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Abstract

In this review various strategies for the incorporation of the signature pyrrole carboxamide moiety 

in the total syntheses of pyrrole-imidazole alkaloids (PIA) are discussed. These so-called oroidin 

alkaloids have a broad range of biological activities and display interesting skeletal diversity and 

complexity. These alkaloids are sponge-derived secondary metabolites and thus far more than 

200 members of the PIA family have been isolated over the past few decades. Methods range 

from classical amide bond forming processes to non-traditional bond formation including the de 

novo synthesis of the pyrrole itself.
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Introduction

Marine sponges are a rich source of secondary metabolites with highly diverse structures and a 

broad range of potential pharmacological properties.1  During the last three decades one family, 

the pyrrole imidazole alkaloids (PIA) or the oroidin alkaloids, has received significant attention 

from the synthetic community.2 This interest has been spurred by a combination of the challenges 

presented by the unusual functionality and novel structural frameworks to the current state of the 

art in synthesis coupled with the biological potential of these alkaloids.3 

Carl J. Lovely obtained his B.Sc. (1987) and Ph.D. 

(1990) from the University of Birmingham, United 

Kingdom with Professor W. Brian Jennings.  After 

postdoctoral appointments in Germany and the US, he 

started his independent career as an assistant 

professor at the University of Texas at Arlington in 

1996.  He was promoted to full professor in 2008 and 

became associate chair in 2015.  His research focuses 

on synthetic heterocyclic chemistry and its application 

to the total synthesis of natural products.
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Figure 1 - Monomeric PIAs

Oroidin (1), hymenidin (2) and clathrodin (3) are considered to be the parent members of the 

group and have been assumed to serve as the biosynthetic building blocks for the more complex 

family members.4-7  Each of these parent systems contains an imidazolylpropenyl amine which is 

acylated by a pyrrolecarbonyl moiety; the difference between them is simply the bromination level 

of the pyrrole.  The broader family results from the cyclization, oxidation or oligomerization of any 

of these basic derivatives.8 As a result, there are many examples of monomeric congeners (Figure 

2), dimeric congeners and even tetrameric congeners; the variance in bromination of the pyrrole 

moiety has resulted in the isolation of members that only differ in the bromination level of the 

pyrroles but which otherwise possess the same basic frameworks. The challenges that these 

nitrogen rich and highly polar molecules present to contemporary synthetic methods are many 

which in turn has inevitably attracted the attention of synthetic chemists around the world.  As a 

result of these efforts highly innovative methods have emerged for the construction of several 

members of the oroidin alkaloids. Inventive synthetic routes have been explored and reported for 

the total synthesis of a wide variety of these PIAs, including these parent systems.9-10  While the 

introduction of the pyrrole carboxamide may be viewed as a trivial undertaking, chemoselectivity 

issues and introduction of an amino group present challenges requiring the development of 

alternative synthetic methods.
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Figure 2 - Some members the of oroidin family

The Lindel group have reviewed different approaches for the synthesis of PIAs first in 2003,11 

which was expanded initially in 200512  and most recently, in 2017,13 published a book chapter 

concerning the chemistry and biology of PIAs.  This current review contains a summary of relevant 

examples from these prior reviews in addition to more recent work which has been reported after 

2017.
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It is not hyperbole to state that amide bonds play a pivotal role in life, since they serve as the 

primary backbone of proteins.  Moreover, amide bonds are frequently utilized in drug design and 

in many synthetic materials including nylon, artificial silks, supported catalysts, hydrogels, and in 

biocompatible matrices.14 A pharmaceutical survey which was performed in 200614-15 showed that, 

nearly 66% of drug candidates contain amide bonds and 25% of them are currently on the market 

as drugs.14, 16 This present review is focused on the different strategies for the introduction of the 

pyrrolecarboxamide used in the synthesis of PIAs and analogs.  Although the amide bond is 

frequently formed by classical methods through the acylation of amines through use of acyl 

chlorides, mixed anhydrides, etc., use of carboxylic acid surrogates (trichloroketones, thio acids), 

ligation conditions (Staudinger) and use of masked amides (hydantoins) have also been 

employed to install the amide moiety to PIA systems. The development of these alternative 

conditions has come in response to the synthetic difficulties encountered en route to various 

structural frameworks due to chemoselectivity or structural sensitivity issues which reinforces the 

idea that synthetic innovation is driven by novel structures.17 

1. Amidation with trichloroacetyl pyrrole

N

N
PG

NH2 15: X = Y = H
16: X = H, Y = Br
17: X = Y = Br

N

N
PG

N
H

18: X = Y = H
19: X = H, Y = Br
20: X = Y = Br

14

Z Z

Z = NH2, PhS, N3, etc.

