ jui

)
− h0

3

(
z

h0

)3
∂i∂ jh , (12)

where u is the in-plane displacement and h the local thickness of
the deformed tissue. Here we have assumed that the basal surface
(z = 0) does not delaminate from the substrate it is adhered to,
and can hence only deform in the plane. We work to linear order
in both u and h, as appropriate for small deformations. A fully
covariant and nonlinear generalization is easily possible as has
been recently done for active surfaces28,31.

Upon using Eqs. 4 and 5, along with Eq. 12, we obtain σσσ =

σσσ el +σσσ c +σσσg, where

σ
el
i j = 2µui j +λδi j ukk−

µh0

6
∂i∂ jh−δi j

λh0

12
∇

2h , (13)

σ
c
i j =

[
ζ⊥−ζ‖

(
ν

1−ν

)]
m0` δi j , σ

g
i j = h0Ω δi j . (14)

The 2D linearized strain tensor is ui j = (∂iu j +∂ jui)/2 and the 2D
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Lamé parameters and Poisson ratio are

µ = µ̄h0 , λ =
2µ̄λ̄h0

(2µ̄ + λ̄ )
, ν =

λ

2µ +λ
. (15)

In general we expect ζ⊥ � ζ‖, as a result, σ c
i j > 0 signalling in-

plane contractilility. Also note the presence of ∂i∂ jh in the elastic
part of the stress tensor, which though unusual, is a natural con-
sequence of apicobasal polarity in passive mechanics, as expected
of asymmetric membranes45. We similarly express the moment
tensor as M

Mi j =
h0

2
σi j +

h0

2
σ

c
i j−

µh2
0

20
∂i∂ jh−δi j

λh2
0

40
∇

2h . (16)

In all the averages involving m(z) (Eq. 10), we assume `� h0,
i.e., the actomyosin density is strongly localized to the apical sur-
face. The first two terms in the moment tensor equation above
(Eq. 16) also reflect the apico-basal polarity of the tissue. The
first term h0σσσ/2 is a “passive” contribution that appears because
the basal surface is flat and adhered to a substrate, as a result
of which the average force taken to act on the mid-plane of the
tissue generates a torque on the apical surface. The second term
h0σσσ c/2 is an active torque generated by the asymmetric z-profile
of the actomyosin density (Eq. 10). The final two terms in Eq. 16
are the usual elastic components of the bending moment due
to the curvature of the apical surface. Similar active moments
have been obtained using inhomogeneous activity profiles in the
context of active shells26, though for constant thickness surfaces.
While recent work31 has derived a reduced description of epithe-
lial monolayers keeping track of the tissue thickness, the role of
apical-basal polarity was only included in the passive part of the
mechanics, and active torques as in Eq. 16 were missed.

Finally, we specify the constitutive equation for the traction (T)
and normal forces ( fn) to complete the model description. Assum-
ing the substrate is rigid, we use a viscoelastic model to capture
the deformation and turnover of the focal adhesions attached to
the substrate. In addition, we introduce an internal in-plane po-
larization p that directs individual cell motion. Combining the
two, we have35,42

T = Ysu+Γ⊥∂tu− f p , (17)

where Ys is the stiffness of the focal adhesion complexes and Γ⊥
is an effective friction with the substrate. The active propul-
sion force f p accounts for cellular crawling and migration due
to actin treadmilling within lamellipodia. In confluent epithe-
lia, the polarization p is appreciable only near the boundary of
the colony32,35,36. Following Ref.36, we model the polarization
quasi-statically, assuming the tissue is unpolarized in the bulk,
and the polarization points along the outward normal at the tis-
sue boundary. Writing to linear order ∂tp = −a p+K∇2p, with
a a decay rate and K an elastic constant, we neglect any strain
coupling and set ∂tp≈ 0 to get

p = `2
p∇

2p , (18)

where p · ν̂νν = 1 along the tissue boundary (ν̂νν is the outward nor-
mal). The localization length `p =

√
K/a controls the penetration

Fig. 3 A schematic diagram illustrating the different forces acting on a
tissue element.

of the polarization into the bulk of the tissue. We assume that
the propulsive force is the dominant contribution from polariza-
tion, though an active stress ∼ ζ ′pp43, which we neglect, is also
generally present. Given the edge localized profile of p, this term
also effectively contributes to a boundary stress, albeit one which
scales differently with the boundary curvature compared to a line
tension (see Sec. 1.2).

The normal force on the tissue has a similar constitutive equa-
tion, combining an effective friction (Γ‖) and an apical surface
tension (γ) to give

fn = Γ‖∂th− γ∇
2h . (19)

Note that, here we use the fact that the basal surface does not de-
laminate from the substrate, hence only vertical distortions of the
apical surface, through h, contribute to the normal force. Unlike
active membranes with pumps46, a mean density of actomyosin
units at the apical surface (m0 6= 0) does not actively induce a fi-
nite normal velocity. Instead, bending deformations of the apical
surface distort the cytoskeletal network that generates a restoring
force ∼ γ∇2h, through its contractility.

