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ABSTRACT

Peptide backbone amide substitution can dramatically alter the conformational and physiochemical 

properties of native sequences. Although uncommon relative to N-alkyl substituents, peptides harboring 

main-chain N-hydroxy groups exhibit unique conformational preferences and biological activities. Here, 

we describe a versatile method to prepare N-hydroxypeptides on solid support and evaluate the impact 

of backbone N-hydroxylation on secondary structure stability. Based on previous work demonstrating 

the -sheet-stabilizing effect of -hydrazino acids, we carried out an analogous study with N-hydroxy-

-amino acids using a model -hairpin fold. In contrast to N-methyl substituents, backbone N-hydroxy 

groups are accommodated in the -strand region of the hairpin without energetic penalty. An 

enhancement in -hairpin stability was observed for a di-N-hydroxylated variant. Our results facilitate 

access to this class of peptide derivatives and inform the use of backbone N-hydroxylation as a tool in 

the design of constrained peptidomimetics.          

INTRODUCTION

N-Hydroxy--amino acid residues are encountered in several natural metabolites and are biosynthetic 

precursors to structurally complex non-ribosomal peptides.1 Several N-hydroxy peptide (NHP) natural 

products exhibit potent antibacterial properties, cancer cell cytotoxicity, or activity against endogenous 
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hormone receptors.2 The introduction of a hydroxamate group into the peptide backbone also serves to 

enhance metal chelating properties,3 stability toward some proteases,4 and the potential for enhanced 

hydrogen-bonding interactions with target proteins. For these reasons, several designed peptidomimetics 

harboring N-hydroxy--amino acid residues have found utility as biologically active analogues of native 

peptides.4-5 

Studies on the conformational impact of peptide N-hydroxylation or N-alkoxylation have been mostly 

limited to glycine derivatives.6 Although these residues lack side chain substituents, their N-acyl 

derivatives were found to exhibit a strong preference for the trans amide conformation. The hydroxamate 

group can also engage in both intra- and intermolecular hydrogen bonding interactions to stabilize 

extended or turn geometries. Despite these initial reports, the effect of backbone amide hydroxylation on 

peptide secondary structure remains largely unexplored.7 Conformational studies on NHPs featuring C-

substituted N-hydroxy residues could provide design principles relevant to the stabilization of folded 

peptides. Although solution-phase syntheses of several C-substituted NHPs have been described,3-

4,5b,6b,7-8 access to wider array of diastereopure derivatives via solid-phase methods would enable further 

investigation.    

We previously reported the solid-phase synthesis and conformational analysis of several N-amino peptides 

(NAPs) as novel -strand mimics.9 Amide N-amination restricts backbone dihedral angles through 

cooperative non-covalent interactions as shown in Figure 1. A key feature of NAPs is their ability to 

engage in an intraresidue (C6) H-bond analogous to that observed in conformationally extended peptides 

and -sheets (C5).10 Due to lone pair repulsion across the hydrazide bond, NAPs also avoid the significant 

cis amide rotamer propensity observed with N-alkylated peptides (peptoids, prolyl-containing peptides, 

and N-methyl peptides).11 These factors result in stabilization of -sheet-like conformation as determined 
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by mutational studies using -hairpin model systems.9 We envisioned that N-hydroxy--amino acid 

residues would exhibit similar or even enhanced -sheet propensities given the greater electron density 

and hydrogen bond donor capacity of the OH group relative to NH2. Here, we describe the solid-phase 

synthesis of diastereopure NHPs and examine the impact of N-hydroxy--amino acids on -hairpin 

folding. Our results provide insights into the structure and stability of this underexplored class of N-

heteroatom-substituted peptides.
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Figure 1. Structures and properties of N-heteroatom-substituted peptides.