O H
N

X

Y

H
N

X

Y

Cl3C

O

                         Scheme 1 - General scheme for acylation with trichloroketones

The most commonly employed method for construction of the pyrrolecarboxamide bond is through 

a base-mediated reaction of an amine, e.g., 14 with the relevant pyrrole acid chloride surrogates 

15-17 (Scheme 1). 2-(Trichloroacetyl)pyrroles are used as a common pyrrole acid chloride 

equivalent, since the -CCl3 group acts as a good leaving group generating a neutral byproduct 
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and also it forms the amide bond smoothly in the presence of unprotected 2-aminoimidazoles 

without giving any other major side products.18  Bailey and Johnson described the relevant 

activated acid synthesis as depicted in Scheme 2.19  Bromination of pyrrole trichloroketone at low 

temperature provided either the monobromo ketone 16 or dibromo ketone 17 in excellent yields 

through control of stoichiometry.  The precursor pyrrole trichloroketone 15 was obtained by 

heating of pyrrole with trichloroacetyl chloride.20   Some classical examples of their use in total 

synthesis are given below for context. The acylation strategy with 15-17 (Scheme 1) has been 

employed in the total synthesis of many PIA natural products and below we discuss some 

examples of this chemistry which has been utilized in a range of settings from application to the 

synthesis of the simple to the more complex alkaloid systems.

16: X = H, Y = Br, 93%
17: X = Y = Br, 91%

Br2, CHCl3, 0 °C
N
H N

H

CCl3

Y

X

15

N
H

21

CHCl3, 78%

O

CCl3Cl

O

CCl3

O

Scheme 2 - Synthesis of bromo trichloroketones

Several research groups have reported the total synthesis of the parent oroidin and closely related 

derivatives in last few decades.21  These synthetic strategies used en route to these targets can 

be characterized into three general categories;21 1. Pd-catalyzed C-C bond formation with 

alkynes/alkenes 2. Methods involving olefination and 3. Approaches involving naturally occurring 

sources like urocanic acid and ornithine.

Romo et al. reported an interesting route to synthesize an 15N-labelled oroidin from urocanic acid 

providing an isotopically labeled system which was used to follow the amide nitrogen of the 

molecule in biosynthetic investigations (Scheme 3).22  Urocanic acid 22 was converted to the 

allylic alcohol 23 through a six-step sequence. Subsequent mesylation followed by nucleophilic 
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substitution with 15N-labelled phthalimide and hydrazinolysis delivered the allylic amine 24. The 

resulting amine was treated with pyrrole trichloroketone 17 to construct the amide linkage thus 

forming 15N-oroidin (25) after azide reduction and deprotection. 

N
NH

HO2C

N
N
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Tr

1. AcCl, MeOH, rt
2. TrCl, Et3N, DMF
3. DIBAL, THF

4. TBSCl, imidazole
5. n-BuLi, TsN3, THF
6. TBAF, THF

1. MsCl, Et3N, THF
2. 15N - PhthNK, DMF

3. N2H4, EtOH, 50 °C

H
N

Br

Br O

CCl3
, Na2CO3, DMF1.

2. AcCl, MeOH, EtOAc

3. H2, Lindlar, MeOH, THF

N
N

H2N

N3

Tr15

N
NH

H
N

NH2

57%

26% from allylic alcohol

22
23

24
25

O

N
H

Br

Br
15

17

Scheme 3 - Synthesis of isotopically labeled oroidin by Romo

Lindel and co-workers reported a synthesis of fluorohymenidin (30) through the use of a 

fluorinated congener (Scheme 4).23 The brominated trichloroketone 16 was reacted with the 

electrophilic fluorinating agent 26 under microwave irradiation to afford 27.  Treatment of primary 

amine 28 with bromofluoropyrrole ketone 27 effected the desired amide bond formation delivering. 

Chlorination of the pseudo benzylic position and dehydrochlorination then introduced the double 

bond to produce 30.
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Scheme 4 - Synthesis of fluorohymenidin by Lindel

Olofson et al. described the synthesis of oroidin from ornithine (31) in 1998.24 Ornithine methyl 

ester was reduced by an Akabori reaction (with sodium amalgam) followed by condensation with 

cyanamide and cyclization which provided compound 28.  Subsequent oxidation with NCS and 

elimination incorporated the unsaturation in 32.

H2N

COOH.HCl
NH2

N
H

N NH2
H2N

1. MeOH(HCl)

2. 5% Na(Hg); NH2CN
95 °C, 2.5 h, 15% HCl

62%

1. NCS, MeOH, rt

2. MeOH/Xylene 135 °C
40% over two steps

N
H

N NH2
H2N

2 HCl

31 28 32

Scheme 5 - Synthesis of 4-(3-aminopropyl)-1-imidazol-2-amine by Olofson et al.

In 2013, Rasapalli and co-workers reported use of imidazo[1,2-a]pyrimidine 39 as a masked 2-

aminoimidazole motif in the total synthesis of clathrodin, hymenidin and oroidin (1-3).21 A Michael 

addition of phthalimide 33 to methyl vinyl ketone (34) was delivered the ketone 35 which was α-

brominated to give α-bromoketone 36 (Scheme 6). N,N-Dimethyl-N′-2-pyrimidinyl-(E)-

methanimidamide (37) and bromide 36 were condensed to furnish imidazo[1,2-a]pyrimidine 38. 