To summarize, using Eqs. 6 and 7, the full set of dynamical
equations for the in-plane displacements (u) and the tissue thick-
ness (h) are

Γ⊥∂tu+Ysu = µ∇
2u+(µ +λ )∇∇∇∇∇∇ ·u+∇∇∇ · (σσσ c +σσσ

g)− Bh0

12
∇∇∇∇

2h+ f p ,

(20)

Γ‖∂th = γ∇
2h−κ∇

4h+
h0

2
∇∇∇∇∇∇ : σσσ

c +
h0

2
∇∇∇ · (Ysu+Γ⊥∂tu− f p) .

(21)

Here, we have defined B = 2µ + λ as the bulk modulus and
κ = Bh2

0/40 as the bending rigidity of the tissue. Until now, we
have addressed three sources of cellular activity, through a con-
tractile stress (σσσ c), growth (σσσg) and a propulsive force ( f p). The
final source of activity appears in the boundary conditions and is
discussed below.

1.2 Boundary conditions
Along with the equations of mechanical equilibrium given in
Eqs. 20, 21, we have to specify the boundary conditions for σσσ

and M. In doing so we include the presence of a contractile ac-
tomyosin cable that is apically localized at the boundary. The as-
sembly of such supracellular structures is known to operate in key
morphogenetic events47,48 and wound healing34,49,50. Boundary
actomyosin “fences” encircling human stem cell colonies have re-
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cently been shown to impact pluripotency as well51. The simplest
way to account for such structures is through a boundary line ten-
sion of strength Λ̃ localized at the apical surface of the tissue (see
Fig. 3). One can easily show that this also results in an effective
boundary torque ∝ h0Λ̃. Hence we have

σσσ · ν̂νν =−Λ̃ Cν̂νν , (22)

M · ν̂νν =−h0Λ̃ Cν̂νν , (23)

around the edge of the tissue. Note that, as expected, the tan-
gential components of both σσσ and M vanish, while the normal
components are balanced by the contractile line tension (Λ̃ > 0)
along with the boundary curvature (C). As before, ν̂νν is the unit
outward normal at the boundary. The various forces acting on the
tissue are schematically shown in Fig. 3. In the following, we will
analyze the steady states of the equations we have derived and
interpret the solutions in terms of shape changes in the epithelial
monolayer.

2 Stationary Solution in 1D
For simplicity, we shall work in 1D and assume negligible varia-
tion in the y-direction. We nonetheless keep a nonzero boundary
curvature to represent the effects of the actomyosin cable. Such a
simplified description is appropriate in a local 1D strip of a large
tissue with curved edges. This turns out to be sufficient to make
clear the main features of the model. In Appendix B, we compute
the steady-state stress and curvature profile of an axisymmetric
2D tissue in a circular geometry corroborating the validity of the
simplified 1D model discussed here. A more detailed treatment of
other geometries is left for future work. We choose our coordinate
system so that the undeformed tissue has −L0 ≤ x ≤ L0. Setting
∂tux = ∂th = 0, it is convenient to recast Eqs. 20, 21 in terms of
σxx ≡ σ and the mean curvature of the apical surface H = ∂ 2

x h.
The equations then read

`2
σ ∂

2
x σ = σ −σ

c−σ
g +

Bh0

12
H− f `2

σ ∂x p , (24)

`2
H∂

2
x H = H +

h0

2γ
∂

2
x (σ +σ

c) . (25)

The stress and curvature relaxation length scales are `σ =
√

B/Ys

and `H =
√

κ/γ, respectively, where the bulk modulus B = 2µ +λ

as before. The active stresses are taken to be spatially constant,
σ c

xx ≡ σ c > 0 and σ
g
xx ≡ σg < 0, while the polarization p(x) solves

Eq. 18 with p(±L0) =±1 to give

p(x) =
sinh(x/`p)

sinh(L0/`p)
, (26)

which is sketched in Fig. 4. For the boundary conditions, as
mentioned earlier, we fix the boundary curvature C = C0 to be
a constant and write Λ = Λ̃C0 as the effective normal stress at the
boundary due to the actomyosin cable. In a circular geometry of
size R, C0 = 1/R and the boundary stress then depends on the tis-
sue size for constant Λ̃ (see Appendix B). For generality, we work
with Λ as an independent parameter, keeping in mind that for cer-
tain geometries there could be an implicit tissue size dependence

Fig. 4 The polarization profile in 1D plotted according to Eq. 26.

in it. Also note that the anisotropic active stress ∼ ζ ′pp that we
neglect here could potentially contribute a boundary curvature
independent term to Λ by virtue of the edge localized profile of p.
This further justifies our use of Λ as an independent parameter.
The full analytical solution of the above equations along with the
requisite boundary conditions (σ(±L0) =−Λ, M(±L0) =−h0Λ) is
not very illuminating. Instead it is instructive to consider the case
where surface tension dominates bending elasticity, allowing us
to neglect `2

