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ABSTRACT

Solid-state nanopore (SSN)-based analytical methods have found abundant use in genomics and 

proteomics with fledgling contributions to virology – a clinically critical field with emphasis on 

both infectious and designer-drug carriers. Here we demonstrate the ability of SSN to successfully 

discriminate adeno-associated viruses (AAVs) based on their genetic cargo [double-stranded DNA 

(AAVds-DNA), single-stranded DNA (AAVss-DNA) or none (AAVEmpty)], devoid of digestions steps, 

through nanopore-induced electro-deformation (characterized by relative current change; ΔI/I0). 

The deformation order was found to be AAVEmpty > AAVssDNA > AAVdsDNA. A deep learning 

algorithm was developed by integrating support vector machine with an existing neural network, 

which successfully classified AAVs from SSN resistive-pulses (characteristic of genetic cargo) 

with >95% accuracy – a potential tool for clinical and biomedical applications. Subsequently, the 

presence of AAVEmpty in spiked AAVds-DNA was flagged using the ΔI/I0 distribution characteristics 

of the two types for mixtures comprised of ~75:25 and ~40:60 (in concentration) AAVEmpty: 

AAVds-DNA. 

INTRODUCTION

With over 200 clinical studies globally and the recent FDA approval of Luxturna – the first 

approved gene therapy in the United States to treat hereditary blindness1, 2 – adeno-associated virus 

(AAV) vectors are gaining substantial traction in viral gene therapy. One considerable challenge 

in the translation of AAV vectors, once produced, is the difficulty of characterizing the vectors 

based on their transgene packaging. Key characterization metrics of AAV include titer (capsid and 

genome titers), exact genomic content [single-stranded (ssDNA) versus self-complementary 

double-stranded (dsDNA) and overall genome length], and heterogeneity of a vector preparation 

(empty versus full capsids). To obtain these metrics, a combination of multiple assays has to be 
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performed, including quantitative polymerase chain reaction (qPCR) or droplet digital PCR 

(ddPCR) for genomic titer,3 enzyme-linked immunosorbent assay (ELISA) for capsid titer, and 

analytical ultracentrifugation for vector prep composition.4 Alarmingly, the variability associated 

with vector characterization assays were revealed through a blinded study in which AAV samples 

were sent to several groups for vector tittering using qPCR and ELISA. The mean and standard 

deviation (SD) for genomic and capsid titer were 3.821010±2.971010 and 9.431011±3.191011, 

respectively.5 These are highly concerning outcomes especially for dose-dependent therapeutics 

where overdosing, for example through underestimation of the empty capsids, could trigger 

unexpected immune responses. The genomic content could also be analyzed through alkaline gel 

assay or a Southern blot which, however, requires overnight runs and are semi-quantitative at best. 

In this study, we demonstrate the use of solid-state nanopores (SSNs) – low-cost, ostensibly 

simple, low-sample requiring, high sensing throughput, label-free single-molecule sensor class – 

to characterize each vector type based on electro-deformation, discriminate between the vectors, 

and flag the presence of empty capsid from a mixture (a critical development step towards quality 

assurance of AAV preps). 

A solitary nano-scale aperture that spans an impervious membrane (biological or solid-

state) separating two electrolyte reservoirs – a nanopore – has been used to characterize a myriad 

of biomolecules6-10 and particles11-14, nanoparticles15, 16 and synthetic polymers17 using a multitude 

of molecular level features6, 18, 19 and membrane mechanical properties (i.e., stiffness, 

deformability).20, 21 However, compared to the plethora of DNA and protein studies, the virus 

footprint in the nanopore community is surprisingly meager perhaps because nanopores were 

mostly recognized for small molecule analysis (driven by potential commercial interests) while 

studies on filamentous,22 rod-like,23, 24 and spherical viruses12, 25 have redrawn the boundaries of 
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nanopore technology. With the emergence of new viral threats challenging the very fabric of 

human existence, the importance of developing low-cost, high throughput, portable technologies 

for diagnostic purposes has gained substantial focus with the dawn of 2020. While biological 

nanopores have been used to sequence the genome of viruses such as Zaire Ebola26 – emphasizing 

the clinical importance of this technology – our proposed method using SSN would analyze the 

virus particles, devoid of digestions steps, and would eventually pave the way for rapid assessment 

of the genetic cargo and the purity of an AAV prep. In this work, we designed and tested a silicon 

nitride (SixNy) based SSN device to characterize three AAV vector types – empty (AAVEmpty), 

AAV with ssDNA (AAVss-DNA) and AAV with dsDNA (AAVds-DNA) – using the demonstrated 

ability of SSN to estimate the electro-deformation of soft nanoparticles in response to an electric 

field11, 12 and numerical predictions to quantify the deformation. In addition, we used a deep 

convolutional neural network to classify AAVs based on their cargo from the resistive pulse data. 