Acidic hydrolysis of phthalimide 38 provided the primary amine 39 which upon treatment with 

pyrrole trichloroketone 15-17 delivered the amides 40-42. Reduction of ketone to the 
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corresponding alcohols 43-45 followed by dehydration installed the unsaturation in the carbon 

linker.  Deprotection of the masked amino imidazolyl group with hydrazine provided the oroidin, 

hymenidin and clathrodin (1-3) in moderate yield
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4 h, reflux

N

O

O

O

Br2, MeOH
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Scheme 6 - Oroidins via imidazo[1,2-a]pyrimidine by Rasapalli

In 2006, Horne’s group reported the NCS mediated homodimerization of 28 and 32 can be 

employed to construct tetraamines 49 and 50 which upon treatment with trichlorocetylpyrrole 17 

completed the total synthesis of nagelamide A (8) and nagelamide D (51) respectively as depicted 

in Scheme 7.25 
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Scheme 7 - Total synthesis of nagelamide A and D by Horne et al.
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Scheme 8 - Total synthesis of ageliferin by Baran

The total syntheses of sceptrin (10) and ageliferin (11) were reported by Baran et al. and are 

depicted in Scheme 8.26  Cyclobutane ester 52 was reduced to the corresponding alcohol 53 
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followed by bismesylation and conversion to the diazide 54 (Scheme 8).  The resulting diazide 

was reduced by catalytic hydrogenation to the corresponding diamine with Lindlar catalyst, the 

pyrrole carboxamides were installed on the amines via the pyrrole trichloroketone 16.  The 2-

aminoimidazole moieties were installed through a 4-step sequence and rac-sceptrin (10) was 

obtained, subsequent microwave heating of 10 resulted in ring expansion and the formation of 

rac-ageliferin (11) via rearrangement.

Chen et al. used a Mn(III)-mediated single electron transfer reaction to effect cyclization to the 

tetrahydrobenzimidazole 56 en route to a total synthesis of (+)-ageliferin (11) (Scheme 9).27  The 

azides at C2 and in the alkyl chain were treated with PPh3 and hydrolyzed via a net Staudinger 

reaction (Scheme 9).  Interestingly, the triphenylphosphine imide of the 2-aminoimidazole 

exhibited unexpected stability to hydrolysis, so effectively it acted as a good protecting group for 

the C2-amine.  The resulting primary amines were then acylated with the pyrrole trichloroketone 

16 to give 59 which was converted to (+)-ageliferin (11) after several additional steps.
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Scheme 9 - Total synthesis of ageliferin by Chen
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In 2011, Baran and co-workers reported the first total synthesis of rac-axinellamines (Scheme 

10).28  PtO2 mediated hydrogenation of bis azide 60 resulted in reduction to the corresponding 

tetraamine 61. Subsequent treatment with 2,3-dibromo-5-trichloroacetylpyrrole (17) furnished 

axinellamines A and B.
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O
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60 61

17
HO

Scheme 10 - Synthesis of axinellamines by Baran

2. Amidation with Acid Chlorides

Al-Mourabit et al. reported installation of the pyrrole carboxamide in oroidin derivatives based on 

the intermediacy of the corresponding N-acyl pyridinium salts.29 The N-acyl intermediates 66-68 

were prepared by reaction of the corresponding pyrrole acid chloride 63-65 with pyridine and 

followed by reduction with NaBH4.  Nucleophilic addition of the BOC protected guanidine to 66 

formed a bicyclic compound and aminal opening resulted in the formation of clathrodin (3) 

(Scheme 11).

H
NX

Y

Cl

O H
NX

Y

N

O

63: X = Y = H
64: X = H, Y = Br
65: X = Y = Br

66: X = Y = H, 38%
67: X = H, Y = Br, 24%
68: X = Y = Br, 20%

H
NX

Y

N
H

O

Pyridine then NaBH4
MeOH/THF, -78 °C, 15 min N

H
N NH2

Br2 (1 equiv.)
BOC- guanidine (4 equiv.)
DMF/MeCN
6N HCl, MeOH, 60 °C, 5 h

Z to E isomerization 3: X = Y = H, overall 9%

Scheme 11 - Clathrodin by Al-Mourabit et al.

