

Sustainable
Energy & Fuels

Metal Oxide Electrocatalyst Support for Carbon-free Durable Electrodes with Excellent Corrosion Resistance at High Potential Conditions

COMMUNICATION

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Metal Oxide Electrocatalyst Support for Carbon-free Durable Electrodes with Excellent Corrosion Resistance at High Potential Conditions

Yuuki Sugawara,^a Takuya Hihara,^a Gopinathan M. Anilkumar,^{ab} Keigo Kamata^c and Takeo Yamaguchi*^a

Ti2O3 was used as a corrosion-resistive catalyst support for electrocatalytic reactions at high potential conditions. The model electrocatalyst/Ti2O3 electrode, BSCF/Ti2O3, demonstrated a considerably higher durability than a carbon support at a highly oxidative potential and completely retained its OER performance after 2000 repeated potential cycles. Therefore, Ti2O3 is promising as a conductive support for electrochemical catalytic reactions at high potential conditions.

Metal oxides have been used in various applications, such as superconductors, $1-3$ photovoltaics, 4.5 ferrites, 6.7 and catalysts, $8-$ ¹³ because of their thermal, electronic, magnetic, and chemical characteristics. Recently, the electronically conducting properties of metal oxides have received considerable attention because the current energy issues have prompted the development of electrochemical devices for energy conversion and storage such as fuel cells and lithium-ion batteries. In the electrodes of such electrochemical devices, carbon materials are typically used as conductive supports for electrocatalysts.14,15 These carbon materials have high electronic conductivity, which enhances electron transport from active sites on catalysts to the electrodes during an electrocatalytic reaction. However, the use of carbon materials at high anodic potentials in, *e.g.*, oxygen evolution reaction (OER), is discouraged because the high potential causes carbon corrosion and deterioration of electrochemical performance.¹⁶ Although graphitized carbons, such as carbon nanotubes (CNTs) and graphenes, exhibit slower corrosion rates than carbon black,¹⁷ the corrosion resistance of graphitized carbon remains insufficient.

Therefore, alternative materials for conductive supports are required; thus, several conductive metal oxides have recently attracted considerable interest. For example, titanium oxides, $18,19$ antimony-doped tin oxides, 20 and tungsten oxides 21 have been applied as conductive support with electrocatalysts for water electrolysis and fuel cells. Among these metal oxides, substoichiometric titanium oxides are promising because of their high electronic conductivity, excellent stability both in acidic and alkaline conditions, and prominent resistance for electrochemical corrosion at high potential. Although $Ti₄O₇$ and doped TiO₂ have been exploited as conductive supports for electrocatalysts, few studies use $Ti₂O₃$ as a conductive support. $Ti₂O₃$ is a semiconducting compound with good electronic conductivity²² and shows good thermodynamic stability with high melting point (>1800 °C).²³ Conductive Ti₂O₃, such as ENETIA® series, has been recently studied on supports with electrocatalysts for $CO₂$ electroreduction and fuel cell cathodes.²⁴ However, the applicability of $Ti₂O₃$ as a conductive support for electrocatalysis at oxidative potentials has never been studied.

In the present study, we demonstrate the excellent durability of $Ti₂O₃$ as a conductive support for electrocatalysts of OER in alkaline media to evaluate the corrosion resistance of $Ti₂O₃$ at high potential conditions and its superiority to carbon support. We selected a benchmark nonprecious metal-based OER electrocatalyst, Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3−δ} (BSCF), as a model electrocatalyst, and BSCF was supported on ENETIA® Ti₂O₃ via annealing in an inert atmosphere, which is denoted as BSCF/Ti₂O₃, as shown in Fig. 1. Then, the durability of BSCF/Ti₂O₃ is evaluated by repeated potential cycles at the high potential for OER and compared with that of a graphitized carbon support²⁵ with relatively better corrosion resistivity, *i.e.*, CNT.

Fig. 1 Schematic of BSCF/Ti₂O₃ and its fabrication scheme.

a. Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan.

b.R&D Centre, Noritake Company LTD, 300 Higashiyama, Miyoshi, Aichi 470-0293, Japan. c. Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan.