Machine learning approaches have been shown to distinguish biomolecules using ionic current-

time waveforms.27-29 The deep neural network used here was developed by modifying an existing 

residual neural network (ResNet50) with a support vector machine. The electro-deformation was 

apparent through the voltage trend of the relative-current change originating from particle transit 

(ΔI/I0) – a departure from the linear (Ohmic) nature was observed. The extent to which a given 

particle deforms is a function of its spring constant for which both membrane mechanical 

properties and intra-particle properties such as transgene packaging are paramount. For example, 

an AAVEmpty is expected to deform more than a cargo-carrying counterpart of the same serotype. 

Therefore, the deformation characteristics of the three AAV types are expected to be 

fundamentally different and we intend to use this property to discriminate each type. The expected 

deformation order is AAVEmpty > AAVssDNA > AAVdsDNA, which as will be shown later, agrees 
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well with our obtained results. Such discrimination would be useful to flag the presence of 

AAVEmpty in a sample consisting of genetic cargo-carrying AAV capsids. This is important as 

previous studies demonstrated that a high dose of AAV vector can cause severe toxicity which 

may be triggered by the high capsid dose or cargo expression.30, 31 Therefore, it is especially crucial 

in dose-dependent studies to know not only the AAV concentration but also the composition of 

the vector distribution to reduce the delivery of excessive AAV capsids.

RESULTS AND DISCUSSION

Basic operation principle of a nanopore is outlined in Figure 1a where the analyte (AAV 

in this case) is added to the cis side and a voltage (negative for AAV) is applied to the trans side 

to drive the analyte across the nanopore from the cis to the trans side. This perturbs the open-pore 

ionic current stamping particle specific information. All experiments were conducted with <10 nM 

AAV – this minimal sample usage complements the tedious AAV preparation methods. Given the 

AAV size (~25 nm in diameter), SSN is an obvious requirement since the narrowest constriction 

of ubiquitous biological nanopores such as α-hemolysin and MspA are not wide enough for such 

a particle to transit. A rich blend of fabrication techniques are accessible to us, such as controlled 

dielectric breakdown (CDB)32, 33, focused ion beam (FIB)34, 35 and transmission electron 

microscope (TEM)36. Since it is difficult to fabricate larger diameter nanopores using CDB due to 

non-opening failure among other factors37, and preliminary studies with FIB fabricated pores 

produced poor event frequencies, we ultimately fabricated nanopores of ~100 nm in diameter 

through ~12 nm thin free-standing SixNy on silicon using TEM (Figure S1a). Any pore showing 

significant current rectification was discarded and only those with rectification ~1 was used 

(Figure S1b). Although the nanopore devices are low-cost and high throughput sensors (in 

general), the fabrication method (both the membrane and the pore) would, to a large extent, govern 
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the overall cost associated with the device. Since, TEM-based nanopore fabrication methods are 

not as high throughput as other methods such as controlled dielectric breakdown, we note, the 

workflow could be limited by the pore fabrication step. However, if this limitation could be 

overcome, the overall throughput (combination of the fabrication and sensing time scales) and cost 

of the nanopore device could be improved significantly. The voltage polarity used for AAV 

translocations herein (-20 mV to -175 mV; Figure 1b) has an added advantage of being immune 

to any DNA contaminations during AAV preparation (i.e., any DNA that did not get encapsidated) 

since DNA would only respond to a positive voltage bias at this operational electrolyte chemistry 