Treatment of 67-68 with Br2 and a protected guanidine derivative did not result in the formation of 

the corresponding bicyclic intermediate, in contrast to 66 which led to the formation of clathrodin 

(3) as depicted above (Scheme 11). The bromopyrrole groups seemed to accelerate 
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intramolecular nucleophilic attack of the nitrogen of pyrrole ring with the bromonium ion rather 

than intermolecular addition on the protected guanidine.  Accordingly, the more nucleophilic, 2-

aminopyrimidine (Scheme 12) was used as the surrogate for protected guanidine to overcome 

this problem.  Accordingly, treatment of 2-aminopyrimidine delivered tricyclic compounds 70-72 

which following reaction with ammonium hydroxide afforded the 2-aminoimidazolyl intermediates 

73-75. Further treatment with TFA triggered a Z- to E-isomerization and formation of the desired 

oroidin and derivatives (1-3).

H
N

Y

X
N

O

HN

Y
X

N
O

N N

N

Br2 (1.5 - 2.0 equiv.)
DMF/MeCN HN

Y
X

N
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N NH
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EtOH, reflux, 1h

73: X = Y = H, 51%
74: X = H, Y = Br, 66%
75: X = Y = Br, 6%

2: Hymenidin, 42%
3: Clathrodin, 3%

HN

Y
X

NH
O

N NH

NH2

76: X = Y = Br, 47%

TFA/CH2Cl2 : 1/1
50 °C

1: Oroidin, 71%

+

66: X = Y = H
67: X = H, Y = Br
68: X = Y = Br

70: X = Y = H
71: X = H, Y = Br
72: X = Y = Br

N

NH2N

(4 equiv.)

69

Scheme 12 -   Approach to oroidins by Al-Mourabit et al.

In 2010, our group an reported an asymmetric total synthesis of ent-cyclooroidin (86) and used 

pyrrole acyl chloride as the pyrrole source (Scheme 13).30  Chlorohydrin 77 was prepared from 

histidine and reacted with the pyrrole acid chloride 63 to give the corresponding ester 78.  Base-

mediated intramolecular cyclization provided the lactone 79.  Ring opening of lactone was 

achieved by trans esterification with NaOMe resulting in the formation of methyl ester 80. 

Activation of the alcohol as the mesylate was followed by substitution to provide the azide 81.  

Reduction of the azide to the corresponding primary amine, followed by deprotonation and 

intramolecular amidation delivered the piperazine derivative 82.  Dibromination of pyrrole was 

achieved with NBS to give 83 and lithiation of C2 in the imidazole ring followed by azidation 

yielded the C2 azide 84.  The DMAS (dimethylaminosulfonyl) group was removed under mild 
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acidic conditions and reduction of the C2 azide to the amine with Lindlar catalyst and hydrogen 

completed the total synthesis of cyclooroidin (86).
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Scheme 13- Total synthesis of ent-cyclooroidin by Lovely

In 2011, our group found that imidazolyl propargylamine derivatives can be used synthesize 

oroidin related amides.31 A collection of diverse heterocyclic scaffolds, which resemble oroidin 

alkaloids, were synthesized using various transition metal catalyzed processes (Scheme 14). 
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Scheme 14 - Propargyl-imidazole for oroidin analogs by Lovely
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Building off these findings, the total synthesis 2-debromohymenin (102) from alkyne 91 and 

pyrrole acid chloride 63 was described recently (Scheme 15).32 92 was prepared by a 

Sonogashira reaction between terminal alkyne 91 and the haloimidazole 90. The 

pyrroloazepinone core 94 was synthesized by an intramolecular gold-catalyzed hydroarylation of 

alkyne 98. Reduction of the double bond in the azepinone core followed by azidation through 

metalation and trapping with tosyl azide delivered 95.  Different bromination conditions led to the 

formation of monobromo pyrrole and dibromo pyrrole intermediates 96 and 99.  Removal of the 

DMAS protecting group by treatment with HCl followed by azide reduction resulted in the 

formation of the C2-amino group in the imidazole moiety in 98 and 101. N-OMe cleavage was 

achieved under two different conditions; Mo(CO)6 gave 2-debromohymenin (102).  Attempts were 

made to remove the N-OMe group in the dibrominated intermediate 101 under similar conditions, 

but this failed.  Alternative reductants were evaluated of which SmI2 removed the OMe group but 

with partial debromination of the pyrrole ring thus also affording 2-derbromohymenin (102).
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Scheme 15 - Total synthesis of 2-Debromohymenin by Lovely

3. Amidation with activated carboxylic acids (Mixed Anhydrides)

Zula et al. reported an environment-friendly method to synthesize 4-(3-aminopropyl)-1-imidazol-

2-amine (32) from ornithine (31) avoiding the use of sodium amalgam ( see Scheme 5).33  In this 

route, ornithine (31) was converted first to dicarbamate 103 followed by formation of the Weinreb 

amide 104.  Bis carbamation of the ɤ-amine facilitated the reduction of Weinerb amide to the 

corresponding aldehyde 106.  Deprotection of the BOC groups followed by cyclization provided 

the same intermediate 28 as the Horne group reported and incorporation of unsaturation was 

accomplished in an analogous way as reported previously (see Scheme 5).  Conversion to oroidin 

was completed through use of a mixed anhydride (see Scheme 18).
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O
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O
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BOC2O, DMAP, MeCN

24 h, 81%

LiAlH4, Et2O, 0 °C

45 min, 67%

HCl (g), Et2O

100%

cyanamide, H2O, pH 4.5,
reflux, 3 h, 30%

NCS, MeOH, 2 h then
MeOH, 135 °C, 2 h, 35%

31 103 104 105

106 107 28 32

Scheme 16 - Synthesis of 4-(3-aminopropyl)-1-imidazol-2-amine by Zula et al.

