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Energy transfer-driven regioselective synthesis of functionalized 
phenanthridines by visible-light Ir photocatalysis  
Yuki Matsushita,b Rika Ochi,b Yuya Tanaka,a,b Takashi Koike,*a,b and Munetaka Akita*a,b 

A photocatalytic strategy for regioselective synthesis of phenanthridine derivatives from N-(2-
arylbenzylidenamino)pyridinium salts has been developed. Utilization of an Ir photocatalyst, [Ir{dF(CF3)ppy}2(dtbbpy)]PF6 
(dF(CF3)ppy = 3,5-difluoro-2-(5-(trifluoromethyl)-2-pyridyl)phenyl, dtbbpy = 4,4’-di-tert-butyl-2,2’-bipyridine), is a key to 
successful reactions. The excited Ir catalyst does not serve as a 1e-redox reagent but as an energy donor toward the 
pyridinium salts. The present system can be also applied to one-pot synthesis of Trisphaeridine, an anti-cancer drug. 

Introduction 
Phenanthridine scaffolds are frequently observed in natural 
alkaloids and therapeutically active compounds. Thus, a variety 
of synthetic strategies have been developed so far and new 
methodologies for selective synthesis are still in demand.1 
Recently, radical-mediated protocols from several precursors 
have been reported as depicted in Scheme 1. Radical addition 
to biaryl isonitrile (Scheme 1a)1b,2 and vinyl azide (Scheme 1b)3 
followed by cyclization is an attractive method for synthesis of 
phenanthridines, with which selective introduction of various 
functional groups at the 6-position is viable. In addition, 1e-
redox reactions of oxime or imine precursors (Scheme 1c and 
d),4,5,6d which are easily accessible and less hazardous and toxic 
than the above-mentioned chemicals, also have become useful 
methods for construction of nitrogen-containing polyaromatics 
including phenanthridines. Interestingly, according to the 
seminal works by the groups of Yu and Xu, the O-acyl oxime and 
imine precursors derived from meta-MeO-substituted 1,1’-
biphenyl-2-carbaldehyde (vide infra, see Scheme 3a) afforded 
the corresponding phenanthridines with the completely 
opposite regioselectivity (2-:4-substituted product = 1:3 
(Scheme 1c), >20:1 (Scheme 1d)).4b,5b The selectivity should be 
strongly influenced by the involved radical intermediate, i.e., 
iminyl radical6 vs. cationic radical of oxime or imine precursors. 
However, there were only limited studies on the control of the 
selectivity at the 2- and 4-positions in the radical-mediated 
synthesis of phenanthridines.  

Recently, synthetic methods through redox reaction of 
designed pyridinium salts have been well studied because the 
system can be applied to generation of the corresponding  

 

Scheme 1. Radical-mediated synthesis of phenanthridines. 

various C-, O-, and N-centered radicals.7 We developed 
aroyloxylation and amidation with the corresponding N-
aroyloxy- and amidyl-pyridinium salts by visible-light 
photoredox catalysis.8 In this context, we designed N-(2-
arylbenzylidenamino)pyridinium salts 1 as the precursors for 
photocatalytic synthesis of phenanthridines (Scheme 1e). 
Herein we will describe photocatalytic reaction of 1, leading to 
regioselective synthesis of functionalized phenanthridines, 
especially, 2-substituted products. It is notable that the reaction 
turned out to be initiated by energy transfer from the 
photoexcited catalyst rather than electron transfer. 

Results and discussion 
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Table 1. Examination of the reaction conditions.a) 

 

Entry Photocat. Solvent E*oxb) ETc) Yield of 2a/% 

1 Ir-1 CD2Cl2 –2.14 232 0 

2 Ir-2 CD2Cl2 –1.37 209 0 

3 Ir-3 CD2Cl2 –1.30 254 85 (76e), 41f)) 

4 Ir-4 CD2Cl2 –1.26 253 78 

5 Ru CD2Cl2 –1.22 196 0 

6 Ir-3 CD3CN   76 

7 Ir-3 acetone-d6   54 

8 Ir-3 dmso-d6   45 

9g) Ir-3 CD2Cl2   0 

10 – CD2Cl2   10 

a) Reaction conditions: A mixture of photocatalyst (2.5 µmol, 5 mol%) and 1a (50 
µmol) dissolved in a deuterated solvent (0.50 mL) was irradiated by 3 W blue LEDs 
(l = 425 ± 15 nm) at rt for 4 h. b) Reported reducing power in the excited state (E*ox 
V vs. Cp2Fe). E*ox (vs. Cp2Fe) = E*ox (vs. SCE) – 0.41.9 c) Triplet energy (ET [kJ mol–1]) 
was estimated by the emission spectra (lem max).  d) Yields were determined by 1H 
NMR spectroscopy using Me2SO2 as an internal standard. e) Isolated yield, reaction 
time = 8 h. f) A large-scale reaction (2.5 mmol of 1a), reaction time = 48 h. g) In the 
dark. 