(2M LiCl buffered at pH~7). All experiments were in triplicate (unless otherwise noted) with 

unique nanopores of comparable size and each nanopore was discarded after running a given virus 

type to avoid any cross-contamination. On average, a minimum of 500 resistive pulses were 

recorded at -20 mV whereas a minimum of 1000 resistive pulses were recorded at subsequent 

voltages. 
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Figure 1: (a) A schematic representation of a typical nanopore setup where the analyte is driven 

across the nanopore in response to an applied electric field stamping analyte-specific resistive-

pulses as shown in (b). (b) Representative 10 second current traces corresponding to the 

translocation of “AAVEmpty (left column)”, “AAVssDNA (middle column)” and, “AAVdsDNA (right 

column)” at -20 mV (magenta), -30 mV (green), -40 mV (blue), -50 mV (brown), -60 mV (red), -

75 mV (orange), -100 mV (cyan), -125 mV (purple), -150 mV (gray) and -175 mV (pink). (c) 

Architecture of the deep convolutional neural network used for the classification of AAVs based 

on the genetic cargo. All current signals (images) obtained from solid-state nanopore experiments 

were segmented based on time frames (1, 2, or 4 sec) and resized to have the dimensions of 

224×224×3 to comply with ResNet50 requirements before those images are inputted into the 
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network. Both raw data as well as transformed data was used for the classification, where the Conv: 

convolutional block; BN: batch normalization; ReLU: rectified linear activation unit; Max 

Pooling: maximum pooling; FC: fully connected layer; SVM: support vector machine; Avg 

Pooling: average pooling. Efficacy of deep convolutional neural networks in classification of 

AAVs from nanopore experimental data was obtained for the applied bias voltages of (d) -175 

mV, (e) -150 mV and (f) -100 mV using 1 sec, 2 sec and 4 sec frames. For a particular class, 80% 

of the data were randomly selected from all images of that class for training the network, while the 

rest of the images of that class were used for validation. Mean and error bars were obtained from 

training and validation of the model by randomly selecting the training and validation data set for 

10 times. 

The question that intrigued us was, can the resistive pulses (each resistive pulse 

corresponds to a single AAV particle translocating through the nanopore) shown in Figure 1b be 

used to characterize and distinguish each AAV class? For this, we used a deep neural network 

(DNN) framework initially which is based on an existing deep residual network (ResNet50 – an 

award-winning platform developed Microsoft for ImageNet38) as shown in Figure 1c. Since 

ResNet50 is not trained for virus detection, we had to make necessary changes to our network by 

modifying the last few steps from the ResNet50. Therefore, the output features of fully connected 

layer (1000 11) of the ResNet50 are fed into a support vector machine (SVM) as shown in Figure 

1c. Thus, based on the extracted features of the fully connected layer (fc1000) of ResNet50, we 

trained a multiclass SVM using the one-versus-one method39 for three different classes (see Deep 

Neural Network for Classification of Virus Cargoes from Electrical Signal Section under Methods 

for more details). Classification results obtained from our deep learning model are shown in 

Figures 1d-f for AAVs translocation data at voltage -175 mV, -150 mV and -100 mV (see SI Table 
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S1 for the number of images used in each class for different time frames). Our results show that 

accuracy (Fig. 1d-f) can be improved by transforming (see Methods for transformation of data) the 

experimental data. Although maximum accuracy is sometimes higher for raw data than 

transformed data, the mean accuracy for any class (or any time frame) is always lower for raw data 

than that of transformed data (Figures 1d-f). The transformed data has always outperformed the 

raw data because distinct features of signals are more preserved in transformed data. Unlike 

classical machine learning problem, we used a few experimental data for training (for a given 

applied electric field), but segmentation of each experimental signal helped us to attain our desired 

goal in the data-driven classification. The accuracy of the prediction is improved significantly for 

4 second time frame data, even though the number of images used to train the support vector 

machine is much smaller for 4 second case compared to 1 or 2 second cases. Further increase in 

the time frame window would probably help us to get a better prediction, but one must be mindful 

of the reduction in the training data with an increase in the time frame. Our model results show 

that as long as our deep learning algorithm is trained with the appropriate data, we can get accurate 

prediction despite the fact that data-based techniques such as machine learning is never 100% 

accurate. The reason for no false positive (or negative) in our proposed method is due to flexibility 

of testing multiple frames from a single experiment by segmenting resistive-pulse data into 

hundreds of smaller time frames. This comprehensive analysis indicates that our approach to 

identify AAVs based on electric current signal is robust, and this algorithm can be used to detect 

viruses quickly from SSN experiments.  