H∂ 2
x H � H and directly slave the tissue curvature to

the stress profile as

H '− h0

2γ
∂

2
x σ , (27)

where σ c has dropped out as it is a constant. Of course, this ap-
proximation will fail close to the tissue boundary where, in partic-
ular, the line tension Λ> 0 requires H(L0) = h0(σ

c+3Λ)/2κ > 0 at
the edge. Substituting Eq. 27 into Eq. 24 we find that, in this limit,
apicobasal polarity simply affects the passive mechanics by en-
hancing the stress relaxation length scale to L2

σ = `2
σ +(Bh2

0/24γ).
So we have

L2
σ ∂

2
x σ −σ =−

(
σ

c +σ
g + f `2

σ ∂x p
)
. (28)

Upon imposing σ(±L0) =−Λ, we obtain the spatial stress profile
in the tissue to be

σ(x) = σa− (Λ+σa)
cosh(x/Lσ )

cosh(L0/Lσ )

+ f
`2

σ `p

`2
p−L2

σ

[
cosh(x/`p)

sinh(L0/`p)
− coth

(
L0

`p

)
cosh(x/Lσ )

cosh(L0/Lσ )

]
. (29)

We have combined the two bulk active stresses into σa = σ c +σg.
When actomyosin contractility dominates growth σa > 0 and
when growth dominates σa < 0. Qualitatively similar stress pro-
files have been obtained using a fluid model for a tissue36. With
these approximations Eq. 27 directly gives us the curvature profile
of the apical surface as

H(x) =
h0

2γ

{
(Λ+σa)

L2
σ

cosh(x/Lσ )

cosh(L0/Lσ )

− f `2
σ

`p(`2
p−L2

σ )

[
cosh(x/`p)

sinh(L0/`p)
−
(
`p

Lσ

)2
coth

(
L0

`p

)
cosh(x/Lσ )

cosh(L0/Lσ )

]}
.

(30)
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Similarly, using the steady state in-plane force balance ∂xσ =

Ysux− f p, we find the displacement of the tissue to be

ux(x) =−
(Λ+σa)

YsLσ

sinh(x/Lσ )

cosh(L0/Lσ )
+

f
Ys

{
sinh(x/`p)

sinh(L0/`p)

+
`2

σ

`2
p−L2

σ

[
sinh(x/`p)

sinh(L0/`p)
−

`p

Lσ

coth
(

L0

`p

)
sinh(x/Lσ )

cosh(L0/Lσ )

]}
.

(31)

3 Active shaping of planar epithelia
We now use the above solution (Eqs. 29, 30, 31) to interpret and
characterize the morphology of an adhered epithelium. The cur-
vature of the apical surface at the center of the tissue H(0) and
the displacement at the edge ux(L0) serve as simple “order pa-
rameters” characterizing the shape of the tissue. Note that, when
H(0) > 0, the apical surface curves up, away from the substrate,
adopting an upward concave profile (“valley shaped”), while for
H(0) < 0, we have an upward convex profile (“dome shaped”)
for the apical surface of the tissue. Separately, the in-plane dis-
placement of the tissue edge ux(L0) tracks the overall expansion
(ux(L0)> 0) or contraction (ux(L0)< 0) of the tissue with respect
to its undeformed state. Note that while the expanded or con-
tracted state is a steady state of the elastic tissue with no spread-
ing, the tendency towards larger or smaller contact areas in our
elastic model is analogous to wetting/dewetting within a fluid
model37,39. The equations for a fluid tissue are formally identical
to those for an elastic tissue, with the flow velocity replacing the
displacement field, although the tissue can of course spread.

3.1 Role of growth, contractility and the actomyosin cable

We shall first consider the simple case where the polarized motil-
ity of the leading cells at the edge of the epithelium is absent,
by setting f = 0. The competition between adhesion to the sub-
strate and elastic and active stresses creates a spatially inhomo-
geneous stress profile in the resting tissue sheet. If active stresses
are homogeneous, as we consider, the length scale controlling
spatial inhomogeneities ∼ Lσ is determined primarily by the rela-
tive strength of tissue to focal adhesion elasticity. In this case, the
stress profile is monotonic between x = 0 and x = L0, and symmet-
ric across x = 0. As expressed in Eq. 27, spatial inhomogeneities
in the stress alone result in a nonvanishing curvature of the api-
cal surface with H ∝−∂ 2

x σ (a homogeneous stress profile always
yields a flat surface).

It is possible to obtain a change in the sign of H(x) even in
the absence of line tension from the actomyosin cable (Λ = 0),
simply from the competition between contractile and extensile
uniform active stresses, as in this case H(x) ∝ σa, with σa = σ c +

σg. Additionally, ux(L0) ∝ −σa sinh(L0/Lσ ) (from Eq. 31), hence
the sign of σa controls the behavior as follows:

• If contractile stresses exceed extensile ones (σa > 0), then
the tissue stress is everywhere contractile (positive, like a
negative pressure) and maximum at the center of the tissue.
Correspondingly, H(x) > 0, i.e., the apical surface is shaped
like a valley, as one would physically expect from a decrease

Fig. 5 The stress and curvature distribution across the tissue with a bulk
active stress (σa) and a boundary tension (Λ). For dominantly extensile
stresses (σa < 0), there is a finite threshold Λc = −σa (Eq. 32) for the
tension beyond which the curvature of the apical surface changes sign.
The spatial profiles of σ(x) and H(x) are plotted here in units where B = 1
and L0 = 1, neglecting `H , for (a) Λ < Λc and (b) Λ > Λc. Note that the
stress at the boundary of the tissue is given by −Λ as required by the
boundary condition.

in internal pressure, and u(L0) < 0, i.e., the tissue is con-
tracted (see Fig. 1, image IV).