We initially examined photocatalysts for the reaction of (E)-
N-(2-phenylbenzylidenamino)pyridinium salt (E-1a)10 at room 
temperature under visible-light irradiation with blue LEDs (l = 
425 nm). Taking account of the redox potential of 1a (Eirr = –1.26 
V vs. Cp2Fe), Ir photocatalysts with high reducing power (E*ox) 
in the excited state, Ir-1 (E*ox = –2.14 V)9d and Ir-2 (E*ox = –1.37 
V),9b were tested in CD2Cl2. But, to our surprise, the reactions 
did not proceed at all (entries 1 and 2 in Table 1). In contrast, Ir-
3 (E*ox = –1.30 V)9c,f and Ir-4 (E*ox = –1.26 V)9e efficiently gave 
the desired phenanthridine product 2a in 85 and 78% NMR 
yields, respectively (entries 3 and 4). A preparative-scale 
experiment afforded 2a in 76% isolated yield (entry 3). It is 
noteworthy that monitoring the reaction in the presence of Ir-3 
and Ir-4 by NMR spectroscopy revealed formation of an 
intermediate, which is assigned to Z-1a. Efficient isomerization 
from E-1a to Z-1a was observed prior to formation of 2a (see 

the Supporting Information). In addition, photocatalysts with a 
larger triplet energy (ET = 254 kJ mol–1 (Ir-3), 253 kJ mol–1 (Ir-4), 
232 kJ mol–1 (Ir-1), and 209 kJ mol–1 (Ir-2) promoted the present 
reaction smoothly (entries 1–4).  

Table 2. The scope of the present photocatalytic reaction.a) 

 

Entry Aromatic A 2 (major product) Yield/% (2:2’)b) 
1 

 

 

 

 1b (R = OMe) 2b (R = OMe) 63 (6:1) 
2 1c (R = NHAc) 2c (R = NHAc) 57c,d,e) (5:1) 
3 1d (R = Me) 2d (R = Me)10 66f), single isomer 
4 1e (R = iPr) 2e (R = iPr) 82, single isomer 
5 1f (R = Ph) 2f (R = Ph) 36d) (3:1) 
6 1g (R = F) 2g (R = F) 74h,g), single isomer 
7 1h (R = Cl) 2h (R = Cl) 73d,e) (2:1) 
8 1i (R = Br) 2i (R = Br) 48d,e) (3:1) 
9 1j (R = CF3) 2j (R = CF3) 30e,h,i) (3:1) 

10 1k (R = NO2) 2k (R = NO2) 0f) 
11 

 
 

 

 1l 2l 70, single isomer 
12 

 

 

 

 1m 2m 74, single isomer 
13 

 
 

 

 1n 2n 50f,j) 
14 

 

 

 

 1o 2o 62, single isomer 

a) For the details of the conditions, see the Supporting Information. b) Yield was 
obtained after purification. Isomer ratios were determined by 1H NMR 
spectroscopy for crude reaction mixtures. c) MeCN was used as a solvent. d) 
Reaction time = 48 h. e) Reaction temperature = 0 ˚C. f) Reaction temperature = rt, 
g) NMR scale. h) Reaction time = 96 h, i) Isolated yield of the major isomer. j) The 
crude mixture contained a trace amount of an unidentified product. 
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A Ru photocatalyt, [Ru(bpy)3](PF6)2, with lower reducing power 
(E*ox = –1.22 V)9a and triplet energy (ET = 196 KJ mol–1) did not 
induce the reaction at all (entry 5). Examination of solvent 
revealed that dichloromethane was the best (entries 6–8). 
Irradiation with visible light and the presence of the 
photocatalyst are vital for efficient reaction (entries 9 and 10). 

Next, we explored the reaction scope, especially reactions 
of precursors bearing one substituent at the meta-position of 
the aromatic ring A, which would cyclize at the two different 
positions, thus creating regioisomers (2- (2) or 4-substituted 
phenanthridines (2’)). First, the reaction of the precursor 
bearing MeO group (1b) at room temperature afforded the 
phenanthridine resulting from the favorable cyclization at the 
para-position with respect to the MeO group (93% NMR yield, 
2b:2b’ = 1.4:1.0). The selectivity was improved by carrying out 
the reaction at lower temperature. The preparative-scale 
reaction at –80 ˚C afforded the corresponding phenanthridine 
(2b and 2b’) in 63% yield with better regioselectivity (6:1, entry 
1 in Table 2). The present reaction system preferentially 
afforded 2-substituted phenanthridines 2 with good to 
excellent regioselectivity regardless of the electronic nature of 
the substituent (entries 1–9 in Table 2). On the other hand, 
reactivity of 1 was significantly dependent on the substituent. 
In particular, electron-withdrawing groups required higher 
temperature than –80 ˚C and longer reaction time for 
production of the phenanthridines, (entries 6–9) and NO2 
derivative (1k) did not yield the product even at room 
temperature (entry 10). Noticeably, all precursors underwent 
the E-to-Z isomerization. The acetamido (1c), methyl (1d), iPr 
(1e), Ph (1f), F (1g), Cl (1h), Br (1i), and CF3 (1j) substituted 
derivatives regioselectively gave the corresponding 
phenanthridines (30–82% yields, 2:1 to a single isomer). (entries 
2–9). It should be noted that this selectivity was in contrast to 
the simple iminyl radical cyclization under photochemical 
conditions4a,b but was similar to those obtained from the 
reaction via cationic radicals.5  

 
Scheme 2. Application to one-pot synthesis of Trisphaeridine (2p). 

