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Lateral-Size Control of Exfoliated Transition-Metal-Oxide 2D 
Materials by Machine Learning on Small Data 
Ryosuke Mizuguchi,a Yasuhiko Igarashi,b,c Hiroaki Imai,a Yuya Oaki*a,c

A wide variety of nanosheets including monolayers and few-layers have attracted much interest as two-dimensional (2D) 
materials for the unique anisotropic structures and properties. On the other hand, one of the significant remaining and 
challenging issues is the lateral-size control. Since 2D materials are generally synthesized by exfoliation of layered materials, 
the lateral size is not easily controlled in the breaking-down uncontrollable processes. The experimental factors have not 
been found for the control and prediction. In the present work, lateral sizes of exfoliated transition-metal-oxide nanosheets 
were predicted and controlled by assistance of machine learning. Layered composites of host inorganic layers and guest 
organic molecules were exfoliated into the nanosheets in organic dispersion media. The lateral size of the nanosheets was 
estimated by dynamic light scattering (DLS), instead of microscopy methods, to achieve high-throughput analyses. Factors 
governing the lateral size are explored on the small experimental data by assistance of sparse modeling, a method of 
machine learning. The eight physicochemical parameters of the organic guests and dispersion media were extracted by 
sparse modeling for construction of the size-prediction model. The size-prediction model accelerated the selective syntheses 
of nanosheets with large and small lateral sizes in a limited number of the experiments. The results indicate that the 
prediction model is a guideline to find the suitable exfoliation conditions for the size control. Size-selective syntheses of a 
variety of 2D materials can be achieved by the similar methods using sparse modeling on small experimental data. Moreover, 
sparse modeling is applicable to control the design and exploration of the other materials and their processing based on 
small data.

Introduction
Two-dimensional (2D) materials attract much interest as one of 
the most promising nanostructures in recent years.1–11 The 
characteristic properties and functions are extracted from the 
ultrathin, anisotropic, and flexible structures. Nanosheets 
including monolayers and few-layers are synthesized by 
exfoliation of precursor layered materials in liquid phase.12–20 
However, it is not easy to obtain the nanosheets with tailored 
size, yield, and surface chemistry through exfoliation processes. 
The lateral-size control is an important challenge for the 
applications, such as assembly of the nanosheets and tuning of 
the properties. In general, the lateral size is not easily predicted 
and controlled because the precursor layered materials are 
broken down into nanosheets through exfoliation coupled with 
random fracture in lateral direction. In addition, measurement 
of the lateral size generally requires time- and effort-consuming 
microscopy analyses. Therefore, the lateral-size control of 2D 

materials is still a challenging target for chemists and materials 
scientists. New approaches are required for the lateral-size 
prediction and control in the exfoliation processes. Here we 
applied machine learning to change the breaking-down 
uncontrollable processes to controllable ones (Fig. 1). 

Exfoliation methods and processes are different for layered 
materials, such as those consisting of van der Waals and 
electrostatic interactions.12–20 Recently, exfoliated nanosheets 
are observed on not only classical layered inorganic compounds 
but also a wide variety of materials.21–25 In previous works, 
variation of the lateral size was observed by changes in the 
exfoliation conditions,26–35 such as the type and concentration 
of the exfoliating agents,26–30,32 exfoliation time,31–33 and 
centrifugation conditions during purification.34,35 The larger and 
smaller nanosheets were obtained by size control of the 
precursor layered compounds.36–39 Here we show a new general 
strategy to predict and control the lateral size of 2D materials. 
The layered composites of inorganic host and organic guest 
were exfoliated into the surface-modified nanosheets in organic 
media. The exfoliation proceeds on the basis of the affinity 
between the guests and media through swelling.40–44 In this 
method, the exfoliation behavior can be changed by 
combinations of the host, guest, and dispersion medium.43,44 
The present work shows the lateral-size prediction and control 
of the transition-metal-oxide nanosheets by an assistance of 
sparse modeling, a recent successful machine-learning method. 
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Sparse modeling is a machine-learning method for explanation 
of whole data by a simple model using a limited number of 
significant descriptors on the assumption of sparseness in high-
dimensional data.45–47 The modeling method is applied to a 
variety of phenomena in physical sciences, such as compression 
of image data. Our group has studied applications of sparse 
modeling to small-scale our own experimental data.43,44,48 The 
method contributes to extract the descriptors overlooked by 
researchers. A simple interpretable prediction model using a 
limited number of descriptors can be constructed by sparse 
modeling. The approach facilitates accelerated finding of 
molecules, materials, and processes by experimental 
scientists.43,44,48–50 In the present work, lateral-size prediction 
and control of nanosheets were achieved by sparse modeling 
on our own small data. The construction method of the size-
prediction model can be applied to achieve controlled 
syntheses of  the other 2D materials.

