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An innovative web-based integrated catalysts informatics
platform, Catalyst Acquisition by Data Science (CADS), is
developed for use towards the discovery and design of
catalysts. The platform provides three main functionalities:
a repository for data sharing and publishing, an analytic
workspaces for exploratory visual analysis, and catalyst
property prediction tools with pretrained machine learning
models. Access to such a platform helps decrease barriers
to entry faced by researchers in catalytic chemistry when
attempting to apply catalyst informatics towards data
by providing analytical and visualization tools that can
be simultaneously applied and easily accessed within a
central space, thereby helping the advancement of catalyst
informatics. The developed platform allows researchers to
upload and collect data onto the platform and conduct data
analysis using a system of linked workspaces consisting of
interactive visualization tools and machine learning tools
that simulataneously update according to the researchers’
actions in real time. The platform also provides a space for
collaboration where researchers can choose to publish their
uploaded data and resulting analyses to the platform for
collaborations with other users and groups. As an example,
CADS is applied towards oxidative coupling of methane
(OCM) data where use of the platform tools reveal underly-
ing patterns and trends that were otherwise hidden within
the original data. Thus, the proposed platform contributes
towards the advancement of catalysts informatics for both
specialists and non-specialists.
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Introduction
The implementation of data science techniques has greatly em-
powered catalyst data thanks to the rapid growth of data avail-
able for catalysis research1–3. This development is referred to
as catalysts informatics, where design and insight into catalysis
arises from the trends and patterns found within catalyst data
through data science applications4,5. However, while it shows
much promise, catalyst informatics involves factors such as data
construction, data management, visualization, machine learning,
and a variety of other data analysis skills, thereby requiring a
wide range of data science techniques and related knowledge4,6.
Furthermore, these tasks are not often collected or developed
together, making it difficult to link data construction to catalyst
design. Such individualistic development has limited the ability
to properly implement catalyst informatics, making it even more
necessary to have a centralized, standard platform available for
catalyst informatics applications.

Similar issues have been previously faced in the early stages of
bioinformatics and materials informatics where web-based plat-
forms providing analysis for informatics have been developed for
solving such issues7,8. Within the scope of materials informat-
ics, various databases and platforms consisting of data generated
from first principles calculations as well as data and code re-
lated to computational materials science are available for use with
examples ranging from the Open Quantum Materials Database
(OQMD), the Novel Materials Discovery repository (NoMad), and
Automatic Flow for Materials Discovery (AFLOW)9–11.

Along these lines, web-based catalysis data platforms have
been also developed with examples such as CatApp and Catalyst
Hub12,13. Unfortunately, these platforms lack data analysis func-
tions and components, and more closely resemble data search
engines with available visualization functions. Additionally, it is
very difficult for experimental catalyst researchers that are un-
familiar with data management or software programming to use
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data provided by such data plaforms. While some of the platforms
provide data visualization functionalities, they are often very lim-
ited to a specific usage scenario. Hence, it is crucial to develop a
platform that is accessible and is equipped with the tools neces-
sary for catalysts informatics.

The core concept for a catalyst platform is to provide an envi-
ronment that can not only be easily accessible but can also simul-
taneously handle data management and data science techniques
via a graphic user interface. Here, a web-based interactive plat-
form named Catalyst Acquisition by Data Science (CADS) is pro-
posed where the process of data construction to catalyst design
can all be achieved in one location where the proposed platform
is available at https://cads.eng.hokudai.ac.jp/. In par-
ticular, through using the platform researchers can visualize and
analyze data simultaneously, where data analysis visualizations,
tables, and other tools like machine learning methods are linked
and updated in real-time, making the process very interactive and
suitable for applying data science towards catalysis data analy-
sis. Furthermore, researchers can publish catalyst data as well as
resulting analyses and share with other researchers for collabo-
ration efforts. The introduced platform thus contributes towards
the advancement of catalysts informatics for both specialists and
non-specialists.

Concept and Platform Overview

Integrated Platform for Catalysts Informatics

There are numerous resources available for catalayst informatics
applications, though they are available in an uncoordinated man-
ner. To start, experimental scientists collect catalyst data using a
variety of different approach through their research activities. Si-
multaneously, developments in high-throughput experimentation
and calculations have accelerated the accumulation of catalyst
data both qualitatively and quantitatively. In order to apply data
science techniques towards data generated and collected through
these methods, it becomes necessary to translate the data into its
digital equivalent, organize said data in a uniform manner, and
store the results in a shared repository.