• If extensile stresses exceed contractile ones (σa < 0), then
the tissue stress is everywhere extensile (negative, like a pos-
itive pressure) and maximum at the edges of the tissue. Cor-
respondingly, H(x)< 0, i.e., the apical surface is shaped like
a dome, as one would physically expect from an increase in
internal pressure, and u(L0) > 0, i.e., the tissue expands on
the substrate (see Fig. 1, image I).

Reinstating the actomyosin cable tension Λ > 0 makes the stress
profile more negative, with now contractile behavior (and H(x)>
0) arising when Λ+σa > 0 and extensile (and H(x) < 0) arising
when Λ+σa < 0, upon neglecting the irrelevant constant σa offset
(see Eq. 29). This can be reformulated in terms of the value of Λ

required for the two different shapes, with

Λc =−σa =−(σg +σ
c) . (32)

So a curvature transition can only occur if |σg|> |σ c| (as σg < 0,
being extensile, and we must have Λc > 0). The displacement
field of the tissue at the boundary is in this case is ux(L0) ∝−(Λ+

σa)sinh(L0/Lσ ) (Eq. 31). As a result the tissue also undergoes
an elastic size transition at a value of Λ that coincides with the
change in apical surface curvature. Hence, we find

• Λ > Λc: contractile behavior with the stress peaked at the
middle of the contracted tissue leading to a valley-shaped
apical surface and contracted tissue (see Fig. 1, image IV).

• Λ < Λc: extensile behavior with the stress peaked at the
edges of the expanded tissue leading to a dome-shaped api-
cal surface and expanded tissue (see Fig. 1, image I).

In short, when growth dominates contractility (σa < 0), an in-
crease in the tension of the actomyosin cable beyond the thresh-
old Λc causes the tissue to transition from dome-shaped to valley-
shaped. The spatial profile of the stress and curvature are plotted
in Fig. 5. For a large tissue (L0� Lσ ), one always has

σ(0)' σa , H(0)' 0 . (33)
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Since σ(L0) =−Λ < 0, and the stress is monotonic, one then has
σ(x)< 0 everywhere (see Fig. 5) if σa < 0 (required for Λc to ex-
ist). Hence the stresses are always extensile, but can still be max-
imum in the middle or at the edges, with a corresponding change
in the sign of H(x) depending on the value of Λ relative to Λc. In
this case the value of H(0) alone, being exponentially small in a
large tissue, does not provide a good criterion for the sign of the
curvature, while the full curvature profile is still meaningful. On
the other hand, when contractile active stresses dominate growth,
the apical surface always adopts a valley like profile and the tissue
contracts, no matter the strength of the actomyosin line tension.

3.2 Role of polarized cell motility

Now for f 6= 0, we have an additional length scale `p in the prob-
lem that can compete against Lσ , allowing both the stress and
curvature profile to become nonmonotonic on 0 ≤ x ≤ L0. This
yields two distinct Λ thresholds, one for change in curvature of
the apical surface and the other for tissue size change, allowing
for the four tissue shapes shown schematically in Fig. 1.

Before we address the fully general case, let us first switch off
all bulk sources of activity (σa = 0). While σ(L0) = −Λ < 0 still,
the stress at the center of the tissue can change sign and so can
its curvature (∂ 2

x σ). The propulsive force at the edge of the tissue
enhances the stress in a region of width controlled roughly by
max(Lσ , `p)� L0, leading (for a sufficiently large f ) to a positve
stress peak ∼ f `p localized near the boundary (see Fig. 6a). The
physics in this case is akin to that of a stretched rubber band
attached to a rigid surface, with the pre-stretch combining the
net competition between the contractile ring and the propulsive
force.

Putting back the bulk active stress σa, the nonmonotonic stress
profile persists, which in turn allows for two distinct transition
thresholds for the apical curvature change and for elastic size
change. Setting x = 0 in Eq. 30, we have

H(0) =
h0

2γ cosh(L0/Lσ )L2
σ

[σa− ( f Lc−Λ)] , (34)

Lc =
`2

σ

`p
(
`2

p−L2
σ

) [L2
σ cosh(L0/Lσ )− `2

p cosh(L0/`p)

sinh(L0/`p)

]
. (35)

The length scale Lc represents the effective region over which the
propulsive force accumulates stress and affects the apical surface
curvature. Using the fact that x2 cosh(1/x) is a positive and mono-
tonically decreasing function until its minimum at x ≈ 0.48, one
can show that Lc > 0 for `p,Lσ . 0.48L0. Note that Lc also remains
smooth and finite for `p = Lσ , and is hence a legitimate length
scale in the physical regime of interest. For `p � Lσ in a large
tissue (L0 � Lσ , `p), we have Lc ' `p(`σ/Lσ )

2 ∼ `p as expected.
Interestingly though, for `p ' Lσ , we find Lc ' L0(`

2
σ/2Lσ `p) and

when `p � Lσ , Lc grows exponentially large in the tissue size.
This dramatic enhancement of the region of influence of the po-
larized motility for `p & Lσ through the tissue and focal adhesion
elasticity is reminiscent of similar collective force transmission
seen in expanding monolayers52.