Fig. 1.   Overview of the present work. (a) Precursor layered composites consisting of the 
host layers and guest molecules with the original lateral size (L0). (b) Exfoliation of the 
layered composites into the surface-functionalized nanosheets in organic media and 
their DLS chart to estimate the size-reduction rate (RL = L L0

–1). (c) Training dataset 
consisting of 48 RL values as objective variables (y = RL) and 18 potential descriptors as 
explanatory variables (xn: n = 1–18) for construction of the size-prediction model using 
sparse modeling. (d) Exfoliation experiments for the tailored syntheses of large and small 
nanosheets on the predicted 80 host-guest-medium combinations (right) extracted from 
the total unknown 4800 combinations using the prediction model (left).

Results and Discussion
The nanosheets were synthesized by exfoliation of the layered 
composites consisting of the host inorganic layers and interlayer 
organic guests in organic dispersion media (Fig. 1a,b). A simple 

lateral-size-prediction model was constructed by sparse 
modeling on the small experimental data (Fig. 1c). Finally, the 
lateral-size prediction and control of the exfoliated nanosheets 
were achieved on unknown host, guest, and medium 
combinations in a limited number of experiments (Fig. 1d). The 
detailed methods for the syntheses, characterization, and data 
analysis were described in the Electronic Supplementary 
Information (ESI).

Construction of size-prediction model from small 
experimental data

The layered composites of host titanate and 8 different 
interlayer guests were exfoliated in 13 dispersion media (Fig. 
1a).43 The nanosheets were synthesized in the total 104 guest-
medium combinations. The particle-size distribution of the 
dispersion liquid containing the nanosheets was measured by 
dynamic light scattering (DLS) after removal of the unexfoliated 
bulky particles by filtration (Fig. 1b). These data were extracted 
from our previous work.43 In previous works,23,43,51 the lateral 
size was roughly estimated by DLS measurement to without 
time-consuming microscopy observations. In the present work, 
the average size (L) of the DLS measurement was regarded as 
the average lateral size of the nanosheets to achieve the high-
throughput analysis and data collection (Fig. 1b). The thickness 
of the transition-metal-oxide nanosheets is only measured by 
time-consuming AFM, even though that of some layered 
compounds based on van der Waals interaction can be 
estimated from the spectroscopic analyses. According to our 
previous works, the nanosheets include the monolayers and 
few-layers. In the present work, we focused on the lateral size 
of the nanosheets measured by DLS. The pristine layered 
compounds were prepared by solid-state and solution 
syntheses. Then, the precursor layered composites were 
obtained by the intercalation of the guest organic molecules. 
Our previous works suggest that the particle sizes of the pristine 
layered compounds were not changed after the intercalation of 
the guests.44,45 Therefore, the average lateral size (L0) of the 
pristine layered compounds was measured by scanning electron 
microscopy (SEM) (Fig. 1a and Fig. S1 in the ESI). The size-
reduction rate (RL = L L0