Zula et al. further reported an alternate synthesis of (E)-4-(3-aminoprop-1-en-1-yl)-1-imidazol-2-

amine (32) through an acyl-1,2-dihydropyridine intermediate (111) as described by Al-Mourabit 

and co-workers (Scheme 12).33  Pyridine was acylated by benzyl chloroformate and then reduced 

with NaBH4. Reaction with bromine and guanidine provided two bicyclic regioisomeric 

imidazopyridines 110 and 111. Acid hydrolysis of these isomers led to ring opening and Cbz 

removal ultimately affording (E)-4-(3-aminoprop-1-en-1-yl)-1-imidazol-2-amine (32).
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Scheme 17 - synthesis of (E)-4-(3-aminoprop-1-en-1-yl)-1-imidazol-2-amine by Zula et al.

Subsequent treatment of 32 with 2-pyrrole carboxylic acid in the presence of a coupling reagent, 

TBTU (2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium tetrafluoroborate) gave oroidin (1) 

and hymenidin (2) in moderate yields (Scheme 18). However, interestingly attempts to install the 

amide with the corresponding pyrrole trichloroketone 15-17 generated only a low yield of the 

desired targets.
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Scheme 18- Use of acid activators

Chen et al. reported a slightly different strategy to install the pyrrole carboxamide group in a total 

synthesis of sceptrin (10).34 In their synthesis, cyclobutane 114 was converted to the correspond 

diazide via the trimesylate (Scheme 19). The desired bisazide 115 was reduced to the 
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corresponding diamine 116 by PtO2/H2 and coupled with pyrrole carboxylic acid through an EDC 

coupling. Removal of protecting groups completed the total synthesis of (-)-sceptrin (10).
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Scheme 19 - Total synthesis of sceptrin by Chen et al.

4. Amidation with Pd-Catalyzed Methods

In 2006, Trost and Dong reported the Pd-facilitated asymmetric allylic alkylation with pyrrole 

carboxamides as nucleophiles for total synthesis of agelastatin A (124) and its enantiomer 

(Scheme 20).35  Two enantiomers were synthesized by switching the nucleophiles (119 and 125) 

under the alkylation conditions as shown below. The pyrrole moiety was installed by reacting 

carbonate 117 and ester 119 with the presence of the chiral, non-racemic ligand 118 thus 

alkylating the pyrrole nitrogen. Cyclopentene 121 was prepared by two steps via a second Pd-

mediated allylic substitution (intramolecular) this time alkylating the amide nitrogen. 

Cyclopentanone 123 was obtained by Cu catalyzed aziridination followed by ring opening with 

DMSO in the presence of In(OTf)3. The total synthesis of ent-agelastatin A (124) was completed 
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by further two steps as shown in Scheme 20. Pyrrole amide 125 underwent di-alkylation to provide 

piperazinone 127, the most advanced intermediate in the synthesis of (-)-agelastatin A.
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Scheme 20 - Trost’s total synthesis of agelastatin A

5. Amidation with Pyrrole hydantoin derivatives

5.1: Tsuji-Trost conditions 

In 2006 our group demonstrated that pyrrole hydantoin derivatives can serve as surrogates of 

phthalimide in various contexts and thus can be utilized to install pyrrole carboxamides into oroidin 

systems more directly.36  Urocanic acid was methylated and the methyl ester 128 was then 

protected.  DIBAL reduction delivered the allylic alcohol 129 which upon treatment with BOC 
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carbonate resulted in the formation of the t-butyl allylic carbonate 130 (Scheme 21).  Subsequent 

reaction with the hydantoin 131 under Tsuji-Trost conditions gave N-alkylation product 132 which 

upon basic hydrolysis furnishes the clathrodin analog 133 in good yield.  The advantage to using 

the hydantoin is that the amine nitrogen is introduced directly and thus avoids the intermediacy of 

a polar amine and the need to incorporate it through additional synthetic transformations, thereby 

telescoping the sequence.  
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Scheme 21 - Clathrodin from hydantoin by Lovely

The hydantoin is readily prepared by thermolysis of N-ethoxycarbonylpyrrole-2-carboxamide 

(134) in quinoline, which itself was prepared from pyrrole on treatment with the isocyanate 

(Scheme 22).37 
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Scheme 22 - Synthesis of hydantoin