RESULTS AND DISCUSSION

As shown in Figure 1, N-heteroatom substitution introduces electron repulsion that may partially 

counteract the cis amide rotamer propensity of peptide tertiary amides. To quantify the impact of 

backbone N-hydroxylation on trans/cis amide bias we employed a Gly-Ala-Xaa-Gly tetrapeptide model 

system originally developed by Raleigh and co-workers12. This peptide has previously been used to 

determine the rotamer preferences of proline, pipecolic acid, ε-oxapipecolic acid, and other cyclic 

residues in place of Xaa.12-13 We adapted this sequence in order to directly compare a series of acyclic 

residues in the Xaa position, including those with N-heteroatom substituents. Following Fukuyama’s 
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method,14 we prepared the N-hydroxyalanine (hAla) variant in solution starting from O-benzyl-protected 

L-alanine 1 as shown in Scheme 1. N-alkylation was effected with bromoacetonitrile to give secondary 

amine 2. Oxidation with mCPBA then provided the nitrone intermediate, which was subjected to 

aminolysis to give hAla benzyl ester 3. Selective N-acylation was achieved in the presence of pre-

formed Fmoc alanine acid chloride and NaHCO3.15 Elaboration of the dipeptide using standard protocols 

then provided tetrapeptide 7. Notably, we observed diacylated derivative 5 as the major product during 

condensation with Boc-Gly-OH. However, deacylation of the backbone N-OH occurred upon treatment 

with a 20% solution of piperidine in DMF, providing tetrapeptide 6 in good yield.  
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Scheme 1. Solution-phase synthesis of model NHP 8.

With NHP 7 in hand, we synthesized alanine, N-methylalanine, and N-aminoalanine variants for 

comparison by 1H NMR (Figure 2). Analysis of the spectra taken in D2O revealed that N-heteroatom 
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substituted analogues 7 and 8 exhibit significantly higher trans amide populations relative to N-methyl 

peptide 9. While NAP 8 did exhibit a small but detectable population of cis rotamer (~6%), NHP 7 

exclusively adopts a trans amide conformation in solution. These results are consistent with lone pair 

repulsion in the cis conformation and the greater electron density of O relative to N. As expected, 

control peptide 10 exhibits a trans-only conformation in D2O. 
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Figure 2. Amide trans/cis equilibrium constants for 7-10 determined by NMR (rt in D2O). 

In order to evaluate the β-strand propensity of N-hydroxy--amino acid residues, we utilized a β-hairpin 

model developed by Horne and co-workers for mutational analysis.16 This 16-residue sequence is 

derived from the B1 domain of Streptococcal protein G (GB1, Figure 3) and exhibits moderate folding 

in aqueous media. Its folded population can be quantified by 1H NMR on the basis of diastereotopic 

separation of the Gly10 H signals in comparison to cyclic (fully folded) and truncated (random coil) 

controls. We have also employed this model system to assess the impact of backbone N-amination on β-

sheet stability.9b In that study, elongation of N-amino peptides was achieved by on-resin acylation of -

hydrazino acid residues using Fmoc-protected acid chlorides. Here, we chose to simplify the SPPS 

protocol by pre-forming the hydoxamate bond in solution and incorporating modified building blocks as 

dipeptide fragments. This approach allows us to avoid the use of labile acid chlorides and the generation 
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of insoluble salts during the automated phase of peptide synthesis. Because diacylated derivatives 

exemplified by 5 exhibit poor stability,8e we chose to circumvent over-acylation during SPPS through 

the use of O-protected hydroxamates. Our target building blocks were thus the protected N-hydroxy 

dipeptides shown in Figure 3, corresponding to two outer edge amide mutations within the model 

hairpin sequence. 
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Figure 3. -Hairpin model system and dipeptide building blocks for Fmoc-SPPS.

The required Lys-hPhe dipeptide derivative was prepared as shown in Scheme 2, starting from methyl 

D-phenyllactate. Activation and displacement of the triflate intermediate with allyloxamine proceeded 

smoothly to give 13. Dipeptide bond formation was then achieved through reaction with Fmoc-

Lys(Boc)-Cl, which was generated in situ using Ghosez’ reagent. Lithium iodide-promoted 

deesterification then provided building block 15 in 76% yield. 
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Scheme 2. Synthesis of Lys-hPhe building block 15.

Efforts to employ a similar SN2 displacement strategy for the synthesis of the analogous Ala-

hVal dipeptide were unsuccessful due to the additional steric bulk of the valine side chain (Scheme 3). 