–1) was used as a parameter of the lateral 
size because L depends on L0 of the host layered compounds. 
The RL values for the 48 guest-medium combinations with the 
yield of the nanosheets higher than 3 % were extracted from 
the original 104 combinations (Fig. 1c and Table S1 in the ESI). 
The average yield of the nanosheets was 23.9 ± 21.7 % for the 
48 guest-medium combinations in the training dataset (Table S1 
in the ESI). The yield was measured by collection of the 
nanosheets through the filtration of the dispersion liquid.43,44 
These 48 RL values in the range of 0.120–0.576 were set as the 
objective variables (y). Then, 18 potential factors related to RL 
were selected on the basis of our perspective and listed as the 
explanatory variables (xn: n = 1–18) (Table 1 and Fig. 1c). The 
explanatory variables are physicochemical parameters for the 
potential descriptors controlling the lateral size, such as 
molecular weight, polarizability, and Hansen-solubility (-
similarity) parameters regarding the dispersion media (xn: n = 1–
9), guests (xn: n = 10–15), and guest-medium combinations (xn: 
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n = 16–18). In this manner, the small-scale training dataset 
containing the 48 objective variables (y) and 18 explanatory 
variables (x) was prepared for sparse modeling (Fig. 1c and 
Table S1 in the ESI).
   Our intention here is to construct a simple and interpretable 
prediction model for control of RL by the exfoliation 
experiments. The important factors to estimate RL (y) were 
extracted from the training dataset by multiple regression 
model with penalty based on minimax concave plus (MCP), a 
method for sparse modeling (Fig. 2).52,53 This sparse modeling 
extracted 10 descriptors from the original 18 explanatory 
variables (the colored xn in Table 1). The RL is represented by the 
descriptors xn (n = 3, 4, 6, 7, 8, 10, 12, 13, 14, 18). The modified 
prediction model using these 10 descriptors had the 
relationship between the measured (y) and estimated RL (yʹ) 
with cross validation error (CVE) 0.130. However, the 
descriptors x6 and x12 require time-consuming calculation by 
density functional theory (DFT) (the gray-colored cells in Table 
1). The prediction model using 8 descriptors except x6 and x12, 
namely xn (n = 3, 4, 7, 8, 10, 13, 14, 18), is represented by (eq. 
1) with root mean squared error (RMSE) 0.116 (Fig. 2a), where 
the descriptors xn are converted to the normalized frequency 
distribution such that the mean is 0 and standard deviation is 1. 

Table 1.   List of the explanatory variables (xn: n = 1–18).

Dispersion media Guest molecules
xn Parameters 10 Molecular weight
1 Molecular weight 11 b Polarizability
2 a Melting point 12 b Dipole moment
3 a Boiling point 13 c HSP-dispersion 
4 a Density 14 c HSP-polarity
5 b Dipole moment 15 c HSP-hydrogen bonding
6 b Polarizability Guest-medium combinations
7 c HSP-dispersion 16 b Δ Polarizability
8 c HSP-polarity 17 b Δ Dipole moment
9 c HSP-hydrogen bonding 18 c HSP distance

a literature data, b Calculation data by DFT, c Calculation data by HSPiP software. The 
red and blue descriptors have positive and negative correlations, respectively. The gray 
descriptors were not used in the prediction model (eq. 1).

y = − 0.159x3 − 0.096x4 + 0.257x7 − 0.017x8 − 0.018x10 + 0.028x13 − 
0.050x14 + 0.061x18 + 0.267 … (eq. 1)

The relationship between the y and yʹ indicates that the 
prediction model enables not accurate but rough estimation of 
RL using only 8 descriptors (Fig. 2a). 

The additional sparse modeling, exhaustive search with 
linear regression (ES-LiR),47 supported the correlation of the 
extracted 8 descriptors (Fig. 2b). In sparse modeling, linear 
regression model is represented by a limited number of 
descriptors with non-zero coefficients. In ES-LiR,47 which 
coefficients are zero (or non-zero) is exhaustively searched in all 
the possible combinations of the explanatory variables, namely 
2N−1 combinations, where N is the total number of explanatory 

variables. In the present work, after calculation of the CVE 
values for total 218−1 (= 2.62 × 105) combinations, the 
combinations were sorted in the ascending order of the CVE 
values. The weight diagram shows the 103 combinations with 
the smallest CVE values. The colors represent the positive and 
negative correlations in the linear regression models (Fig. 2b). 
In the weigh diagram, the descriptors x3, x4, x8, x10, and x14 
exhibited blue cool colors corresponding to the negative 
correlation. In contrast, the descriptors x7, x13, and x18 had red 
warm color corresponding to the positive coefficients. The 
trends of the positive and negative correlations are consistent 
with the coefficients in the prediction model (eq. 1). Therefore, 
the ES-LiR supports the prediction model (eq. 1). 

Fig. 2.   Construction of the size-prediction model using the descriptors extracted by 
sparce modeling and chemical perspective. (a) Relationship between the measured and 
estimated RL values for the 48 samples in the training dataset according to the size-
prediction model (eq. 1) using the extracted 8 descriptors. (b) Weight diagram of the ES-
LiR analysis representing the coefficients of the non-zero explanatory variables with the 
warm and cool colors corresponding to the positive and negative values, respectively.