5.2: Mitsunobu conditions
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Given this initial success with Tsuji-Trost chemistry with the parent hydantoin, other applications 

of this derivative were envisioned, in particular Mitsunobu-type reactions and whether extension 

to the brominated congeners could be performed.  Ultimately it was discovered that the 

corresponding bromohydantoins 137a-b could be prepared by the synthetic route depicted below 

(Scheme 23). Specifically, the intermediate 136 was mono or dibrominated and subsequent 

pyrolysis under slight vacuum to remove ethanol resulted the formation of the mono or 

dibromohydantoin in moderate yield.38 
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Scheme 23 - Synthesis of brominated hydantoins

In 2010 our group described an application of these reagents, reporting that the hydantoin group 

can be installed via a Mitsunobu reaction en route to the synthesis of the oxazoline moiety 143a-b 

found in some oroidin dimers including nagelamide R and T.39  Histidine (138) was converted to 

the corresponding α-chloro ester 139 by diazotization, in the presence of chloride ion and then 

the free imidazolic nitrogen was protected with a DMAS group (Scheme 24). The α-chloro ester 

140 was reduced to the corresponding α-chloro alcohol 141.  Although an initial approach to install 

pyrrolecarboxamide through use of a known urethane 134 via the Mitsunobu reaction was 

unsuccessful, the hydantoins were considered superior nucleophiles in the Mitsunobu reaction as 

the masked pyrrole NH in the hydantoin avoided possible chemoselectivity issues.  Subsequent 

NaOH mediated hydrolysis unmasked the pyrrole which underwent in situ cyclization to provide 

the desired oxazoline moiety 143a-b.
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Scheme 24 - en route to the synthesis of the oxazoline moiety by Lovely
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Scheme 25: Total synthesis of nagelamide D by Lovely

Also our group has used the dibromohydantoin 137b unit as the nucleophile to install 

dibromopyrrole units via a double Mitsunobu reaction in the total synthesis of nagelamide D 

(51).40-41  A Stille cross-coupling was used as the key reaction to connect the iodo 144 and the 

vinyl stannane 145 fragments to forge the bis vinylimidazole 146 (Scheme 25).  Both 144 and 145 

were prepared through elaboration of DMAS-protected iodoimidazole derivatives. Subsequent 

catalytic hydrogenation led to the saturation of the scaffold 147.  The diol was bis silylated to give 

148 and then the C2 azides were introduced via metalation with BuLi with subsequent trapping 
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with TsN3.  A double Mitsunobu reaction with dibromohydantoin 137b provided the framework 

151 of nagelamide D after hydrolysis of the ureas.  It should be noted that the Mitsunobu reaction 

was performed in the presence of azide functional groups which could react in a Staudinger 

reaction, successful N-alkylation required careful ordering of reagent addition to mitigate the 

formation of the iminophosphorane (see Scheme 9).  This tactic also avoids unmasking of the C2-

amino group until very late in the synthesis which then avoids both potential chemoselectivity 

issues and significantly aids in compound processing as it mitigates the polarity of the molecule.  

Completion of the synthesis required removal of the DMAS-protecting groups by acid-catalyzed 

methanolysis and reduction of the C2 azides to the corresponding amines with Lindlar catalyst. 
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Scheme 26 - Jiang's approach to nagelamide K

Jiang’s group also adopted a similar approach to install the dibromopyrrole-2-carboxamide in the 

synthesis dideamino version of nagelamide K 157 (Scheme 26).42  Ni(0)-catalyzed dimerization 

of α-bromo urocanic acid was utilized to synthesize the scaffold 154 followed by ester 155 

reduction to alcohol 156 and installed the dibromo hydantoin 137b via a Mitsunobu reaction.  

Basic hydrolysis resulted in the formation of the desired pyrrole carboxamide derivatives from 
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hydantoins in 137b, which upon treatment with acid removed the imidazolyl protecting group and 

completed the total synthesis of nagelamide K derivative 157. 

Our group recently described our progress towards the total synthesis of palau’amine (12) using 

dibromohydantoin 137b via a Mitsunobu reaction (Scheme 27).43  The azide group and phenyl 

thioether were employed as the C2-amino surrogates and introduced by metalation followed by 

treatment with TsN3 or Ph2S2.  Subsequent silyl ether deprotection resulted in the formation of the 

primary alcohol 160a-b which was then reacted with dibromo hydantoin moiety 137b via a 

Mitsunobu reaction. Base-mediated hydrolysis introduced the desired pyrrole carboxamide 

moiety in advanced intermediates 163 and 164 en route to palau’amine (12)

N

NTESO

ODPS

Bn

N
N

SO2NMe2

158

n-BuLi, TMEDA, THF
-78 °C

then TsN3 or Ph2S2
0 °C N

NTESO

ODPS

Bn

N
N

SO2NMe2

159a: R = N3, 57%
159b: R = PhS, 57%

R

HCl, THF

N

NHO

ODPS

Bn

N
N

SO2NMe2R

160a: R = N3, 99%
160b: R = PhS, 99%

PPh3, DIAD, THF

HN

NO

Br
Br

O

N

NN

ODPS

Bn

N
N

SO2NMe2R

N

O

O

161a: R = N3
161b: R = PhS

Br

Br N

NN
H

ODPS

Bn

N
N

SO2NMe2R

O

162a: R = N3, 57% (2 steps)
162b: R = PhS, 64% (2 steps)