On the other hand, the advancement of internet and computing
technology had made it possible to share and reuse various types
of data visualization and data analysis methods, including ma-
chine learning, as software libraries and frameworks. In compar-
ison, skilled researchers can combine these libraries and frame-
works with relative ease in order to analyse data. However, doing
so requires the knowledge of some programming languages (such
as Python) as well as the skill and knowledge of how to access
and utilize these libraries and frameworks. As many researchers
do not have these skills, there is a large barrier in place for non-
specialized researchers that may wish to apply data science to-
wards their research. Furthermore, even if one were posses such
skills, analysis of heterogeneous data like catalyst data requires a
trial-and-error approach in order to determine the most relevant
descriptors of the given datasets as well as the analysis or machine
learning methods that would be most appropriate for that partic-
ular data set. This results in very tedious work even for skilled re-
searchers as it involves repetitive changes to programming scripts
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Fig. 1 The concept of the proposed platform.

when investigating different analysis settings and evalutation of
the data analysis results.

In order to help propel the development of catalyst informatics
forward, it becomes necessary to provide an integrated platform
where researchers can manage resources for catalyst informat-
ics applications in a central location. Figure 1 depicts the basic
structure and schemes of the proposed platform. In such a plat-
form, researchers must be able to accumulate catalyst data and
to successfully utilize the offered analysis and visualization tech-
niques, including machine learning techniques, without requiring
additional knowledge relating to computer programming or ma-
chine learning. All necessary resources including datasets, anal-
ysis methods, visualizations, and machine learning techniques
should also be published and made accessible through the plat-
form in an unified manner so that other researchers or other pro-
grams can reuse such resources for further analysis. Considering
these factors, the developed platform aims to provide these func-
tionalities in an integrated environment that is easily accessible
to any catalyst researcher.

Platform Overview

An innovative platform for a catalyst informatics platform, Cata-
lyst Acquisition by Data Science (CADS), is developed in efforts to
address the needs of catalyst researchers that wish to apply infor-
matics towards their research. The proposed platform provides
three sub applications: Data Management, Analysis, and Predic-
tion. The platform allows researchers to upload local files contain-
ing catalyst data in the Data Management application. Once a file
is uploaded upon the platform, researchers can then analyze the
underlying data in the Analysis application where various analy-
sis methods are made available on the platform. These methods
include not only simple visualization tools such as scatter plots
but also complex analysis tools such as regression and clustering
methods used in machine learning. Using trained models created
in the Analysis application, researchers can then attempt to pre-
dict particular physical properties of catalysts.

Interested readers may refer to the documentation of the CADS
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Fig. 2 The documentation page of the Catalyst Acquisition by Data Sci-
ence (CADS) platform.

platform (Figure 2 ∗). The documentation provides further de-
scription and general walkthrough tutorial on how to utilize the
platform.

Data Management

Researchers (which, from this point, are also referred to as
“users”) can upload arbitrary files that contain catalyst data in
table form. Once a file is uploaded to the application, the file
is recognized as a data source within the platform. Currently,
the platform supports files formatted as Comma Separated Value
(CSV) files for using the data in the Analysis application.

Figure 3 shows a snapshot of the data management applica-
tion. When a user accesses the data management application, all
available data sources that have been previously uploaded to the
system or shared by other users are listed at the top page and are
searchable by keywords. Users may select a data source in order
to browse the content of a data source, which is displayed in tab-
ular form. The displayed table can be narrowed down through
the use of search keywords while specific columns may be made
visible or hidden at the choice of the user.

Users also have control over the accessibility of the data
sources. There are three levels of accessibility on the platform:
private, internal, and public. The default setting at the initial cre-
ation of a data source is private, where only the file owner can
read, use, or delete the data source in question. The owner of
the data source also has the ability to change the permissions
to other levels of accessibility at their discretion. For instance,
data sources marked as internal may be accessed by users with
the proper permissions while data sources marked public can be
accessed by all users. Shared data sources are published using
copyright licenses provided by the Creative Commons †.