According to the correlations, the larger nanosheets are 
obtained by the smaller x3 (boiling point of dispersion media), 
x8 (Hansen-solubility (or -similarity) parameter (HSP) polarity 
term of dispersion media), and x14 (HSP polarity term of guests). 
The larger x7 (HSP dispersion term of dispersion media) and x13 
(HSP dispersion term of guest molecules) provide the larger 
nanosheets. These correlations of the descriptors imply that the 
larger nanosheets are formed with weaker intermolecular 
interaction between the nonpolar interlayer guest and 
dispersion medium. If the guest-medium interaction is weak, 
the smooth exfoliation without fracture is induced without 
stress to the layer. In contrast, the stronger intermolecular 
interaction between the polar guest and medium causes the 
larger stress to the host metal-oxide layer leading to the 
fracture in the lateral direction. In this manner, the positive and 
negative correlations in the model are consistent with the 
chemical perspective, although the correlation of the other 
descriptors, such as x4 (density of dispersion media), x10 
(molecular weight of guests), and x18 (HSP distance of the guests 
and dispersion media) are not clearly explained. The size-
prediction model (eq. 1) is a potential guideline for syntheses of 
the large and small nanosheets. 

Sparse modelling for small experimental data

   Sparse linear regression is applied in the present work on the 
assumption of a linear relationship between the explanatory 
and objective variables, because the number of data is small for 
the normal machine-learning (ML) algorithm. Although the 
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degree of freedom of the model is narrowed by assuming a 
linear relationship, the model can be trained stably even on 
small data. The problem for predictions using ML algorithms is 
not the size of the trained data, but rather the similarity of the 
trained data to the objective data. If the objective data is similar 
to the trained data, we can extrapolate from the training data 
and predict the better results. In the present study, the 
extrapolation can be achieved because the experimental 
system of the exfoliation is same in the trained and test data.  
Among machine learning algorithms, the linear model with 
sparsity has some degree of reliability to the extrapolation 
results on the assumption that the correlation between the 
explanatory and objective variables is constant outside the 
training data. In addition, a sparse linear regression model is 
easily interpretable for experimental scientists. Therefore, we 
believe that the construction and application of the linear 
model with sparsity is a suitable screening method of the 
experimental conditions based on small data. The correlations 
between explanatory and objective variables can be changed by 
the accumulation of the experimental data. The modifications 
in the coefficients are required to construct the more accurate 
model with addition of the data. The other chemical-related 
features may have correlation with the lateral-size of the 
nanosheets as the descriptors. In our group, the explanatory 
variables as the potential descriptors are selected prior to 
sparse modeling on the basis of our chemical perspective and 
experience.43,44 The selection of the explanatory variables as the 
prior knowledge corresponds to the assumption of the 
sparseness itself. If the sufficient model is not constructed, 
reconsideration of the explanatory variables is needed. We first 
provided the potential factors to avoid the overlooking of the 
descriptors, as much as we can. If the provided explanatory 
variables have little correlation, these are not extracted as the 
descriptors by machine learning. Listing all the potential 
explanatory variables is important for our sparse modeling on 
small experimental data. In fact, design of new organic anode 
for lithium-ion battery was performed by the similar approach 
in our previous work.53

Predicted syntheses of large and small nanosheets

The size-selective syntheses of metal-oxide nanosheets were 
demonstrated on unknown host-guest-medium combinations 
(Fig. 1d). According to the prediction model, the nanosheets 
with large and small lateral sizes were synthesized only on the 
predicted 80 combinations in the total 4800 candidates (Fig. 1d 
and Fig. S2 in the ESI). The number of experiments reduced by 
98.3 % using the prediction model. The unknown combinations 
of 22 guest molecules and 40 dispersion media were prepared 
for 5 host layered compounds with negatively charged layers, 
such as layered titanate, manganate, tungstate, niobate, and 
tantalate (Fig. 1d and Fig. S2 in the ESI).29,44,54-57 The unknown 
combinations of 10 guest molecules and 40 dispersion media 
were prepared for the host containing the positively charged 
layer, such as α-type layered cobalt hydroxide (Co(OH)2) (Fig. 1d 
and Fig. S2 in the ESI).42