After successfully identifying each AAV class using our DNN model, we then investigated 

the possibility of using relative current change (ΔI/I0) to discriminate each AAV type as this metric 

is dependent on the membrane rigidity.21, 40 The scatter plots of ΔI/I0 versus translocation time and 
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histograms corresponding to ΔI/I0 are shown in Figures 2a-c. Each of the histograms were fitted 

with a single Gaussian function (see SI Section 1 for the histogram and fitting details). The 

behaviour of ΔI/I0 with voltage for each AAV class as shown in Figure 2d, is indicative of electro-

deformation due to deviation from the Ohmic linear scaling (see the associated discussion of SI 

Section 5 for more details). A single AAV can only house a single DNA molecule.41, 42 Iodixanol 

ultracentrifugation can effectively separate the empty capsids formed during production,43, 44 thus 

reducing the complexity arising from the number of DNA copies inside an AAV– either a given 

particle will have a single copy of the intended genome package or it will not. The deformation 

profiles (ΔI/I0 versus applied voltage) as seen in Figure 2d indicate that electro-deformation follow 

an inverse relationship with cargo content: lesser the void within the AAV (i.e., higher the volume 

occupied by the cargo material), lesser would be the deformation (AAVEmpty > AAVssDNA > 

AAVdsDNA). At higher voltages, we see that the differences in the deformation profiles become 

less, and almost within error at ~-175 mV. If the trends of the deformation profiles seen in Figure 

2d continue, one would pragmatically not expect to see any discernible differences between each 

virus type (based on the genetic cargo) at voltages >-175 mV. We then plotted the percentage 

difference of the ΔI/I0 of each AAV type referenced to AAVempty ( see SI Section %〈∆𝐼/𝐼0〉(𝑒𝑚𝑝𝑡𝑦,𝑖),   

2 for the definition). The trends of Figure 2e show a sharp drop in at voltages %〈∆𝐼/𝐼0〉(𝑒𝑚𝑝𝑡𝑦,𝑖) 

above -125 mV. The AAVds-DNA and AAVss-DNA showcased an averaged  of %〈∆𝐼/𝐼0〉(𝑒𝑚𝑝𝑡𝑦,𝑖)

~19.9±2.7% and ~7.8±2.1%, respectively up to -125 mV. It is not surprising to see AAVds-DNA 

having the greatest difference with respect to AAVempty (i.e., highest ) as it is %〈∆𝐼/𝐼0〉(𝑒𝑚𝑝𝑡𝑦,𝑖)

expected to deform the least. It typically takes ~2 hours in total to acquire the minimum event 

count for all voltages noted previously (at least 500 for -20 mV and 1000 for the rest). Among 

these voltages, all AAV types showed >1 resistive pulses/s at ≥-50 mV. Taking the useful voltage 
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regime for electro-deformation-based discrimination (≤-125 mV) and appreciable event frequency 

(≥-50 mV), one can bracket -50mV to -125 mV as the optimized voltage range for this study. 

Consequently, it merely takes ~30 minutes in total to acquire ~1000 events for all voltages for this 

optimized voltage range – a testament to the sensing throughput of the nanopore platform. 
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Figure 2: Scatter plots of change in relative current change (ΔI/I0) versus translocation time and, 

corresponding histograms to the ΔI/I0 (right column) of (a) AAVEmpty, (b) AAVssDNA, (c) 

AAVdsDNA at -20 mV (magenta), -30 mV (green), -40 mV (blue), -50 mV (brown), -60 mV (red), 

-75 mV (orange), -100 mV (cyan), -125 mV (purple), -150 mV (gray) and -175 mV (pink). The 

histograms were fitted with a single Gaussian function (see SI Section 1 for the histogram and 

fitting details). (d)  vs voltage corresponding to AAVds-DNA (black), AAVss-DNA (red) and ∆𝐼/𝐼0

AAVempty (blue). (e) Percentage  difference of AAV encapsulating dsDNA (black) and ∆𝐼/𝐼0

ssDNA (red) with respect to AAVempty ( , calculated using Equation S2). All %〈∆𝐼/𝐼0〉(𝑒𝑚𝑝𝑡𝑦,𝑖)

experiments were in triplicate with unique nanopores and performed using ~98 ± 5 nm diameter 

nanopores in 2M LiCl (buffered at pH~7 using 10 mM Tris buffer).