From Eq. 34, we immediately find that H(0) changes sign at a

Fig. 6 A representative plot showing the nonmonotonic spatial variation
of (a) the stress σ(x) along with (b) the curvature H(x) and the displace-
ment ux(x). Here we have taken `p/`σ = 0.7 and `σ/L0 = 0.1, along with
σa = −1.5 < 0 (in units with B = 1). Λ is chosen to lie between Λd and
Λc ( f 6= 0). As Lσ ∼ `σ � L0, the stress at the center of the tissue is
∼ σa (Eq. 33), while self-propulsion at the tissue edge generates an ex-
tensile stress ∼ f `p in excess of the boundary tension Λ. The resulting
stress peak localized on a scale ∼ Lσ near the boundary leads to the
nonmonotonic behaviour of both H(x) and ux(x) shown in (b). As shown
schematically at the top of plot (b), this corresponds to the case when the
tissue has contracted at its edge and has a convex shape in the interior.

threshold actomyosin cable tension,

Λc = f Lc−σa . (36)

As expected, the propulsive force increases the threshold for the
tissue shape transition. So for

• Λ > Λc: tissue adopts a valley-shaped apical surface.

• Λ < Λc: tissue adopts a dome-shaped apical surface.

Recall that Lc can be very large in a large tissue when `p & Lσ ,
which suggests that such a shape transition can only be realisti-
cally observed in smaller tissues or when the polarization is very
strongly localized (`p� Lσ ). Of course this only refers to the cur-
vature near the center of the tissue. The nonmonotonic spatial
profile of the stress and curvature implies that the shape of the
apical surface can also change close to the boundary. A represen-
tative plot of such a curvature profile is shown in Fig. 6.

Distinct from the curvature change, the displacement of the
tissue boundary changes sign at a different threshold for f 6= 0,
given by

Λd = f Ld −σa . (37)

To see this we set x = L0 in Eq. 31 to obtain

ux(L0) =
1

YsLσ

tanh
(

L0

Lσ

)
[−σa +( f Ld −Λ)] , (38)

Ld =
Lσ

tanh(L0/Lσ )

[
1+

`2
σ

`2
p−L2

σ

(
1−

`p tanh(L0/Lσ )

Lσ tanh(L0/`p)

)]
. (39)

Here Ld is the length scale that captures the influence of the
propulsive force on the tissue displacement. For a large tissue,
we have

Ld ≈ Lσ −
`2

σ

(`p +Lσ )
, Lσ , `p� L0 , (40)

which is positive as Lσ > `σ . Unlike Lc, Ld is independent of the
tissue size for a large tissue, irrespective of the ratio `p/Lσ and
is primarily controlled by the stress penetration depth Lσ . This
highlights the distinction between the force transmission mecha-
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nisms that control curvature and shape of the tissue versus its size
and adhesive properties. It is useful to contrast this with Ref.39,
where a size dependent dewetting transition was observed in an
epithelial tissue modeled as an active fluid, which albeit differ-
ent, is nonetheless similar † to our elastic model. The main dis-
tinction lies in the strength of cell-substrate adhesions (Ys), which
in Ref.39 is considered negligible, resulting in Lσ � L0, whereas,
we work in the strongly adhered limit with Lσ � L0. As a con-
sequence, our elastic expansion-contraction transtion is size in-
dependent. On the other hand, for weak substrate adhesion, we
can replace Lσ by L0 in Eq. 40, thereby recovering the size depen-
dence seen Ref.39, albeit now in an elastic model. We also find
qualitative agreement with the measured stress profiles39 in this
parameter regime where the stress is dominated by bulk contrac-
tility and peaked in the interior. From Eq. 38, we easily find that
ux(L0) changes sign at the value Λ = Λd given in Eq. (37). Hence,
as we change Λ, we go through a tissue size transition, where for

• Λ > Λd : the tissue is globally contracted.

• Λ < Λd : the tissue is globally extended.

Importantly, when `p� Lσ , Λd > Λc, while for `p & Lσ , Λd < Λc

and Λc is then size dependent‡. As Λc 6= Λd when f 6= 0, we find
that our model predicts four different morphological states for
the tissue as sketched in Fig. 1. An illustrative morphological
“phase diagram” is shown in Fig. 7a for σa > 0, in the Λ- f plane.
Changes in the stress profile from being peaked near the tissue
center to being peaked near the boundary with a nonmonotonic
spatial profile have been reported previously in epithelial mono-
layers36 and our results are in qualitative agreement. Note that,
just like the stress profile, the tissue displacement is also non-
monotonic in general (see Fig. 6). So while the edge of the tissue
contracts from its rest length when Λ > Λd , the center of the tis-
sue can be locally extended due to the stress being more extensile
there and vice-versa. As a result, while our simple characteriza-
tion in terms of just H(0) and ux(L0) is easy to understand, the
full tissue shape and stress profile can be accessed in experiments
through imaging and traction force microscopy allowing for more
stringent tests of our theory.