Currently, the platform publishes four public data sources:
“ChemCatChem” data (consisting of catalyst data in relation to
the oxidative coupling of methane reaction), “Perovskite” data
(consisting of data relatigng to a series of materials with a cu-
bic perovskite structure), “2D Materials” (consisting of a variety

∗https://cads.eng.hokudai.ac.jp/docs-static/
†https://creativecommons.org/

Fig. 3 Data Management sub application: a list of uploaded data sources
on the top and a table view of the content of a data source on the bottom.
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of data relating to approximately 1500 two-dimensional mate-
rials), and “CatApp” data (consisting of data relating to activa-
tion and reaction energies calculated for coupling reactions on
metal surfaces)12,16–18. Note that the Perovskite, 2D Materials,
and CatApp databases are licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

Analysis

The analysis application houses the core features of the developed
platform. In order to provide users with a flexible and easy-to-
use environment for analysis of heterogeneous data, coordinated
multiple views (CMVs) are employed19–21. Coordinated multi-
ple views is an exploratory visualization technique that combines
multiple views. Utilizing multiple views allows for the visual-
ization of target data from multiple viewpoints simultaneously.
Each view displays the target data with a different visualization
technique and allows users to select a set of visualized objects
through direct manipulation. This selection defines a new condi-
tion for highlighting the corresponding objects and is immediately
reflected within the other views. Users are also able to repetitively
set up different selections in order to investigate how different
conditions are affected through different visualizations. Sjöbergh
et. al. have previously extended the original coordinated mul-
tiple views so that statistical analysis and data mining tools are
available as views within their CMV framework22,23. In light of
this, a visual analysis framework is developed with various func-
tionalities that aids users when attempting to apply data science
techniques, including machine learning, towards catalysts infor-
matics research.

Figure 4 illustrates an analysis result generated through the use
of the analysis sub application in the developed platform. A user
first selects a target data source for analysis from the stored data
sources made available to the user. The user can then apply dif-
ferent views in order to visualize the selected data from different
view points. As seen in Figure 4, the user has applied six views:
two scatter plots with different settings, a table view, a feature
importance analysis tool, a regression tool, and a histogram tool.
Additionally, users also have the ability to save the workspace
containing the analysis results. Similarly to data sources, one can
assign accessibility to saved workspaces in order to control the
access levels of the workspace.

Users may also save trained machine learning models such as
regression models for future reuse within the predict sub appli-
cation. This ability allows users to calculate estimated property
values for given input conditions.

In section 3, we describe the implementation of the Coordi-
nated Multiple View framework in further detail.

Prediction

Users can estimate a specific physical property corresponding to
a particular set of parameter values using stored pre-training ma-
chine learning models. Figure 5 presents a snapshot from the Pre-
diction application. Users can enter explanatory variables into the
input fields to specify desired conditions for estimated physical
properties of catalysts. Then, pressing the ‘Predict’ button trig-
gers a calculation of the estimation. The result of the calculated

estimation is displayed at the bottom of the web page.

Implementation
System Architecture

Figure 6 depicts the architecture overview of the proposed plat-
form. The introduced platform is implemented as a web applica-
tion. Uploaded data sources are stored in the data store as file
objects. As the application database backend, the Postgres rela-
tional database is used, which manages application-related data
such as resource metadata or user information. Users can access
the application through the reverse proxy.

Python is implemented as the main programming language of
the platform to allow data analysis to access machine learning
libraries such as pandas ‡ or scikit-learn § while Django is imple-
mented as the base framework for server-side functionalities of
the main web application and web application programming in-
terfaces (APIs). The Javascript framework React ¶ is used client-
side in order to share parts of the display functionalities and inter-
active operations. For realizing interactive graph displays, Bokeh
is implemented ‖.

Visual Analysis Framework

A framework for visual analysis is implemented where coordi-
nated multiple views are utilized. This type of framework allows
users to combine multiple view components in order to analyze
catalysis data on demand.

Figure 7 illustrates an overview of the framework and how the
components communicate with each other. The main components
of the proposed framework are Views and a ViewCoordinator. The
ViewCoordinator opens and manages a workspace that coordi-
nates all views added by the user. When the user selects a data
source, the ViewCoordinator fetches the content of the selected
data source and holds it in a tabular form. This table is used in
order to coordinate different views while the workspace compo-
nent manages the visual arrangements of the views. By selecting
the ’Add view’ button on the workspace, the user may add new
views in order to set up new visualizations or analysis results at
their discretion.