To numerically model the deformation of each AAV type, we used an immersed interface 

method (IIM), which has been developed and validated earlier.45-47 The IIM can estimate the 

electric potential distribution inside the nanopore geometry, which is used to calculate electric 

current at any particular section using , where  is the local conductivity, A is 𝐼 = ―𝜎𝐴(∇𝜙) ∙ 𝜂

the cross-sectional area, and  is the direction vector normal to the particular section. To quantify 𝜂

the extent of deformation, we defined aspect ratio () of the virus as the ratio of its equatorial 

(along the electric field) length over the polar (perpendicular to the electric field) length. For a 

circular shape,  = 1.0, and it is greater than unity when the virus is deformed in the direction of 

the applied field46. As shown in Figures 3a-c, when the viruses are allowed to deform with an 

increasing electric field, we observe consistent nonlinear behavior in the ΔI/I0 due to competing 

electrostatic and electrophoretic forces on the virus capsid.40, 47 For a properly chosen set of 

conductivity ratios, the numerical predictions of ΔI/I0 (green circles) fall within the experimental 
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bounds (blue limits) and reveal an interesting power-law like behavior (green dashed line, Figures 

3a-c) in all three cases. The corresponding change in the virus shape with increasing potential is 

presented in terms of the aspect ratio (red diamonds), which shows a linearly increasing behavior 

with increasing electric field. The slope of this aspect ratio vs. applied voltage plot was found to 

be decreasing with increasing conductivity ratio () (red dashed line with slopes of 0.0358, 0.0276, 

and 0.0216 mV-1 for AAVempty, AAVss-DNA, and AAVds-DNA, respectively). The decrease in the 

slope also corresponds to a higher degree of deformation of the AAV samples. Hence, one can use 

the slope of the aspect ratio vs. applied voltage plot as a characteristic identifier of each virus type 

with its signature inner conductivity and deformation attributes.

Figure 3: Nondimensional current drop ratio (ΔI/I0) and corresponding aspect ratio () with 

negative applied voltage () corresponding to (a) AAVempty, (b) AAVss-DNA and (c) AAVds-DNA. 

The numerically calculated relative current drop data (green circle) are fitted with a power-law 

curve drawn in green lines while the estimated aspect ratio data (red diamonds) are fitted with a 

straight line (red dashed lines). Three sets of independent experimental data are used to calculate 

the bounding upper and lower values (blue bounding bars) for ΔI/I0.

We then ventured to mimic a sample of AAVds-DNA contaminated with AAVempty by spiking 

an AAVds-DNA aliquot with a significant amount of AAVempty (~75% AAVempty and ~25% AAVds-
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DNA; AAV75:25%). Identification of AAVempty in vector batches is especially important for clinical 

studies to minimize adverse immune responses in patients. Since, in a real-world sample-scenario, 

the operator would not have pre-knowledge of such contamination, to stay true to such a situation, 

we fitted each  profile with a single Gaussian rather than two or more Gaussians. Unlike the ∆𝐼/𝐼0

 histograms of AAVds-DNA (Figure 2c), spiked mixtures (Figure 4b and 4c) cannot be well ∆𝐼/𝐼0

fitted with a single Gaussian – a clear population outside the Gaussian fit exist at higher . ∆𝐼/𝐼0

The existence of an apparent outlying population compared to the one residing within the Gaussian 

fit may also serve as a visual and qualitative metric to qualify the presence of a significant 

AAVempty population in the sample. Thus, one can use the ratio of the population higher and lower 

than the mean of the Gaussian fit ( ) as a metric to flag the presence of AAVempty in 𝑁𝐺 ≥ 𝜇/𝑁𝐺 ≤ 𝜇

each sample: a perfect fit would have a value of 1 for . Looking at Figure 2a, it is 𝑁𝐺 ≥ 𝜇/𝑁𝐺 ≤ 𝜇

evident that AAVempty has a broader distribution along the ΔI/I0 axis. The tail along the ΔI/I0 may 

indicate the presence of a secondary population, although not as prominent as the lower (ΔI/I0) and 

denser population (i.e., the ΔI/I0 distribution can be well fitted with a single Gaussian function). 