Electronic Supplementary Information (ESI) available: Detailed experimental procedures; supplementary figures and tables. See DOI: 10.1039/x0xx00000x

COMMUNICATION Journal Name

BSCF was synthesized *via* the aspartic acid-aided sol–gel method.²⁶ The details of synthetic procedures are provided in ESI. The powder X-ray diffraction (XRD) pattern for BSCF was consistent with that for the previously reported orthorhombic BSCF phase [space group: Pnma] (Fig. S3).²⁷ The crystallite diameter was calculated to be 103 nm by Scherrer's equation. The Brunauer–Emmett–Teller (BET) specific surface area of BSCF was 9 $m^2 g^{-1}$. Subsequently, BSCF/Ti₂O₃ was fabricated by annealing of the powder mixture of BSCF and Ti_2O_3 in a N_2 atmosphere. Fig. 2a displays the XRD pattern of BSCF/Ti₂O₃ with weight composition of 50% BSCF after annealing at 800 °C, which is denoted as $50BSCF/Ti₂O₃$ 800. The XRD pattern shows diffraction peaks corresponding to BSCF; however, diffraction peaks of $Ti₂O₃$ were not detected. Instead, the diffraction peaks of tetragonal rutile-type $TiO₂$ were observed. To further examine the effect of the annealing process, we annealed the mixture of BSCF and $Ti₂O₃$ at different temperatures. Fig. S4 exhibited the XRD patterns of $50BSCF/Ti₂O₃$ after annealing at 200, 400, 600, and 800 °C, which are denoted as $50BSCF/Ti₂O₃$ 200, 50BSCF/Ti₂O₃ 400, 50BSCF/Ti₂O₃ 600, and 50BSCF/Ti₂O₃ 800, respectively. The clear peaks of Ti₂O₃ were detected only for $50BSCF/Ti₂O₃$ 200. The diffraction peaks of both Ti_2O_3 and TiO_2 appeared for $50BSCF/Ti_2O_3$ 400. The diffraction peaks of $TiO₂$ intensified with an increase in annealing temperature. This result suggested that $Ti₂O₃$ was oxidized by annealing at higher temperatures and transformed into TiO₂. Basically, such oxidization does not occur during annealing in a N_2 atmosphere. However, in the case of BSCF/Ti₂O₃, oxygen was supplied by BSCF, which was suggested by the peak shifts in XRD patterns of $50BSCF/Ti₂O₃$ samples compared with those of pristine BSCF, as shown in Fig. S5. In addition, 50BSCF/Ti₂O₃ 800 was also analyzed by UV-vis spectroscopy, which demonstrated that characteristic absorption of $Ti₂O₃$ disappeared after the annealing with BSCF, but a similar absorption to $TiO₂$ was observed (Fig. S6). To determine the oxidized support, we analyzed bonding environments in BSCF/Ti₂O₃ by Raman spectroscopy. The Raman spectra in Fig. S7 in ESI show that the peak of the O–Ti– O symmetric stretching vibration band at 420 cm−1 in BSCF/Ti₂O₃ samples shifted compared with that of pristine TiO₂. This band shift is typically triggered by the presence of oxygen vacancy in TiO_2 .²⁸ These results indicate that BSCF/Ti₂O₃ is composed of TiO_{2− δ} as the titanium oxide support after annealing at 400, 600, and 800 °C; notably, TiO_{2−δ} possesses a much higher electric conductivity than stoichiometric TiO₂.²⁹ Fig. 2b shows scanning electron microscopy (SEM) image of 50BSCF/Ti₂O₃ 800, which demonstrates that TiO_{2−δ} nanoparticles were attached to BSCF particles. Additionally, the BET specific surface area of 50BSCF/Ti₂O₃ _800 was 8 m² g⁻¹, which was slightly smaller than that of pristine BSCF, which implied the adhesion of grain boundary between BSCF and $Ti₂O₃$ particles. Fig. 2c shows high-resolution transmission electron microscopy (HR-TEM) images of $50BSCF/Ti₂O₃$ 800, which highlight the fringes with the *d*-spacing of 0.28 and 0.32 nm, which are associated with the (121) plane of BSCF and the (110) plane of TiO_{2−δ}, respectively. Furthermore, Fig. 2d shows the scanning TEM (STEM)-energy-dispersive X-ray (EDX) images on