As an alternative, we prepared N-hydroxyvaline t-butyl ester using the nitrone methodology described 

above (see Scheme 1).  Condensation of 21 with Fmoc-Ala-Cl was followed by Mitsunobu reaction with 

allyl alcohol and final TFA deprotection to give 22 in 60% yield over three steps.
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Scheme 3. Synthesis of Ala-hVal building block 22.

Condensation of dipeptides or larger fragments can often lead to significant C-terminal epimerization. 

With access to N-allyloxy dipeptide acids 15 and 22, we sought to ensure that stereochemical integrity 

would not be compromised under standard coupling conditions during SPPS. Compound 15 was thus 
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converted to (S)-α-methylbenzamide derivative 23 with HCTU and NMM at elevated temperature. A 

diastereomeric amide derivative differing in configuration at the (O-All)hPhe residue was synthesized 

for comparison by HPLC. Crude analytical traces revealed a > 99:1 d.r. for 23 (Figure 4). This level of 

diastereopurity demonstrates a lack of epimerization during activation of the dipeptide building block 

with HCTU/NMM. We attribute this configurational stability to suppressed oxazolonium formation in 

the case of N-alkoxy peptide fragments. Figure 5 depicts the mechanism of peptide fragment 

epimerization upon activation of the carboxyl group.17 The N-allyloxy group is strongly electron 

withdrawing and presumably destabilizes the transition state leading to the labile oxazolonium 

intermediate. 

Figure 4. Determination of fragment epimerization during C-terminal condensation by RP-HPLC. 
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Assembly of peptides on solid support employed standard Fmoc chemistry using HCTU/NMM 

activation (Figure 6). Where appropriate, allyl deprotection with Pd(Ph3)4 was performed prior to global 

deprotection with TFA. Figure 6 lists the peptides synthesized for the current study in addition to 

previously prepared peptides for comparative analysis. All amide substitutions are positioned on the 

outer edge of the putative hairpin so as not to disrupt interstrand H-bonding interactions. Peptides 11b-c 

are mono-N-hydroxylated peptides (mono-NHPs) substituted at either the Phe or Val residue mutations 

sites. Peptides 11d-e retain the allyl protecting group to provide comparison between N-hydroxy and N-

alkoxy substitutions. To assess the impact of multiple backbone substitutions, peptides 11f-g were 

synthesized. Entries 11h-j from our previous work9b are included here for comparison between N-

hydroxy and N-amino substitution. Lastly, entries 11k-l serve as a point of comparison between N-

heteroatom and N-methyl substitutions. 
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Detailed NMR studies with 11b-11l were carried in D2O at 4 oC (1 mM peptide in 50 mM aq. NaHPO4, 

pH 6.8). Full 1H NMR assignments were made on the basis of TOCSY and ROESY spectra. Several 

inter-strand NOE correlations observed for N-hydroxy and N-alkoxy peptides 11b-11g were in 

agreement with those observed in the fully folded cyclic peptide, indicating the presence of -hairpin 

structures.18 Quantitative assessment of folding was accomplished by calculating the Gly10 Hα chemical 

shift separation, which was then converted to fraction folded and G relative to 11a (Table 1). The 

folded fraction of hPhe derivative 11b was found to be 86%, corresponding to a stabilization of -0.5 

kcal/mol relative to 11a. This increase in stability is comparable to NAPs 11h and 11i. N-hydroxylation 

at Val 11c did not enhance hairpin stability, but was still tolerated without energetic penalty. Entry 11f 

shows that multiple N-hydroxylations are well supported within the hairpin, but did not provide the 

same gain in stability as diamination (11j). This may be due in part to the negligible effect of Val N-

hydroxylation relative to N-amination (11c vs. 11i). The folded fraction of N-alkoxy derivatives 11d-e, 

lacking the C6 H-bonding capability of the N-hydroxy mutants, were found to be only 67%, 

corresponding to a slight destabilization. This trend is also seen in the N-alkoxy double mutant 11g. 