Views

A view is a visual wrapper component of an arbitrary analysis
or visualization function. It provides a display which represents
data with specific visualization technique as well as a common
interface for controlling the behavior of the corresponding view
function. Figure 8 presents a snapshot of a scatter plot view.

As the common user interface, a view has a ‘Close’ button for
removing the view from the workspace and a ‘Setting’ button to
open the setting panel of the view. With the setting panel, users
can specify parameters of the view function. In the example of
a scatter plot, users can specify the row name of the target data

‡https://pandas.pydata.org/
§ https://scikit-learn.org/
¶https://reactjs.org/
‖https://bokeh.pydata.org/en/latest/
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Fig. 4 Analysis sub application with coordinated multiple views consisting of six views.
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Fig. 5 Prediction sub application where users can make predictions with
pre-trained models.
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Fig. 6 System architecture of the proposed platform.

source assigned for the X axis and Y axis and also configure the
color assignment of the display objects in the plot.

A view function can vary from a simple view that only visualizes
the original data as a plot to a view that involves complex calcu-
lations like machine learning. Some complex components access
the servers with the REST protocol for making heavy calculations
on the server side and receiving results to make visualizations of
the result data.

Currently, the provided views in the platform are categorized
into the following three categories:

1. visualization:
scatter, table

2. analysis:
histogram, clustering, feature importance with random for-
est,

3. machine learning:
regression, classification.

Views in the visualization category are simple visualization
components that assign data values with visual properties where
all necessary calculations are carried out from the client side. On
the other hand, views from the analysis and machine learning cat-
egories involve more complicated calculations and use the REST
APIs to create visualizations of the results.
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Fig. 7 The overview of the visual analysis framework.

Data Linkage between Views

Views are connected and interact with eachother through the
ViewCoordinator. The ViewCoordinator fetches data from a se-
lected data source and notifies the views of the change in target
data. The views then update their display according to their set-
tings upon incorporating the new target data. When the user
selects a set of data objects in a view, the selection operation is
transferred to the ViewCoordinator. The ViewCoordinator then
notifies all views in the workspace of the selection change. As a
result, the views update the selection within their display so that
the data is in the same row on the internal table as with the se-
lected data object. In this way, the brushing operation is realized
among different views.

Application
The power of CADS is demonstrated using OCM data where OCM
data consisting of 1866 data is collected from literatures1. One
of the main features of CADS is interactive visualization which al-
lows users to reveal the patterns and trends hidden within data in
an interactive manner. Two scatter plots, shown in Figure 9, are
visualized using 1866 OCM data where C2 selectivity vs CH4 con-
version and CH4 pressure vs O2 pressure are plotted. Here, three
exploratory data analyses are interactively carried out in order
to reveal the relation of how C2 selectivity and CH4 conversion
behave against CH4 and O2 pressure. The orange plot points rep-
resent the selected data points within the dataset chosen for anal-
ysis. As can be seen in the graphs, the selected data points within
the dataset are highlighted and are linked to each other. This
allows one to select data points in one graph and have that se-
lection be automatically highlighted in the linked windows. This
feature allows for simultaneous analysis of data across multiple
windows.

In the case of Figure 9, high CH4 conversion and low C2 selec-
tivity are achieved when high O2 pressure is applied. One can
consider that large number of oxygen is responsible for oxidation
of CH4, resulting the high CH4 conversion. In same manner, how
CH4 pressure affect the C2 selectivity and CH4 conversion is inves-
tigated. Figure 9 shows that high CH4 pressure results in low CH4

conversion and high C2 selectivity while low CH4 pressure results
in relatively high CH4 conversion. These observations and con-
clusions were able to occur thanks to the ability to link windows,
which allow them to interact with each other. As a result, interac-
tively selecting the multiple scatter plots allows for the revelation
of hidden information. Hence, interactive exploratory data anal-
ysis in CADS can assist the design of catalysis experiments.
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Fig. 8 The common interface of a view for the case of a scatter plot.