the cross-sections of sample particles of 50BSCF/Ti₂O₃ 800. The EDX elemental mapping demonstrates that TiO_{2−δ} and BSCF nanoparticles were still separately present after annealing. Moreover, Fig. S8 shows the XRD pattern of $50BSCF/Ti₂O₃$ after annealing at 1000 °C, which is denoted as $50BSCF/Ti₂O₃$ 1000. The XRD pattern indicates the generation of multiple new phases by annealing, such as $Ba_4Ti_{11}O_{26}$ and $Ba_{1.3}Co_{1.3}Ti_{6.7}O_{16}$. The new phases were caused by unexpected reactions between BSCF and Ti_2O_3 particles. Thus, annealing at 1000 °C is unfavourable condition for the fabrication of $50BSCF/Ti₂O₃$.

The OER activities of fabricated BSCF/Ti₂O₃ samples were evaluated using a typical three-electrode system with a rotating disk electrode (RDE). The details of electrochemical measurements are described in ESI. Fig. 3a shows the *iR*corrected OER polarization curves of $50BSCF/Ti₂O₃800$, physically mixed BSCF and $Ti₂O₃$ with 50 wt% BSCF without annealing (denoted as $50BSCF/Ti₂O₃$ PM), annealed BSCF at 800 °C without $Ti₂O₃$ (denoted as BSCF 800), and annealed Ti₂O₃ at 800 °C without BSCF (denoted as Ti₂O₃_800). The polarization

Fig. 2 (a) XRD patterns of (red) 50BSCF/Ti₂O₃ 80, (blue) theoretical orthorhombic BSCF (ICSD: 161169), (green) theoretical tetragonal rutile-type TiO₂ (ICSD: 168140) and (black) theoretical Ti₂O₃ (ICSD: 54175). (b) SEM image of 50BSCF/Ti₂O₃ 800. (c) HR-TEM images of 50BSCF/Ti₂O₃_800, which highlight the fringes of BSCF and TiO_{2−δ} crystals. (d) STEM-EDX images of the cross-section of $50BSCF/Ti₂O₃$ 800.

Journal Name COMMUNICATION

curves indicate that BSCF_800 generated only a slight OER current. This is due to the absence of a conductive support in the catalyst layer, which inhibits the electron transport from the active sites on BSCF to the electrode because of the low conductivity of BSCF, as shown in Table S1. Additionally, $Ti₂O₃$ 800 did not cause any OER current because Ti₂O₃ did not intrinsically catalyze OER. However, $50BSCF/Ti₂O₃$ 800 generated a much higher OER current than BSCF_800 and Ti₂O₃_800 because the conductive titanium oxide support can promote electron transport to the electrode. Furthermore, notably, 50BSCF/Ti₂O₃ 800 exhibited a larger OER current than 50BSCF/Ti₂O₃ PM. It is attributed that the process of physical mixing resulted in larger grain boundary resistance among BSCF and $Ti₂O₃$ particles than after annealing, and the consequent bulk conductivity remained low, as exhibited in Table S1. However, the annealing at 800 °C induced superior bulk conductivity, which can facilitate electron transport in the catalyst layer on RDE, which leads to the considerably enhanced OER current of $50BSCF/Ti₂O₃$ 800. Thus, annealing was necessary for the fabrication of efficient electrodes that are made of BSCF and conductive $Ti₂O₃$.