The yield- and size-prediction models recommended the 
guest-medium combinations for syntheses of large and small 
nanosheets in high yield. Prior to the size prediction, 468 guest-
medium combinations with the predicted yield higher than 30 
% were extracted from unknown 880 combinations for the 
negatively charged host layers using the yield-prediction model 
in our previous report.44 Then, the lateral size was predicted 
using (eq. 1) for the extracted 468 combinations. The exfoliation 
experiments were only performed on the predicted largest and 
smallest 6 or 10 guest-medium combinations for each host layer 
(Table 2 and Table S2 in the ESI). When the target guest 
molecule was not experimentally intercalated in the layered 
compounds, the next one was moved up in the rank. In this 
manner, the ranks of the predicted large and small RL values 
were prepared for each layered compound (Table 2 and Tables 
S2 in the ESI). Table 2 shows the ranks of the predicted 10 guest-
medium combinations providing large (L-01–10) and small (S-
01–10) titanate nanosheets. The ranks L-01–06 and S-01–06 
were prepared for the other host layers (Table S2 in the ESI). 
The required precursor layered composites were synthesized 
for the exfoliation experiments (Figs. S3–S8 and Table S3 in the 
ESI). 

Table 2.  The predicted 10 combinations for syntheses large (L-01–10) and small 
(S-01–10) titanate nanosheets.

Large-size nanosheets 　 　 　

Rank Guest Medium
Predicted

 RL / –
Measured

 RL / –
L-01 Vinyl-BA THF 0.473 1.130 
L-02 H-BA Benzaldehyde 0.469 0.182 
L-03 Vinyl-BA Ethylbenzene 0.465 0.233 
L-04 NEA 1,3-Dioxolane 0.461 0.308 
L-05 Tp-EA THF 0.461 0.352 
L-06 Tp-MA Benzaldehyde 0.453 0.434 
L-07 CH3-BA Benzaldehyde 0.451 0.334 
L-08 DOA THF 0.449 0.264 
L-09 H-BA 1,3-Dioxolane 0.445 0.354 
L-10 NH2-BA 1,3-Dioxolane 0.392 0.592 

Average 0.452 0.418 
Standard deviation 0.023 0.275 

Small-size nanosheets 　 　 　
S-01 DAMN Formamide −0.567 0.179 
S-02 API DEG −0.476 0.163 
S-03 BPO DEG −0.460 0.310 
S-04 C18-NH2 DEG −0.402 0.312 
S-05 C6-NH2 DEG −0.394 0.189 
S-06 MeO-BA DEG −0.386 0.194 
S-07 F-BA DEG −0.382 0.117 
S-08 DOA DEG −0.368 0.200 
S-09 API DEG −0.337 0.118 
S-10 DEA Formamide −0.262 0.292 

Average 　 　 −0.403 0.207 
Standard deviation 　 0.083 0.073 

   The actual RL values were measured to demonstrate 
formation of the large and small-size nanosheets for the total 
80 host-guest-medium conditions (Table 2 and Table S2 in the 
ESI). The RL values were estimated from the DLS measurements 
to achieve the high-throughput study (Figs. S9–S14 in the ESI). 
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The average measured RL values were calculated for the large- 
(L-01–06) and small-size (S-01–06) conditions of each host 
layered compound. The average yield of the size-controlled 
large and small nanosheets was 23.0 ± 23.2 % for all the 80 host-
guest-medium combinations (Table S2 in the Supporting 
Information). Since the yield prediction model was applied 
according to our previous work,45 the nanosheets were 
efficiently obtained in the limited number of the experiments.  
Table 3 summarizes the average predicted RL, measured RL, and 
L. Fig. 3 shows the average measured RL values for the large and 
small nanosheets derived from each layered compound. The 
average measured RL values are significantly different for the 
predicted conditions providing the large and small nanosheets 
except the layered composites based on tungstate (Table 3 and 
Fig. 3). According to our previous report,29 the exfoliation of the 
layered composite based on tungstate provided the nanoflakes 
with smaller lateral size through frequent fracture in the lateral 
direction because the surface of the layer was not fully modified 
by the guest molecules. Therefore, the lateral sizes of the 
tungstate nanosheets are not controlled in the predicted 
conditions. 

Table 3.   Average predicted RL, measured L, and measured RL of the predicted 
conditions providing the large and small nanosheets for each host layered 
compound. 

