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Regio and stereoselective synthesis of 1,4-enynes by iron-catalysed 
Suzuki–Miyaura coupling of propargyl electrophiles under ligand-
free condition
Ryosuke Agata,ab Siming Lu,ab Hiroshi Matsuda,a Katsuhiro Isozaki,*ab and Masaharu Nakamura*ab 

The first iron-catalysed cross coupling of propargyl 
electrophiles with lithium alkenylborates has been developed. 
Various propargyl electrophiles can be cross-coupled with 
lithium (E)- or (Z)-alkenylborates in a stereospecific manner to 
give the corresponding 1,4-enynes in good to excellent yields. 
The reaction features high SN2-type regioselectivity and 
functional group compatibility. 

1,4-Enynes are versatile synthetic building blocks for complex 
molecular frameworks of natural and non-natural bioactive 
compounds.1–3 While various synthetic approaches to 1,4-
enynes have therefore been developed to date,4–11 several 
limitations remain in the state-of-the-art. For example, the 
synthesis of densely substituted 1,4-enynes by allylic 
alkynylation is highly challenging due to the lack of suitable 
methods for simultaneous control of regioselectivity and alkene 
geometry, and no precedent exists for the installation of 
tetrasubstituted alkene moieties with this method (Scheme 
1a).4 Cross-coupling reactions between a propargyl electrophile 
and an alkenylmetal is an alternate approach that provides a 
diverse array of stereochemically-defined multi-substituted 1,4-
enynes (Scheme 1b).7 Despite its high synthetic potential, this 
cross-coupling approach suffers from narrow substrate scope, 
poor functional group compatibility, and most importantly, 
poor control over regioselectivity (i.e., SN2 vs. SN2' 
selectivity).12–16 

We previously reported the Suzuki–Miyaura coupling of 
various organoborates with alkyl halides in the presence of iron 
catalysts, which proceeded with high functional group 
compatibility to afford the coupling products.17 We thus 
envisioned that the iron-catalysed cross-coupling reaction of 

propargyl electrophiles with alkenylborates would enable 
expedient synthesis of varied 1,4-enynes. Herein, we report the 
first iron-catalysed Suzuki–Miyaura coupling of lithium 
alkenylborates with propargyl electrophiles, which furnishes 
densely substituted and functionalised 1,4-enynes in a highly 
regioselective and stereospecific manner (Scheme 1c). 

Our study began with the screening of metal catalysts and 
reaction conditions for the cross coupling of lithium 
alkenylborate (1a or 1a′) with propargyl bromide 2a_Br, as 
shown in Table 1. The reaction was carried out as follows: 

Borate 1a or 1a′ was prepared by the treatment of the 
corresponding alkenylboronate with t-BuLi or BuLi, respectively, 
and used for the coupling reaction without 
isolation/purification. To the mixture of the borate and the

Scheme 1 Synthesis of 1,4-enynes through allylic alkynylation and 
transition-metal-catalysed cross-coupling reactions of alkenylmetal 
reagents with propargyl electrophiles.
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propargyl bromide, catalytic amounts of transition-metal salts 
and MgBr2 were added and stirred at 0 °C for 1 hour. 

In the case of FeCl3, the stereospecific cross-coupling 
reaction proceeded selectively at the Csp3–Br position to give 
the desired product 3a in quantitative yield without the 
formation of allene isomer 4a (entry 1, Table 1).17b Notably, the 
(Z)-configuration of 1a is entirely retained in the 
transformation. BuLi could also activate alkenylboronate for 
cross coupling to give 3a in 95% yield (entry 2). In the absence 
of either the FeCl3 or MgBr2, no coupling product was formed 
(entries 3 and 4). Precious or rare metal salts, such as PdCl2 and 
NiCl2, did not catalyse the present reaction at all (entries 5 and 
6),7a,7b,12,13 whereas CoCl2, MnCl2, and CuCl showed lower 
catalytic activity and selectivity than that with the iron catalyst 
(entries 7–9).14 This successful conversion represents the first 
example of the alkenylation of propargyl electrophiles with 
lithium alkenylborates. Since t-BuLi is air-sensitive and 
flammable, we adopted the conditions in entry 2 as the optimal 
ones.

With the optimal conditions in hand, we studied the scope 
of lithium alkenylborates 1 and propargyl bromides 2 in the 
cross coupling, as shown in Table 2. Various lithium (Z)-
alkenylborates18 smoothly cross-coupled with 2a_Br to give the 
corresponding 1,4-enynes 3a–3d, in good to excellent yields. 
The scalability of the method was demonstrated by conducting 
the reaction on a gram-scale, in which 9.45 mmol of 1a′ reacted 
with 2a_Br to afford 2.92 g of 3a in 87% yield. When lithium (E)-
alkenylborate19,20 was used, the yield of 3e was much lower 
than that using the corresponding (Z)-alkenylborate; 
nevertheless, the yield reached 82% upon increasing the 
catalyst loading of FeCl3 from 1 to 10 mol %. Lithium 
alkenylborates bearing an electron-rich and an electron- 
deficient aryl group participated in the reaction to give 3f and 
3g in 78% and 86% yields, respectively.

Table 1 Optimisation of reaction conditions for cross-coupling 
reaction of lithium alkenylborate (1a or 1a’) with propargyl bromide 
2a_Bra

Entry Catalyst
Yield (%)b

>99

95

N.D.

N.D.

3

N.D.

18

42

62

1

2
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4
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8
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3a 4a
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N.D.

N.D.

N.D.

N.D.

N.D.