3.3 Role of apical bending rigidity
Until now, we focused on the minimal model where the bending
rigidity of the apical surface κ was neglected in favour of its sur-
face tension γ. This allowed us to take `H =

√
κ/γ → 0 and slave

H to the stress profile (Eq. 27). Reintroducting a finite but small
`H � `σ , `p does not change the above results, but larger values
of `H do affect the tissue morphology and the transitions in qual-
itative ways. While the curvature is once again slaved to the total
stress in the bulk of the tissue, this is no longer the case on scales
∼ `H near the boundary. Using the fact that the contractile ring

†Note that by replacing displacements with velocities, the planar expansion-
contraction change of the elastic tissue exactly corresponds to the dewetting transi-
tion of its fluid counterpart.
‡Of course, as before, when the bulk active stresses are dominantly contractile (σa >

0), either transition exists only for a sufficiently large propulsive force.
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Fig. 7 Morphological phase diagram showing the curvature transition
at Λc (red line) and the size-change transition at Λd (blue line). In all
three plots, we fix `p/`σ = 0.7 and `σ/L0 � 1. Note that for finite `H , the
bulk active stresses, σ c and σg enter independently and the width of the
region between Λd and Λc is controlled by the relative size of σ c, |σg|
and f . In all three figures the total bulk active stress σa is taken to be
dominantly contractile, hence, there is a minimum extensile stress (either
from |σg| or f ) required for Λc,d to exist. In (a), the bending rigidity of the
tissue is neglected (`H/`σ → 0) and σa > 0, with both σg and σ c finite.
Note that in this limit, bulk active stresses only appear together in the
additive combination σa, unlike the finite `H case. In (b) σa > 0, but with
σg = 0. Turning on a small yet finite `H 6= 0, we obtain a qualitatively
similar phase diagram as in (a), i.e., with Λd < Λc, so tissue contraction
occurs prior to curvature change upon increasing Λ. Including a small
σg < 0 only moves the Λc,d intercepts to the left as the bulk active stress
σa decreases. In (c), the behavior is shown as a function of |σg| for
f = 0 and a higher `H . We find that in this case Λc 6= Λd even for f = 0.
Additionally, different from (a) and (b), now Λd > Λc and hence the tissue
contracts in-plane after changing its apical curvature.
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generates a boundary torque that enforces H(L0) ∝ (σ c +3Λ)> 0,
we see that, close to the tissue boundary, the variation of the
curvature on a length scale ∼ `H provides an additional effec-
tive source of localized stress in Eq. 24 through the passive term
(Bh0/12)H. As a result, we find an extra positive contribution
∼ (σ c +3Λ) to the force balance equation localized over a region
`H from the boundary. This additional contribution enters at the
same level as the polarization term, but with the opposite sign.
Hence, we can easily extend our previous results by viewing the
effect of a finite `H as providing an additional contractile force
near the edge spread out over a region of size `H , akin to an
effective negative propulsive force. This is a direct consequence
of apico-basal polarity in the tissue that permits active torques
on the apical surface. An immediate implication is that, in the
absence of extensile forces, such as arising from growth or polar-
ized cell motility ( f = σg = 0), neither a curvature nor a planar
size-changing transition can occur in the tissue, even for finite
`H . Alternately, even in the absence of polarized motility ( f = 0),
for a finite `H and σa < 0, the curvature change and expansion-
contraction transitions now don’t coincide. The various states and
transition boundaries, including a finite `H as well, are plotted in
the morphological phase diagram shown in Fig. 7.

4 Conclusion
In this paper, by using a lubrication approximation, we have de-
veloped a simple 2D elastic model for epithelial tissues strongly
adhered to a flat rigid substrate. Crucially, we incorporate both
apicobasal polarity in the tissue and the local variation of cellu-
lar thickness, allowing us to address the consequences of active
stresses on tissue shape. The morphology of a resting epithe-
lium is decided by a competition between bulk and boundary ac-
tive stresses in conjunction with the elasticity of the tissue and
substrate adhesion. We distinguish two kinds of transitions, one
concerning the curvature of the apical surface and another for
the in-plane size change of the tissue. The basic physics under-
lying these shape changes is transparent: extensile stresses (like
positive internal pressure) cause the apical surface to be “dome-
shaped” and locally expand the tissue, while contractile stresses
(like negative pressure) do the opposite, as expected.