NaOH, THF, H2O NaBH4, MeOH

98%
N

NN
H

ODPS

Bn

N
N

SO2NMe2H2N

O

163

12: Palau'amine

HCl, MeOH
87%

N

NN
H

ODPS

Bn

N
N

SO2NMe2PhS

O

164: R = SPh

137b

H
N H

N
Br

Br

Br

Br

H
N

Br

Br

Scheme 27 – Studies towards total synthesis of palau’amine by Lovely
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6. De novo pyrrole synthesis

In their total synthesis of palau’amine (12) Baran and co-workers used a nucleophilic pyrrole 

surrogate 166, essentially a “pre-pyrrole” to install the pyrrole carboxamide group (Scheme 28).44  

The amino acid derivative 166 was reacted with 2-aminobromoimidazole  in the presence of acetic 

acid to give corresponding amine 167 which upon treatment with trifluoracetic acid resulted in 

formation of the corresponding N-linked pyrrole acid 169 (through the oxonium cation 168) in a 

moderate yield.
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Scheme 28 - Total synthesis of palau'amine by Baran
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172
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Scheme 29 - Total synthesis of (-) agelastatin by Du Bois

Du Bois and When reported the enantioselective synthesis of (-)-agelastatin (124) as described 

in the Scheme 29.45  A classical Paal-Knorr condensation of compound 170 and benzyl protected 

ketoaldehyde 171 resulted the formation of the pyrrole ring in compound 172.  Subsequent 

treatment with trimethyl phosphine and trapping of the iminophosphorane with methyl isocyanate 

installed the urea functionality in the compound 173. The exocyclic alkene in 173 was introduced 

by oxidation of the selenide to the corresponding selenoxide followed by elimination. Then 

OsO4/NaIO4 mediated dihydroxylation-oxidative cleavage and spontaneous cyclization give rise 

to imidazolone ring and subsequent lactamization resulted in the formation the amide bond.  

Bromination of the pyrrole completed the synthesis.
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Scheme 30 - Total synthesis of (-) agelastatin by Yoshimitsu

Yoshimitsu and coworkers reported the total synthesis of (-)-agelastatin A via oxazolidinone 

intermediate.46 Hydrolysis of the nitrile group and azide reduction and resulted amide was treated 

with HCl to give the oxazolidinone ring in 176. The urea motif in 177 was installed by heating with 

methylamine in DMSO. Then oxidation of alcohol followed by spontaneous cyclization resulted 

the methyl imidazolone and finally bromination of pyrrole furnished agelastatin A (124).

7. Amidation with Thio acids

In the context of several total synthesis projects in our lab, it became desirable to convert azides 

directly to amides.  As we noted above, the double Mitsunobu reaction with a bromopyrrole 

hydantoin was used to install the pyrrole carboxamides units to complete the synthesis of 

nagelamide D (51), however, during the construction of the closely related nagelamide A (8) and 

nagelamide C (197), we observed an unexpected allylic transposition that we were unable to 

mitigate.  Due to the failure of this approach, we considered using dibromopyrrole thio carboxylic 

acid as an alternative to install carboxamide moieties to complete the total synthesis of these 

alkaloids thereby avoiding the preparation of highly polar tetraamines and the trichloroketones.
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A potential one-pot process to converting the azides to the corresponding amides can be achieved 

by reacting with thio acids.  This conversion was reported initially by Just,47 and explored further 

by Rosen.48  According to Rosen’s hypothesis, azides undergo in situ reduction to amines in the 

presence of a thio acid followed by sequential acylation resulting in the desired amide.

R1N3 R1NH2
SH

O

N
H

O
R1

Figure 3 - Rosen's hypothesis for amidation via an amine intermediate

However, in 2003, Williams and co-workers conducted detailed mechanistic and theoretical 

studies on the thio acid-mediated amidation of azides.49  According to their investigation, azides 

undergo amidation without forming the amine intermediate (Figure 3) rather they proposed that 

electron rich and poor azides undergo different reaction pathways towards amides but through a 

common intermediate called a thiatriazoline 182 (Figure 4).  In electron poor systems, 

intermolecular attack of sulfur on the terminal azide nitrogen and subsequent nitrogen addition to 

the carbonyl resulted in the formation of the five-membered, thiatriazoline.  Decomposition to 

desired amide occurs upon exclusion of S and N2. In contrast, electron rich systems undergo [3+2] 

addition and form the thiatriazoline directly whereupon sulfur and nitrogen expulsion occur as 

before.
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Figure 4 - Modified mechanism

In 2017, our group reported the first thio acid mediated amidations in imidazole derivatives.  