N.D.
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N.D.
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aReactions were carried out on a 0.3–0.5 mmol scale. N.D. denotes not detected. 
bDetermined by 1H NMR analysis using 1,1,2,2-tetrachloroethane as an internal 
standard. cRecovered starting material 2a_Br. dWithout MgBr2.

Table 2 Substrate scopea

a
Reactions of lithium (Z)- and (E)-alkenylborates were carried out using 1 mol % 

and 10 mol % of FeCl3, respectively, unless otherwise noted; see the experimental 
section for details of the reaction conditions for each entry. E:Z ratio were 
determined by 

1
H NMR analysis. Isolated yields are given. bReaction was carried 

out on a 9.45 mmol scale. cFeCl3 (1 mol %) was used. dNMR yield is given in 
parentheses. GPC purification lowered the isolated yield of 3j. eGC peak area ratio. 

Next, the scope of propargyl halides was examined with a 
range of lithium (Z)- or (E)-alkenylborates. The reactions of 
trimethylsilyl-substituted propargyl bromide with lithium (Z)-
alkenylborates efficiently provided 3h and 3i in excellent yield 
with high SN2-type selectivity (3h:4h = 93:7), where the 
selectivity of 1,4-enyne 3h versus allene 4h was determined by 
GC analysis of the crude product. After purification, 3h was 
obtained in 82% yield. The reactions between various aryl-
substituted propargyl bromides and lithium (E)-alkenylborates 
were examined to provide the corresponding 1,4-enynes 3j–3q 
in good to high yields without the formation of allene 
byproducts. Functional groups, such as nitrile and ester, were 
compatible with this reaction, giving the corresponding 
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products 3j and 3k in 28% and 56% yields, respectively.21,22 
Electron-rich and sterically demanding substrates delivered the 
products 3l–3o in good to high yields (52–72% yields). 

PrPr
+

B

Pr
Pr

( )9

1r, 59%

B2pin2

+ (ref 22.)

Pr
Pr

( )9

Si(i-Pr)3

3r, 55%
Br

( )9

O

O

cat. Fe
LiOMe

1) BuLi
2) cat. Fe

2a_Br

Scheme 2 Synthesis of tetrasubstituted 1,4-enyne (See SI for detailed 
reaction conditions).

A heteroaryl-containing substrate, 2-thiophenyl-substituted 
propargyl bromide, also participated in this reaction to give the 
product 3p in 56% yield. p-Bromophenyl-substituted propargyl 
bromide was cross-coupled selectively at the Csp3–Br position 
without generating the Csp2-coupling product.

Scheme 2 shows the synthesis of a tetrasubstituted 1,4-
enyne via a sequential iron-catalysed carboboration23/cross-
coupling reaction. Notably, the tetrasubstituted 1,4-enyne 3r, 
which has not been achieved by conventional methods, was 
synthesised successfully through this sequential method. 

Having examined the substrate scope extensively, we then 
carried out a set of reactions for probing the origin of the 
distinct reactivity of the catalyst system toward a range of 
propargyl electrophiles. As shown in Scheme 3a, propargyl 
halides 2a_Br and 2a_Cl participated in the reaction to give 3e 
in high yield. Propargyl tosylate 2b_OTs also provided 3e in 72% 
yield owing to its in situ conversion to 2a_Br by halogen 
exchange (see SI).24 While propargyl acetate 2a_OAc afforded 
3e in extremely low yield due to its low reactivity. Generally, 
homolytic cleavage of the C–OR bond does not occur under 
cross-coupling reaction. Thus, the present reaction can be 
interpreted to proceed via in situ formation of the propargyl 
bromide and the subsequent propargyl radical formation. A 
brief mechanistic study also supported the radical mechanism. 
In the presence of five equivalents of 9,10-dihydroanthracene 
as the radical scavenger,25 the coupling reaction slowed down 
dramatically and the coupling product 3e formed only in 12% 
yield (Scheme 3b).

Fig. 1 shows a possible reaction mechanism based on the 
above results and previous mechanistic studies on iron-
catalysed cross couplings of alkyl halides.26 Before its 
participation in the catalytic cycle, the reactive halogenated 
iron(I) intermediate A is generated by the 
transmetalation/reduction of iron precatalyst FeCl3 with lithium 
alkenylborate 1 and the subsequent reaction with propargyl 
halide 2. The reactive species A abstracts a halogen atom from
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Scheme 3 Mechanistic study.
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Fig. 1 Possible reaction mechanism.

propargyl halide 2, forming a propargyl radical intermediate and 
iron(II) intermediate B. The transmetalation of intermediate B 
with the alkenylborate 1 forms the organoiron(II) intermediate 
C. Although the spin density of the propargyl radical delocalises 
both on C1 and C3 positions, the radical recombination of 
organoiron(II) intermediate C with the propargyl radical takes 
place predominantly at the C1 position likely due to the steric 
hindrance of the terminal substituents, affording the 
organoiron(III) intermediate D. The subsequent reductive 
elimination gives 1,4-enyne 3 and regenerates iron(I) 
intermediate A. It should be noted that the reaction is 
considered to involve a radical chain mechanism,26b,c and hence, 
intermediate C trapping a propargyl radical is not necessarily 
the same iron species which generates the intermediate D.

In summary, we have developed an efficient stereoselective 
synthesis of 1,4-enynes by the iron-catalysed Suzuki–Miyaura 
coupling between propargyl electrophiles and alkenylborates. 
This reaction features high functional group compatibility, 
excellent regioselectivity (SN2-type) and stereoselectivity, and is 
high yielding with a broad range of substrates, providing 
versatile building blocks to advance the synthesis of complex 
bioactive molecules. Applications of the present coupling 
reaction in natural product syntheses and development of the 
enantioselective variant are underway in our laboratory. 
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