However, such a tail along the ΔI/I0 axis is absent in its cargo-carrying counterparts. It could mean, 

the deformation is more restrictive in the presence of a cargo whereas it is more diverse in the 

absence of a cargo. Thus, it is not surprising to see AAVds-DNA having a  value closer NG ≥ μ/NG ≤ μ

to one (Figure 4d and 4e) whereas AAVEmpty deviating somewhat away from the ideal value. The 

mixture significantly deviated from the ideal value which could be inextricably linked to the 

presence of populations corresponding to both AAVds-DNA and AAVempty. It is evident from Figure 

4d, the profiles corresponding to AAVds-DNA and AAV75:25% are well separated and indicative of a 

departure from a AAVds-DNA sample (i.e., presence of a contaminant). We were also able to flag 

the presence of AAVempty in the mixture using deformation profiles (  vs voltage) as evident ∆𝐼/𝐼0
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by Figure S4 (see SI Section 6 for more details). Using the  metric, we were able to 𝑁𝐺 ≥ 𝜇/𝑁𝐺 ≤ 𝜇

flag the presence of AAVempty in a mixture of ~40% AAVempty and ~60% AAVds-DNA (Figure 4e) 

through the visual separation of the mixture similar to above. The second mixture was deliberately 

limited to three voltages (-50 to -75 mV) as these three yielded the greatest separation of 𝑁𝐺 ≥ 𝜇/

 in the ~75:25% mixture evident from Figure 4d. It is worthwhile noting, the error associated 𝑁𝐺 ≤ 𝜇

with the profile of AAVds-DNA is much lower compared to the rest, which could also serve as a 

visual clue to the purity of the sample under investigation. One could potentially expand this study 

to cover a range of AAVds-DNA:AAVempty ratios and develop a correlation between the AAVempty 

percentage and  as a function of voltage.𝑁𝐺 ≥ 𝜇/𝑁𝐺 ≤ 𝜇
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Figure 4: (a) 5-second representative current traces corresponding to a 75:25% molar mixture of 

AAVEmpty and AAVds-DNA in response to -50 mV (brown), -60 mV (red), -75 mV (orange), -

100 mV (cyan), -125 mV (purple), -150 mV (gray) and -175 mV (pink). (b) The corresponding 
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scattered plots and histograms. (c) The scattered plots and histograms of 40:60% molar mixture of 

AAVEmpty and AAVds-DNA in response to -50 mV, -60 mV, -75 mV. (d)-(e) The ratio of the 

population above and below the mean of each Gaussian fit corresponding of  (∆𝐼/𝐼0 𝑁𝐺 ≥ 𝜇/𝑁𝐺 ≤ 𝜇

) histograms at each applied voltage corresponding to AAVds-DNA (black), AAVempty (green) and 

mixtures (magenta) of (d) 75:25% and (e) 40:60% (in molar concentration) of AAVEmpty and 

AAVds-DNA. Each mixture was measured in duplicate using unique nanopores.

CONCLUSIONS

We have demonstrated the ability of solid-state nanopores of ~100 nm diameter, fabricated using 

TEM through nominally ~12 nm SixNy membranes, to discriminate AAV based on their genetic 

cargo (i.e., single-stranded DNA, self-complementary DNA or none). All experiments were 

conducted using negative voltages and translocations were recorded from ~-20 mV to ~-175 mV 

in sufficiently small voltage increments. A deep neural network platform, developed based on 

ResNet50 with appropriate modifications by support vector machine, were used to identify the 

current profiles of each AAV type. The accuracy of the machine learning prediction can be 

improved significantly by segmenting each experimental resistive-pulse signal into hundreds of 

data and running the model for tens of data sets from each experiment. More importantly, the 

prediction accuracy increases with the length of the time frame (1 sec versus 2 sec versus 4 sec) of 

experimental data. For transformed data, the mean accuracy of the network was always 90% or 

higher for any class regardless of the voltage bias or time frame. The electro-deformation was 

numerically modelled using an immersed interface approach. The model results indicated a power-

law behavior for the nondimensional current drop (ΔI/I0) with applied potential for all three cases. 