Furthermore, the OER polarization curves for 50BSCF/Ti₂O₃ 200, 400, 600, and 800 are shown in Fig. 3b, which demonstrates that higher annealing temperature resulted in higher OER current. To understand the effect of annealing temperature, we measured the electrical conductivity of bulk samples, and the results are shown in Table S1. The conductivities were positively correlated with annealing

Fig. 3 OER activities of BSCF/Ti₂O₃ in O₂-saturated 1 M KOH. (a) OER polarization curves of 50BSCF/Ti₂O_{3_}800, 50BSCF/Ti₂O_{3_}PM, BSCF_800, and Ti₂O_{3_}800. The graph shows the 10th cycle of the reverse scan sweeps between 1.2 and 1.8 V (RHE). (b) OER polarization curves of BSCF/Ti2O3, which were fabricated at different annealing temperatures. (c) OER polarization curves of BSCF/Ti₂O₃ bearing different BSCF compositions. (d) OER mass activities of BSCF/Ti₂O₃ with different BSCF compositions.

temperature, *i.e.*, higher annealing temperature resulted in higher conductivity. This is due to the reduction of grain

boundary resistance at higher annealing temperature,³⁰ which enhances the electron transfer between BSCF and TiO_{2−δ} particles. Additionally, we examined the effect of the weight composition of BSCF. Several BSCF/Ti₂O₃ samples with the BSCF composition of 10, 30, 50, 70, and 90 wt% were fabricated by annealing at 800 °C and are denoted as $10BSCF/Ti₂O₃$ 800, 30BSCF/Ti₂O₃_800, 50BSCF/Ti₂O₃_800, 70BSCF/Ti₂O₃_800, and 90BSCF/Ti₂O₃ 800, respectively. The XRD patterns and bulk conductivities of the samples are shown in Fig. S9 and Table S1, respectively. Their OER polarization curves are shown in Fig. 3c and were used to calculate the OER mass activity by normalizing the OER current at 1.63 V with the loaded amount of BSCF on RDE. Fig. 3d shows the OER mass activity, which indicates that 50BSCF/Ti₂O_{3_}800 possesses the highest mass activity. This can be explained as a trade-off between the number of accessible OER active sites and the conductivity of BSCF/Ti₂O₃. In the case of lower BSCF compositions, *i.e.*, 10 and 30 wt%, their bulk conductivities were the same as that of the 50 wt% sample, as shown in Table S1, whereas the considerable number of OER active sites on the BSCF surface was covered by TiO_{2−δ}, which inhibited catalytic OER. Therefore, their OER mass activity was inferior to that of the 50 wt% sample. In contrast, for higher BSCF compositions, *i.e.*, 70 and 90 wt%, the samples contained more accessible OER active sites, whereas the bulk conductivities were diminished because of the insufficient amount of TiO_{2−δ}, as shown in Table S1, which prevented efficient electron transport from active sites to the electrode and decreased the mass activity. Therefore, 50 wt% BSCF is the optimal composition for the mass activity.

1.4 1.5 1.6 1.7 1.8 demonstrate a considerably stable OER performance without $\overline{0}$ 20 40 60 80 100 50BSCF/Ti₂O₃ 800 retained well its overpotential, which is Finally, we tested the durability of BSCF/Ti₂O₃ in the OER process to demonstrate the durability of the $Ti₂O₃$ support at high potential conditions. 50BSCF/Ti₂O₃ 800, which is the optimized sample, was chosen to evaluate durability by repeated potential cycles in the OER region, and the results were compared with those of a conventional carbon support, CNT, which is denoted as BSCF/CNT. Fig. 4a showsthe initial and 2000th OER polarization curves of 50BSCF/Ti₂O₃ 800, which current loss after 2000 cycles. Conversely, Fig. 4b shows the initial and 2000th OER polarization curves of BSCF/CNT, and its OER current dramatically decreased after 2000 cycles because of carbon corrosion at high potential. Fig. 4c shows a change in the OER overpotentials of $50BSCF/Ti₂O₃$ 800 and BSCF/CNT as a function of cycle number. The OER overpotential is defined as the potential difference between the theoretical (1.23 V vs. RHE) and actual potential, when reaching the current density of 10 mA cm⁻²_{disk}. The overpotential in BSCF/CNT rapidly increased with an increase in the number of cycles, whereas ascribed to the high stability of titanium oxide at high potential. Furthermore, we characterized the morphology and elemental composition of 50BSCF/Ti₂O₃ 800 after the durability test. Fig. 4d shows the TEM images of TiO_{2−δ} particles before and after 2000 cycles. The TEM observation confirmed that the particle morphology of TiO_{2−δ} was unchanged after 2000 cycles.