Several model systems were investigated permitting the installation of the acetamide and 

benzamide moieties with good yields (Scheme 31).3, 50 
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186b: PG = SO2NMe2, R = Ph, 96%
186c: PG = Bn, R = Me, 67%

184a: PG = Bn
184b: PG = SO2NMe2

THF
MeCOSH, lut., 3 h or

Scheme 31 - Acetamides and benzamides on oroidin model systems

Extension of this chemistry to advanced nagelamide intermediates was also successful resulting 

in formation of diacetamides in good yield (Scheme 32).
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Scheme 32 - Diacetamide formation in nagelamide C and A systems
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In light of these encouraging results, extension to the thio pyrrole acid was investigated.  It is 

noteworthy that at the outset of our study there were few reports in the literature of this subfamily 

of thio acids.  We were able to synthesize thio pyrrole carboxylic acid (193a) and methyl pyrrole 

thioacid (193b) through the corresponding pyrrole acid chlorides 63 and 192 (Scheme 33) and 

the reaction with NaSH, in modest yields.3 

N
R

OH

O

191a: R = H
191b: R = CH3

N
R

Cl

O

63: R = H
192: R = CH3

SOCl2
30 mins, 55 °C N

R

SH

O
NaSH, Acetone,
H2O, rt, O/N then
acidified

25-30%

193a: R = H
193b: R = CH3

Scheme 33 - Pyrrole thio acid synthesis

These thio acids were reacted with oroidin models to obtain the corresponding carboxamides 

194a and 194b in addition to the oxidation products 195a-b (Scheme 34). While the yields are 

moderate at the present time, in principle the chemistry can be used to complete the total 

synthesis of nagelamide A (8), C (197) and S (196) (Figure 5).

N

N N3

Me2NOS N
R

SH

O

193a: R = H
193b: R = CH3

2,6-lutidine, Methanol
55-60 °C, O/N

N

N N
H

Me2NOS

O
N
R

194a: R = H, 22%
194b: R = CH3, 27%

195a: R = H, 42%
195b: R = CH3, 78%

N
R

O

S S O

N
R

185a

+

Scheme 34 - Use of pyrrole thio acid in imidazolyl systems
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Summary

In the course of this review, we have highlighted the various and most recent methods of amide 

bond construction used in the synthesis of PIAs systems.  Pyrrole trichloroketones were used 

most frequently with relevant amines to install pyrrole carboxamide moiety in natural products.  

Even though this method is very common and direct, it has some limitations such as the precursor 

amines are highly polar and thus hard to purify and handle.  In addition, in some cases the yields 

with these derivatives have been low.  Masked pyrrole carboxamides like (bromo)hydantoins are 

good substitutes to circumvent some of the experimental handling problems.  However, 

(bromo)hydantoins caused problems during the installation with the allylic alcohols due to allylic 

transposition that is a function of the Mitsunobu chemistry used for their installation.30  Recent 

studies with pyrrole thio acids show promise for improving the installation of the pyrrole 

carboxamide group to PIAs, however additional optimization of the reaction conditions both for 

their preparation and their reaction are still required.

Abbreviations

AcCl – Acyl Chloride

n-BuLi - n-Butyllithium 
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(BOC)2O - Di-tert-butyl dicarbonate

BOP - Benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate

DBU - 1,8-Diazabicyclo[5.4.0]undec-7-ene

DCE - 1,2-Dichloroethane

DEAD - Diethyl azodicarboxylate

Dess Martin Periodinane - 3-Oxo-1,3-dihydro-1λ5,2-benziodoxole-1,1,1-triyl triacetate

DIAD - Diisopropyl azodicarboxylate

DIBAL - Diisobutylaluminium hydride

DMAP - 4-Dimethylaminopyridine

DMF - Dimethylformamide

DMSO - Dimethyl sulfoxide

DPPA - Diphenylphosphoryl azide

EDC - 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

HOBt - 1-Hydroxybenzotriazole

LDA - Lithium diisopropylamide

2,6-Lutidine - 2,6-Dimethylpyridine

MsCl - Methanesulfonyl chloride

NCS - N-Chlorosuccinimide 

NBS - N-Bromosuccinimide

NMO - N-Methylmorpholine N-oxide
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Pd2(dba)3 - Tris(dibenzylideneacetone)dipalladium(0)

PPTS - Pyridinium p-toluenesulfonate 

TBAF - Tetra-n-butylammonium fluoride

TBTU - O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate

TMEDA - Tetramethylethylenediamine

TPAP - Tetrapropylammonium perruthenate

TBSCl - tert-Butyldimethylsilyl chloride 

TFA - Trifluoroacetic acid

TrCl - Triphenylmethyl chloride 

THF - Tetrahydrofuran

TsN3 – Tosyl azide

p-TsOH - p-Toluenesulfonic acid
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