Interestingly, The ΔI/I0 profiles with voltage clearly showed distinct deformation patterns for each 
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AAV type with deformation being more prominent as the internal cavity of AAV is less occupied 

by its cargo: > > . The average percentage ΔI/I0 with respect to AAVempty AAVss ― DNA AAVds ― DNA

 ( ) was, as expected, higher for  than  with the AAVempty %〈∆𝐼/𝐼0〉(𝑒𝑚𝑝𝑡𝑦,𝑖) AAVds ― DNA AAVss ― DNA

two having an averaged value of ~19.9±2.7% and ~7.8±2.1% respectively, up to -125 mV. Since 

 displayed the highest difference, we ventured to see if  could be flagged AAVds ― DNA AAVempty

from a mixture of  and . Other than the difference associated with AAVds ― DNA AAVempty

another significant difference in the distribution of ΔI/I0 is  being %〈∆𝐼/𝐼0〉(𝑒𝑚𝑝𝑡𝑦,𝑖)  AAVds ― DNA

more Gaussian than  with the latter having a tail along higher ΔI/I0 values. This feature AAVempty

was used to successfully flag the presence of  in mixtures of ~75% AAVempty and ~25% AAVempty

AAVds-DNA and ~40% AAVempty and ~60% AAVds-DNA. Taken together, SSN platforms along with 

their advantages such as low cost and sample requirement, rapid analysis, user friendliness with 

minimal training requirement (as seen with other nanopore technologies) could potentially 

transform the method discussed herein to a widely accessible tool to profile and discriminate each 

AAV class and to flag the presence of AAVempty which could be crucial for minimizing safety 

issues with human gene therapy. 

METHODS

AAV Production

AAV particles were produced using HEK293T cells (ATCC) using 25 kDa linear 

polyethylenimine (PEI, Thermo) mediated triple transfection48. Briefly, HEK293T cells were 

cultured to 70% confluency on 15cm poly-L-lysine coated cell-culture plates using DMEM 

(LONZA) with 10% FBS (Atlanta Biologics) and 1% penicillin-streptomycin (Gibco). Adenovirus 
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helper genes (pXX6-80), AAV9 rep-cap (pAAV2/9), and a transgene cassette plasmid (self-

complement or single-stranded GFP) were mixed in a 1:1:1 molar ratio with the PEI transfection 

mix and allowed to incubate at room temperature for 30 minutes before adding to cells. The cell 

pellet was harvested 48 hours after transfection and underwent three cycles of freeze-thaw 

followed by benzonase treatment before purification using iodixanol (OptiPrep) step gradient 

(15%, 25%, 40%, 54%) ultracentrifugation. The 40% fraction was extracted, followed by 

concentration and buffer exchange using Amicon 150 kDa MWCO filtration unit (Millipore-

Sigma) into GB-buffer (50mM Tris, pH 7.6, 150mM NaCl, 10mM MgCl2). Concentration of virus 

particles was established using qPCR using primers against cytomegalovirus (CMV) promoter 

(forward: TCACGGGGATTTCCAAGTCTC, reverse: AATGGGGCGGAGTTGTTACGAC) on 

the transgene cassette. The empty capsids were collected from the layer between the 25% and 40% 

fraction of the iodixanol column, and concentration was measured using western blot with B1 

antibodies against a standard of AAV9 particles.

Nanopore Electrical Measurements

All electrical measurements were conducted using Ag/AgCl electrodes connected to an Axopatch 

200B (Molecular Devices LLC, USA). The data were acquired at 250 kHz (except I-V 

measurements which were done at 10 kHz), filtered using the inbuilt 4-pole Bessel low-pass filter 

at 10 kHz setting and digitized either using a BNC 2110 connector block (National Instruments, 

USA) or 1440A Digitizer (Molecular Devices LLC, USA). For pore diameter measurements the 

former was used and for other temporal acquisitions, the latter was used. When the BNC 2110 was 

used, the instrument control was done using custom-coded LabVIEW scripts and pClamp (version 

10.6, Molecular Devices LLC., USA) was used otherwise. Before each measurement, the pipette 

offset setting of the Axopatch 200B was used to nullify the zero-voltage current. The electrodes 
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were prepared in the following manner: a ~2-inch-long Ag wire was sanded to remove any oxide 

residuals and contaminants on the surface. Then it was dipped in a bleach solution (425044, Sigma 

Aldrich) for at least one hour (preferably overnight) until the electrode turns black. It is then 

soldered to a TE connectivity contact gold pin and connected to the head stage of the Axopatch 

200B system. The electrodes were checked after each experiment to see whether it has retained its 

color or whether it has turned white. The latter indicates that the electrode needs to be sanded down 

and put in the bleach solution for it to function as a reversible electrode.