 

Scheme 3. Control experiments (a) photocatalytic reaction of O-acyl oxime using Ir 
catalysts and (b) computational analysis for Z-1a (only cationic part). 

Then, we also applied the present reaction to precursors linked 
at the meta- and para-position of the aromatic ring A. The 2,3-
substituted phenanthridine 2l was obtained in 70% yield as a 
single regioisomer from the reaction of 
methylenedioxybenzene derivative 1l (entry 11). To our delight, 
selective synthesis of benzo-fuzed and heteroatom-doped 
phenanthridines was also viable. Benzo[c]phenanthridine (2m), 
benzo[c][1,8]naphthyridine derivatives 2n and thieno[2,3-
c]isoquinoline 2o were obtained in 74, 50, and 62% yields, 
respectively (entries 12–14). These results show that the 
present photocatalytic system is highly compatible with various 
functionalities such as ether, amide, halogen, acetal, and 
heteroaromatic groups.11 
 To demonstrate utility of the present reaction system, one-
pot synthesis of Trisphaeridine (2p) from the corresponding 
aldehyde was studied (Scheme 2). As a result, 2p was obtained 
in 67% isolated yield from the corresponding aldehyde without 
purification at the stage of intermediate 1p. 
 The triplet energy (ET) of E-1a was estimated by DFT 
calculation (UB3LYP/6-311G+(2d,p)/CH2Cl2)12 to be 234 kJ mol–

1, which was lower in energy than ET of the photoexcited 
catalysts *Ir-3 and *Ir-4, indicating that, taking into account of 
the irrelevance to the E*ox values discussed above, 
photoisomerization of E-1a was triggered by energy transfer 
from *Ir rather than electron transfer, as was also supported by 
the emission quenching experiment (see the Supporting 
Information).  Simple cyclization of the iminyl radical 
intermediate can be excluded, because the photocatalytic 
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Scheme 4. A possible reaction mechanism. 

reaction of O-acyl oxime 3b reported by Yu and co-workers 
under our reaction conditions produced the 4-substituted 
isomer 2b’ as a major product (2b:2b’ = 1:3) in contrast to our 
photocatalytic system preferentially giving the other isomer 2b 
(entry 1 in Table 2 and Scheme 3a).13 It should be noted that 3b 
did not undergo the E-to-Z photoisomerization under those 
reaction conditions. In addition, an electron-rich aromatic ring 
A significantly enhanced the present cyclization (Table 2). In one 
conformer obtained by DFT calculation of Z-1a (B3LYP/6-
311G+(2d,p)/CH2Cl2)12 shown in Scheme 3b, the distance 
between the nitrogen atom in the pyridinium ring and the ipso 
carbon atom in the aromatic ring A is 3.2 Å, suggesting possible 
cation-p interaction,14 which was also supported by a 2D NOESY 
NMR spectrum of Z-1a (see the Supporting Information). In 
addition, the electrostatic potential map and frontier orbitals 
indicate that the aromatic ring A and the pyridinium unit would 
serve as an electron donor and an acceptor, respectively, as in 
electron donor-acceptor complex (EDA). 15 
 Based on the obtained data and the previous reports,4,5,8 a 
plausible reaction mechanism is illustrated in Scheme 4. First, 
energy transfer from the excited Ir photocatalyst (*Ir) to 
precursor E-1 causes isomerization to Z-1. One conformer of Z-
1 with the cation-p interaction is excited by energy transfer 
from the photoexcited catalyst *Ir or direct excitation of Z-1 to 
form radical intermediate 4, which follows the homolytic N–N 
bond cleavage, leading to dissociation of pyridine and radical 
cyclization. It is considered that electronic properties of 
aromatic ring A significantly influence the above-mentioned 
intramolecular interaction and electron transfer. Thus, the 
mechanisms with respect to N–N bond cleavage and C–N bond 
formation might be different for electron-rich and -deficient 
aromatic rings. Finally, deprotonation produces phenanthridine 
2. The radical intermediate 4 plays an important role in the 
present regioselective cyclization, which resembles the para-
selective SNAr-type reactions via cationic aryl radical 
intermediates.16    

Conclusions 
We have developed a synthetic method for selectively 
substituted phenanthridines from N-(2-
arylbenzylidenamino)pyridinium salts, in which the pyridinium 
moiety in the photoexcited Z-1 accepts an electron from the 
terminal aryl group of the biaryl skeleton to generate the key 
radical intermediate. The Ir photocatalyst with higher triplet 
energy plays vital roles in the sensitization of the precursors 
through energy transfer. Further studies on photocatalytic 
synthesis of nitrogen-containing polyaromatics are underway in 
our laboratory. 
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