Machine learning function in CADS is also explored using the
1866 OCM data. Here, random forest regressor(RFR) is imple-
mented where the objective variable is set to C2 yield. The follow-
ing 6 descriptor variables are chosen for training RFR: Cation1,
Cation2, Contact-times, CH4-pressure, O2-pressure, and Temper-
ature while C2 yield is . Figure 10 represents the scatter plot of
C2 selectivity vs CH4 conversion as well as true and predicted
C2 yield via RFR. Note that the presented predicted and true C2

yields in Figure 10 are the result of only trained data for demon-
stration purposes; therefore, prediction ability towards test data
is not evaluated here. Overall, Figure 10 shows that prediction
of C2 yield is good although there are a few points of predicted
C2 yield that are not predicted well. Here, CADS plays a major
role in revealing which data points are not being predicted. In
Figure 10, data points which are not accurately predicted in RFR
are selected, where the corresponding data points are then auto-
matically highlighted in scatter points. It is interesting to see that
the data points that are not accurately predicted in RFR are the
data points which have high C2 yield: more specifically, C2 yield
over 30%. This suggests that C2 yield above 30% has different
patterns and rules in the OCM data in comparison to yields less
than 30%. Thus, CADS can interactively unveil the data points
that do not follow the general trends in rule, thereby demonstrat-
ing that CADS can provide guidance for consecutive data analysis
as well as scientific analysis.

Lastly, OCM data via high throughput experiments are visu-
alized using the CADS platform. The high throughput OCM
data consists of 12,706 data28. Here, the following seven
scatter plots are visualized in Figure 11: C2s vs CH4cov,
Arflow vs Temp, O2flow vs CH4flow, COs vs CO2s, C2H4s vs
C2H6s, M1atomnumber vs SupportID, and M2Atomnumber vs
M3atomnumber. Please see the reference28 for the details of each
variable.

In Figure 11, the data points with high C2 yield (in other words,
high C2 selectivity and high CH4 conversion) are selected and

highlighted throughout various scatterplots with different vari-
ables. Immediately, one can see that there are trends present with
data points that have a high C2 selectivity and high CH4 conver-
sion. For instance, it becomes clear that such data points tend to
occur when temperature is between 700C and 850C where the
upper end of this temperature range results in high C2 selectivity
when Ar flow is increased. Additionally, while there is no particu-
lar trend when comparing CH4 flow and O2 flow, there is a trend
present when considering CO and CO2 selectivities. In particular,
the selected data points are found to concentrate where CO and
CO2 selectivities are low, which suggests that suppressing CO and
CO2 production is important. The selected data points are also
found to result in large C2H4 selectivity (ranging between 30 to
70) where C2H6 selectivity increases as C2H4 selectivity increases,
suggesting a correlation between both selectivities. Finally, it also
becomes possible to understand which combinations of atomic
elements result in high rates of C2 yield by plotting atomic num-
bers of each element against its appropriate support ID (which
represents the chemical formula being considered). In comparing
these variables, trends in terms of atomic composition become
clearer to understand. For instance, when the atomic number of
element 1 is 25, the choice of support can affect C2 yield rate. Ad-
ditionally, when comparing the second and third elements of the
catalyst, it becomes clearer that high C2 yield is likely to occur
when the second atomic number is 11 or 19 and the third atomic
number is either around 42 or 74, suggesting that atomic com-
position is also important to consider when looking for catalysts
that result in a high C2 yield. These results thus demonstrate the
power of the CADS platform for multi-dimensional analysis for
data that allow for the discovery of underlying trends within data
where the platform’s ability to simultaneously plot and illustrate
the relationships of various data and variables allows one to com-
pare data points on a large scale that is both convenient and easy
to analyze.
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Fig. 9 Scatter plots of C2 selectivity vs CH4 conversion and CH4 pressure
vs O2 pressure.

Conclusion

A catalyst informatics platform, Catalyst Acquisition by Data Sci-
ence (CADS), is developed and proposed. The proposed platform
provides a data management system for publishing and sharing
catalysts data among users. It also provides an interactive visual
analysis environment for exploration of uploaded catalysts data.
Such an interactive environment assists researchers in discovering
trends and patterns hidden within catalyst data. In applications
of CADS, OCM data is analyzed where the reactions between CH4

and C2 pressures against C2 selectivity vs CH4 conversion are ex-
plored. Furthermore, implementation of RFR in CADS reveals
the hidden patterns in OCM data set. Thus, CADS provides a
multi-functional environment for catalyst informatics that can as-
sist researchers in designing catalysts from catalysts data. Lastly,
further functions in CADS are expected to be developed as well
as to help encourage researchers to share catalysts data for the
community.

Fig. 10 Scatter plot of C2 selectivity vs CH4 conversion and predicted
and true C2 yield.
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