While backbone N-methylation in 11k resulted in significant destabilization (+1.1 kcal/mol), a less 

pronounced effect was observed in the case of (N-Me)Val mutant 11l. The Val14 residue appeared to be 

less sensitive to mutation in the case of the N-hydroxy, N-alkoxy, and N-methyl variants. Taken 

together, these results show that backbone N-hydroxylation is well tolerated in the strand region of a -

hairpin, and in some cases, provides enhancement of stability. Given that O-allyl variant 11g exhibited 

only a single amide rotational isomer by NMR, it is likely that the loss of intraresidue H-bonds 

contributes to its lower folded population relative to di-NHP 11f. As with N-amino peptides, a 

significant increase in folded population was observed for NHPs relative to their N-methylated 

analogues.    
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Table 1. Folding thermodynamics of NHPs and analogous peptides determined by NMR (D2O, pH 6.8, 4 oC). 

peptide mutation Gly10
(ppm)

% folded Gfold
(kcal/mol)

Gfold
(kcal/mol)

11a
11b
11c
11d
11e
11f
11g
11h
11i
11j
11k

11l

none
hPhe12
hVal14

(O-All)hPhe12
(O-All)hVal14
hPhe12,hVal14

(O-All)hPhe12,(O-All)hVal14
aPhe12
aVal14

aPhe12,aVal14
(N-Me)Phe12

trans
cis

(N-Me)Val14
trans
cis

0.224
0.255
0.221
0.208
0.209
0.260
0.203
0.261
0.252
0.301

0.096
0.000

0.213
0.000

73
86
72
67
67
88
65
88
84
99a

24
37
0
56
69
0

-0.5
-1.0
-0.5
-0.4
-0.4
-1.1
-0.3
-1.1
-0.9
-2.5a

+0.6
+0.3

0
-0.1
-0.4

0

-0.5
0.0

+0.1
+0.1
-0.6
+0.2
-0.6
-0.4
-2.0
+1.1
+0.8

+0.4
+0.1

aA value of 99% was used for calculations as the derived %fold from Gly10 exceeded 100%.

Finally, it is worth noting that we observed reduced levels of crude purity for NHPs relative to their 

NAP counterparts. During mid-sequence LCMS analysis, we identified a mass fragment corresponding 

to loss of allyl alcohol. This prompted us to investigate the stability of N-allyloxy peptides towards basic 

conditions. Peptide 11d was thus dissolved in a 20% piperidine/MeOH solution at 5 mM concentration 

and analyzed by HPLC (Figure 7). After 30 min exposure to base, a small amount of deallylated peptide 

was detected by LCMS. At 2 h, a prominent peak corresponding to the N-terminal fragment of imine 

hydrolysis was identified. Interestingly, we observed a series of peaks that featured the mass of the 
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imine species. We reasoned that these could represent the intact N-acyl imine as well as 

dehydrophenylalanine tautomers. These results suggest that N-alkoxy peptides are prone to base-

promoted elimination across the N-C bond and that buffered piperidine solutions or lower reaction 

temperatures may improve the crude purity of NHPs prepared on solid support.
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Figure 7. Proposed mechanism of base-mediated decomposition of 11d.

CONCLUSIONS

In summary, we describe the synthesis of N-hydroxy dipeptide building blocks, their incorporation into 

NHPs, and initial assessment of -sheet propensity by NMR. Furthermore, a tetrapeptide model was 

synthesized in solution and used to demonstrate that NHPs exhibit an unusually high trans amide 

propensity relative to N-amino- and N-methyl peptides. N-Hydroxy--amino acid residues were 

accommodated into the strand region of a -hairpin fold without energetic penalty. In the case of 11b 

and 11f, mono- and di-N-hydroxylation was found to enhance -hairpin stability. Capping of the OH 
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with an alkyl group compromised stability, suggesting that an intraresidue H-bond involving the 

hydroxamate may play an important role in structural preorganization. In addition to the conformational 

effects explored here, the current work provides a useful method to access various C-substituted NHPs 

by SPPS. We anticipate that these results will enable further structural and biological studies on this 

intriguing class of N-heteroatom-substituted peptides.       
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