COMMUNICATION Journal Name

Fig. 4 Results of durability tests of BSCF/Ti₂O₃ and BSCF/CNT. (a) OER polarization curves of initial 50BSCF/Ti₂O₃_800 and after 2000 cycles in O₂-saturated 1 M KOH. (b) OER polarization curves of initial BSCF/CNT and after 2000 cycles in O₂-saturated 1 M KOH. (c) Change in the overpotential of $50BSCF/Ti₂O₃$ 800 and BSCF/CNT as a function of cycle number. (d) TEM images of TiO_{2−δ} particles before and after 2000 cycles. (e) SEM-EDX images of 50BSCF/Ti₂O₃ 800 after 2000 cycles and quantified metal components in the initial BSCF particles as well as those after 2000 cycles.

However, for BSCF/CNT, the tubular structure of CNT did not remain and was agglomerated after 2000 cycles, as shown in Fig. S10, which indicated carbon corrosion by repeated potential cycles at high potential. Furthermore, Figure 4e shows SEM-EDX images of 50BSCF/Ti₂O₃_800 after 2000 cycles, which indicate that BSCF and TiO_{2−δ} still existed separately. Additionally, the metal components in BSCF and TiO_{2−δ} remained during the repeated potential cycles in the OER region, and BSCF retained the compositions of Ba, Sr, Co, and Fe after 2000 cycles. These results demonstrated that the TiO_{2−δ} support, which was transformed from $Ti₂O₃$ during annealing, was more durable than the CNT support for long-term OER performance. Furthermore, the TiO_{2−δ} support was retained under the harsher potential conditions than those for previously reported metal oxide supports, such as antimony-

doped tin oxide and molybdenum oxide.^{31,32} Thus, Ti₂O₃ support is promising as a conductive support for electrochemical catalytic reactions at high potential conditions.

200 nm conductive support for electrochemical catalytic reactions at Initial **performance after 2000 repeated potential cycles, which** We applied $Ti₂O₃$ as a highly durable catalyst support for electrocatalytic reactions at high potential conditions. The model OER electrocatalyst/conductive support sample, *i.e.*, BSCF/Ti₂O₃, demonstrated excellent corrosion resistance to high potential. BSCF/Ti₂O₃ completely retained its OER indicated that it had a much better durability during the OER process than the CNT support. Thus, $Ti₂O₃$ is promising as a high potential conditions.

Conflicts of interest

200 nm There are no conflicts to declare.

Acknowledgments

We acknowledge Sakai Chemical Industry Co., Ltd. (Sakai, Japan) for providing $ENETIA^{\circ}$ Ti₂O₃. Part of this paper is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO). K.K. acknowledges the support from the PRESTO program (No. JPMJPR15S3) of the JST.

Notes and references

- 1 J. G. Bednorz and K. A. Muller, *Z. Phys. B-Condens. Mat.*, 1986, **64**, 189–193.
- 2 K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian and T. Sasaki, *Nature*, 2003, **422**, 53–55.
- 3 Y. Kamihara, T. Watanabe, M. Hirano and H. Hosono, *J. Am. Chem. Soc.*, 2008, **130**, 3296–3297.
- 4 N. Vlachopoulos, P. Liska, J. Augustynski and M. Gratzel, *J. Am. Chem. Soc.*, 1988, **110**, 1216–1220.
- 5 M. Gratzel, *Inorg. Chem.*, 2005, **44**, 6841–6851.
- 6 Y. Kato and T. Takei, *J.Inst. Electr. Eng. Jpn.*, 1933, **53**, 408–412.
- 7 L. Neel, *Ann. Phys.-Paris*, 1948, **3**, 137–198.
- 8 J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough and Y. Shao-Horn, *Science*, 2011, **334**, 1383–1385.
- 9 Y. Y. Liang, Y. G. Li, H. L. Wang, J. G. Zhou, J. Wang, T. Regier and H. J. Dai, *Nat. Mater.*, 2011, **10**, 780–786.
- 10 H. T. Kreissl, M. M. J. Li, Y. K. Peng, K. Nakagawa, T. J. N. Hooper, J. V. Hanna, A. Shepherd, T. S. Wu, Y. L. Soo and S. C. E. Tsang, *J. Am. Chem. Soc.*, 2017, **139**, 12670–12680.
- 11 S. Shibata, K. Sugahara, K. Kamata and M. Hara, *Chem. Commun.*, 2018, **54**, 6772–6775.
- 12 Y. Sugawara, K. Kamata and T. Yamaguchi, *ACS Appl. Energy Mater.*, 2019, **2**, 956–960.
- 13 E. Hayashi, Y. Yamaguchi, K. Kamata, N. Tsunoda, Y. Kumagai, F. Oba and M. Hara, *J. Am. Chem. Soc.*, 2019, **141**, 890–900.
- 14 E. Antolini, *Appl. Catal. B-Environ.*, 2009, **88**, 1–24.
- 15 Y. L. Zhu, W. Zhou and Z. P. Shao, *Small*, 2017, **13**, 1603793.