Within a minimal model that neglects the bending rigidity of
the apical surface, the curvature H can be slaved entirely to the
total stress in the tissue. In this limit, the transition of either tis-
sue shape or size are decided by a balance of bulk active stresses
including contractility and growth ∼ σ c +σg, the actomyosin ca-
ble tension ∼ Λ and the net stress ∼ − f Lc,d arising from cellular
motility at the leading edge (remember that − f p is the force ex-
erted by the tissue). The length scale Lc,d over which propulsive
forces are transmitted is decided by the elastic parameters and
differs in general for the two transitions. In particular, Lc can be
size dependent, while Ld is not in general for a large tissue. In-
cluding a finite bending rigidity has a similar effect as an effective
negative propulsive force as a result of a cumulative transmission
of active torques generated by differential apicobasal contractility
and the boundary actomyosin cable. Although we only consider
homogeneous bulk active stresses, an edge localized spatial pro-
file of either growth or contractility would also have the same ef-

fect as the propulsive force, only with the overall sign determined
by the stress contribution being mostly contractile or extensile.

In the past few years, there has been a growing understand-
ing on the mechanical basis of tissue morphogenesis in controlled
settings, such as in organoids53. Recent in-vitro experiments54,55

demonstrate that epithelial tissues can initiate lumen formation
through a folding transition when exposed to a bath of extracel-
lular matrix (ECM). It is conceivable that such a shape change is
triggered by a mechanism involving competing bulk and bound-
ary active stresses as in our model. There is some evidence that
the recruitment of ECM components such as laminin can poten-
tially reinforce actomyosin contractility around the edge of a tis-
sue56, thereby increasing Λ in our model. This would provide
a useful experimental knob to traverse the morphological phase
diagram in Fig. 7. A useful test would be to measure the stress
profile along with the tissue curvature and compare against our
continuum results, as has been done previously for expanding
monolayers viewed as an active fluid36, though without reference
to apical curvature.

Stress profiles in epithelial monolayers reported previ-
ously36,39 agree qualitatively with our elastic model, suggest-
ing the fluid versus elastic dichotomy isn’t easily discriminated
by stresses alone. More recently, active torques arising from a
polarized distribution of actomyosin have been experimentally
quantified in freely suspended epithelia57, highlighting the im-
portance of such torques in bending tissues. While apical cur-
vature provides a distinct morphological phenotype, it is largely
unexplored, and we hope our work encourages further investi-
gation and experimental probes of tissue curvature. Our work
provides insight into the routes by which active forces can shape
planar stationary epithelia, and extending these results to curved
surfaces and time-dependent nonlinear phenomena are the next
immediate challenges.
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7 Appendices

A Parametrizing the strain tensor
In this Appendix, we parametrize the tissue deformation in terms
of in-plane displacements (u) and a height field for the tissue
thickness (h). This is done by enforcing εiz = 0 as stated in the
main text. Writing the 3D position of any point in tissue as R, we
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Fig. 8 Sketch of the coordinate system used to parametrize the tissue
showing both the undeformed and deformed geometries.

have the identity

R(x,y,z) = R0(x,y)+
∫ z

0
dz′∂z′R(x,y,z′) , (41)

where R0 ≡R(z = 0) and R0 · ẑ = 0 as the basal surface is attached
to a planar substrate. In the undeformed tissue, ∂zR = ẑ and it
continues to specify the normal to a local x− y section of the de-
formed tissue as well. Writing ∂zR = ẑ+w, where w is a small
deflection, we set 2εiz = ∂iRz +∂zRi = 0 to linear order in w. Con-
sistency requires that

wi =−
∫ z

0
dz′∂iwz(z′) , i = x,y , (42)

while wz is not constrained as of yet. As the basal surface is planar,
∂zR(z = 0) = ẑ, hence wz(z = 0) = 0. The thickness of the tissue
being small, we Taylor expand wz as a function of z and retain the
lowest order term, which is

wz =
z

h0
W (x,y) . (43)

This simple linear interpolation is a convenient ansatz for the 3D
deformation of the tissue and is the most dominant term for a
thin tissue. The function W (x,y), as we will see, is related to the
local thickness of the tissue. Using this parametrization in Eq. 41,
we obtain R = r+U, where r = (x,y,z) is the undeformed material
coordinate and the 3D displacement U is

Ui = ui−
z3

6h0
∂iW , Uz =

z2

2h0
W , (44)

having introduced the in-plane 2D displacement u such that R0 =

(x+ux,y+uy,0). The deformed thickness of the tissue is obtained
from ẑ ·R(z = h0) = h, which relates W and h as

W = 2
(

h−h0

h0

)
. (45)

Hence, W is exactly the strain in the z-direction. This completes
our parametrization of the 3D displacement, from which it is triv-
ial to obtain the strain tensor quoted in the main text (Eq. 12)

B Stationary solution in a circular geometry

Here we consider an axisymmetric tissue in a circular geometry of
radius R. Once again defining H =∇2h as the mean curvature and
σ = (σrr +σϕϕ )/2 as the average normal stress, we can rewrite

Eqs. 20 and 21 at steady state in terms of H and σ as follows

`2
σ ∇

2
σ = σ −σa +

(
1−ν

2

)
`2

σ ∇
2
σa +(1+ν)

Bh0

24
H

−
(

1+ν

2

)
f `2

σ ∇∇∇ ·p , (46)

`2
H∇

2H = H +
h0

γ(1+ν)