Host layers
L0 / 
μm

Samples
Predicted 

RL / –
Measured 

L / μm
Measured 

RL / –
L-01–10 0.452 0.635 0.418

Titanate 1.52
S-01–10 −0.403 0.315 0.207
L-01–06 0.459 2.11 0.577

Manganate 3.66
S-01–06 −0.362 0.344 0.094
L-01–06 0.458 0.392 0.082

Tungstate 4.78
S-01–06 −0.386 0.521 0.110
L-01–06 0.435 1.38 0.301

Niobate 4.60
S-01–06 −0.399 0.451 0.098
L-01–06 0.435 1.76 0.639

Tantalate 2.75
S-01–06 −0.416 0.490 0.178
L-01–06 0.378 1.15 0.308

Co(OH)2 3.72
S-01–06 −0.456 0.480 0.129

Fig. 3.   Average measured RL values and their standard deviations of the large and small 
nanosheets on the predicted conditions for each host layer (Table 2 and Table S3 in the 
ESI).

The large and small nanosheets were actually observed on 
the transmission electron microscopy (TEM) images (Fig. 4 and 
Fig. S15 in the ESI). The layered titanate with intercalation of 4-
vinylbenzylamine (Vinyl-BA) was exfoliated into the large 

nanosheets in tetrahydrofuran (THF) (Table 2 and Fig. 4a–c). The 
DLS chart showed the peak around 1.72 ± 0.079 μm (Fig. 4a). 
The large nanosheets were actually observed on the TEM 
images (Fig. 4b). The average size was estimated to be 0.489 ± 
0.308 μm from the TEM images on the histogram (Fig. 4c). The 
average size estimated from the DLS chart is larger than that 
from the TEM image because the nanosheets as the primary 
particle form the aggregates in the dispersion liquid. In contrast, 
the smaller nanosheets were obtained by exfoliation of the 
layered titanate with intercalation of hexylamine (C6-NH2) in 
diethylene glycol (DEG) (Table 2 and Fig. 4d–f). The DLS 
measurement and TEM image showed formation of the smaller 
nanosheets 0.288 ± 0.022 μm and 0.213 ± 0.103 μm in size, 
respectively. The similar size differences in the large and small 
nanosheets were observed on the other hosts (Fig. S15 in the 
ESI). In this manner, the large- and small-size nanosheets were 
synthesized by exfoliation of the layered composites according 
to the prediction model constructed by machine learning on 
small experimental data. The constructed model is not a precise 
accurate predictor but a rough guideline to estimate the lateral 
size for reduction in the number of the experiments. The 
inaccuracy of the predicted values is ascribed to the linear 
regression model based on small-scale data using a limited 
number of the descriptors. In addition, the experimental error 
is included in the trained data. The extrapolation of the linear 
regression model causes the overestimation, such as the 
negative predicted values in small-size nanosheets in Table 2. 
Nevertheless, the nanosheets with the large and small lateral 
size were selectively prepared using the prediction model in a 
limited number of the experiments. The prediction model can 
be regarded as a guideline for controlled syntheses of the 
nanosheets. Our next challenge is prediction and control of the 
size distribution, as well as the lateral size itself. Moreover, the 
size-prediction model and its construction method can be 
applied to a variety of layered materials for controlled 
syntheses of 2D materials.

Fig. 4.   Examples of the large (a–c) and small (d–f) nanosheets obtained by exfoliation of 
the layered titanate with intercalation of Vinyl-BA and C6-NH2 dispersed in THF (a–c) and 
DEG (d–f), respectively. (a,d) Size distribution by DLS. (b,e) TEM images. (c,f) Histograms 
prepared from the TEM images. TEM images of the other nanosheets were listed in Fig. 
S15 in the ESI.
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Conclusions
Lateral-size control of the exfoliated nanosheets was achieved 
by an assistance of machine learning. The size-prediction model 
was constructed from the small training dataset based on our 
own experiments by sparse modeling. Combination of the yield- 
and size-prediction models extracted unknown 80 host-guest-
medium combinations providing large- and small-size 
nanosheets from the total 4800 candidates. The large- and 
small-size nanosheets were actually obtained in a limited 
number of the exfoliation experiments. The present size-
prediction model can be regarded as a guideline to explore the 
exfoliation conditions. Moreover, the yield and size-prediction 
models can be applied to controlled syntheses of the other 2D 
materials. The present methods with combination of high-
throughput analysis and ML on small data are applied to similar 
experimental works.
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