- 16 Y. Sugita, T. Tamaki, H. Kuroki and T. Yamaguchi, *Nanoscale Adv.*, 2020, **2**, 171–175.
- 17 K. Kinoshita, *Carbon: Electrochemical and Physicochemical Properties*, John Wiley & Sons, New York, 1988.
- 18 T. Ioroi, H. Senoh, S. I. Yamazaki, Z. Siroma, N. Fujiwara and K. Yasuda, *J. Electrochem. Soc.*, 2008, **155**, B321–B326.
- 19 S. Y. Huang, P. Ganesan, S. Park and B. N. Popov, *J. Am. Chem. Soc.*, 2009, **131**, 13898–13899.
- 20 K. Kakinuma, M. Uchida, T. Kamino, H. Uchida and M. Watanabe, *Electrochim. Acta*, 2011, **56**, 2881–2887.
- 21 Y. Z. Lu, Y. Y. Jiang, X. H. Gao, X. D. Wang and W. Chen, *J. Am. Chem. Soc.*, 2014, **136**, 11687-11697.
- 22 J. M. Honig and T. B. Reed, *Phys. Rev.*, 1968, **174**, 1020–1026.
- 23 P. G. Wahlbeck and P. W. Gilles, *J. Am. Ceram. Soc.*, 1966, **49**, 180–183.
- 24 T. Arai, O. Takashi, K. Amemiya and T. Takahashi, *SAE Int. J. Alt. Power.*, 2017, **6**, 145–150.
- 25 C. Cai, Y. Rao, J. F. Zhou, L. C. Zhang, W. Chen, Z. H. Wan, J. T. Tan and M. Pan, *J. Power Sources*, 2020, **473**, 7.
- 26 K. Sugahara, K. Kamata, S. Muratsugu and M. Hara, *ACS Omega*, 2017, **2**, 1608–1616.
- 27 T. Itoh, Y. Nishida, A. Tomita, Y. Fujie, N. Kitamura, Y. Idemoto, K. Osaka, I. Hirosawa and N. Igawa, *Solid State Commun.*, 2009, **149**, 41–44.
- 28 L. D. Li, J. Q. Yan, T. Wang, Z. J. Zhao, J. Zhang, J. L. Gong and N. J. Guan, *Nat. Commun.*, 2015, **6**, 10.
- 29 B. Q. Xu, H. Y. Sohn, Y. Mohassab and Y. P. Lan, *RSC Adv.*, 2016, **6**, 79706–79722.
- 30 R. Lahouli, J. Massoudi, M. Smari, H. Rahmouni, K. Khirouni, E. Dhahri and L. Bessais, *RSC Adv.*, 2019, **9**, 19949–19964.
- 31 H. S. Oh, H. N. Nong, T. Reier, A. Bergmann, M. Gliech, J. F. de Araujo, E. Willinger, R. Schlogl, D. Teschner and P. Strasser, *J. Am. Chem. Soc.*, 2016, **138**, 12552–12563.
- 32 M. Tariq, W. Q. Zaman, W. Sun, Z. H. Zhou, Y. Y. Wu, L. M. Cao and J. Yang, *ACS Sustainable Chem. Eng.*, 2018, **6**, 4854–4862.