[
ν∇

2
σ

c +∇
2
σ −

(
1−ν

2

)
∇

2
σ

g
]
. (47)

We have similarly defined the average contractile and growth in-
duced stresses as σ c,g = tr(σσσ c,g)/2 along with the average active
stress σa = σ c + σg. Using circular polar coordinates, we only
have a radial dependence for H and σ in the axisymmetric case.
Slaving H to σ in the `H → 0 limit as before and taking σa to be
spatially constant for simplicity, we obtain

L2
σ ∇

2
σ = σ −σa− `2

σ

(
1+ν

2

)
∇∇∇ ·p , (48)

with the same Lσ as before. Notice that this equation has the
same form as the 1D model discussed in the main text (Eq. 28).
Similarly, writing u = ur(r)r̂, the displacement satisfies the follow-
ing simple equation,

L2
σ

(
∇

2ur−
ur

r2

)
= ur +

f
Ys

pr

[
1+

L2
σ − `2

σ

`2
p

]
, (49)

where we have used p = pr(r)r̂. Solving Eq. 18 in the circular do-
main for the polarization profile along with pr(R) = 1 we obtain,

pr(r) =
I1(r/`p)

I1(R/`p)
, (50)

where Iα (x) is the modified Bessel function of the first kind. Note
that while H is slaved to −∇2σ , the stress boundary condition
involves only the radial component, σrr(R) =−Λ̃/R (C = 1/R) and
σrϕ = 0 everywhere due to axisymmetry. Using the individual
stress components and their respective boundary conditions, we
obtain

σrr(r) = σa−
(

Λ̃

R
+σa

)
F(r/Lσ )

F(R/Lσ )

+ f
`2

σ `p

(`2
p−L2

σ )

F(R/`p)

I1(R/`p)

[
F(r/`p)

F(R/`p)
− F(r/Lσ )

F(R/Lσ )

]
, (51)

σϕϕ (r) = σa−
(

Λ̃

R
+σa

)
G(r/Lσ )

F(R/Lσ )

− f
`2

σ `p

(`2
p−L2

σ )

F(R/`p)

I1(R/`p)

[
G(r/`p)

F(R/`p)
− G(r/Lσ )

F(R/Lσ )

]
, (52)

σ(r) = σa−
(1+ν)

2

{(
Λ̃

R
+σa

)
I0(r/Lσ )

F(R/Lσ )

− f
`2

σ `p

(`2
p−L2

σ )

F(R/`p)

I1(R/`p)

[
I0(r/`p)

F(R/`p)
− I0(r/Lσ )

F(R/Lσ )

]}
. (53)
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Here we have defined two auxiliary functions

F(x) = I0(x)−
(1−ν)

x
I1(x) , (54)

G(x) = νI0(x)+
(1−ν)

x
I1(x) . (55)

Note that F and G have simple asymptotics, F(x)≈ ex/
√

2πx and
G(x) ≈ νex/

√
2πx as x→ ∞. The displacement and curvature are

similarly obtained to be

ur(r) =−
(σa + Λ̃/R)

YsLσ

I1(r/Lσ )

F(R/Lσ )
+

f
Ys

{
I1(r/`p)

I1(R/`p)

+
`2

σ

(`2
p−L2

σ )

F(R/`p)

I1(R/`p)

[
I1(r/`p)

F(R/`p)
−

`p

Lσ

I1(r/Lσ )

F(R/Lσ )

]}
, (56)

H(r) =
h0

2γ

{
(σa + Λ̃/R)

L2
σ

I0(r/Lσ )

F(R/Lσ )

+ f
`2

σ

`p(`2
p−L2

σ )

F(R/`p)

I1(R/`p)

[
I0(r/`p)

F(R/`p)
−
(
`p

Lσ

)2 I0(r/Lσ )

F(R/Lσ )

]}
.

(57)

Proceeding as in the 1D model and writing Λ = Λ̃/R, we have

H(0) =
h0

2γL2
σ F(R/Lσ )

[σa +Λ− f Lc] (58)

which changes sign at Λc = f Lc − σa just as in the main text
(Eq. 36). The length scale

Lc =
`2

σ

`p(`2
p−L2

σ )

[
L2

σ F(R/Lσ )− `2
pF(R/`p)

I1(R/`p)

]
, (59)

has identical scaling behaviour with respect to `p and `σ in a large
tissue (R� Lσ , `p) as in the simple 1D model. Similarly, ur(R) =
(I1(R/Lσ )/YsLσ F(R/Lσ ))[ f Ld−Λ−σa] changes sign at Λd = f Ld−
σa, with

Ld =
Lσ F(R/Lσ )

I1(R/Lσ )

[
1+

`2
σ

`2
p−L2

σ

(
1−

`pF(R/`p)I1(R/Lσ )

Lσ F(R/Lσ )I1(R/`p)

)]
,

(60)
which in a large tissue scales the same way as in the 1D model
(Eq. 40). Hence the simple 1D model captures all the same
physics, along with the qualitative spatial profiles as in the more
involved 2D axisymmetric circular tissue.
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