Nanopore Fabrication

Nanopores were fabricated through as supplied silicon nitride chips (NBPX5001Z-HR, Norcada, 

Canada) that are nominally ~12 nm thick using TEM (JEM-2100F, JEOL, Japan) at 200 keV as 

described previously (see Figure S1 for a representative TEM image of a pore and its current-

voltage curve).49 The size was initially validated through TEM as shown in Figure S1 and 

subsequently crosschecked with Equation 1. 

Nanopore Characterization

The fabricated nanopore chips were mounted between two Teflon half cells using PDMS gaskets 

to be watertight. Each chamber can hold ~450 µL of electrolyte. The schematic diagram of the cell 

is shown in Figure S2. The chambers were initially filled with ethanol (A4094, Fisher Scientific), 

placed in a vacuum desiccator and connected to a mechanical pump to remove the air bubbles 

along the channel connecting the chip and the electrolyte reservoir. Upon the appearance of 

bubbles from both the channels, the pump was disconnected, and the system was brought to 

atmospheric pressure gently to avoid re-entry of air bubbles. The content was then thoroughly 

exchanged with ultra-pure water followed by 1 M KCl (P9333, Sigma-Aldrich, USA) buffered at 
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pH~7 (phosphate buffer saline, P5493, Sigma-Aldrich, USA). A voltage ramp of +200 mV to -

200 mV is then applied to acquire a current-voltage (I-V) curve. The I-V curve was then linearly 

fitted and the slope (G) was used to estimate the nanopore size using,

(1)𝐺 =  𝜎[ 4𝐿
𝜋𝐷2 +

1
𝐷] ―1

where , ,  and  are the ionic conductance, electrolyte conductivity, nanopore length, and 𝐺 𝜎 𝐿 𝐷

diameter, respectively. If the pore is not properly wet, the I-V curve would either showcase a 

significantly less than the expected G value. Thus, all pores, before usage were subjected to a 2-

second +8 V pulse to ensure proper-wetting. 

Nanopore Electrolyte Preparation

All electrolytes including LiCl (L4408, Sigma-Aldrich, USA) and KCl were dissolved in ultra-

pure water (ARS-102 Aries high purity water systems) with ~18 MΩ∙cm resistivity. Each solution 

contains 10 mM of either tris buffer (J61036, Fisher Scientific, USA) or phosphate buffer saline 

(P5493, Sigma-Aldrich, USA). The former was used for translocation experiments whereas the 

latter was used to acquire current-voltage (I-V) curves for pore-diameter estimation. The solutions 

were then filtered using a filtration system with a Polyethersulfone membrane (S2VPU02RE, 

Fisher Scientific). Caution:  dissolving LiCl in water is an exothermic process. After the 

electrolyte solution reached the room temperature, the pH was adjusted by adding HCl (H1758, 

Sigma-Aldrich, USA) or KOH (306568, Sigma-Aldrich, USA) dropwise while gently stirring the 

electrolyte solution continuously. Caution:  these are concentrated solutions and should only be 

open inside a properly functioning fume hood. Both pH and conductivity of the electrolyte 

solutions were measured and typically, a 2M LiCl solution at pH ~7 would have a conductivity of 

~12 S/m whereas a 1 M KCl solution at pH~7 would have a conductivity of ~11 S/m. 
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Event Characterization

A custom MATLAB (version 9.4, USA) script was used, where events were characterized as 

perturbations at least 5 times the standard deviation of the open-pore current. In brief, the code 

scans through the open-pore current using custom moving windows. This ensures any subtle 

variations in the open -pore current of a given window is independent of the rest. The window size 

is typically set as 1/10th the acquisition frequency (100 ms long window). Although larger windows 

can be used, we have observed the translocation times are mostly <1 ms, thus justifying the moving 

window size. This is also evident from the scatter plots shown in Figure 2. The average of the data 

points in the window is then used to calculate a preliminary baseline, and any perturbation that is 

5 times the standard deviation of the baseline is flagged and assigned temporarily the value of the 

baseline. Then using the new values, a secondary baseline is calculated and used as the open-pore 

baseline of that window. After detecting an event, its duration (Δt), maximum depth (ΔI) and the 

local baseline (I0) to perform analysis shown in the manuscript. 

Image Preparation for Deep Neural Network: Due to the unavailability of large training data 

(from experiments), we have segmented the electrical (resistive-pulse) signals of each experiment 

into 4N, 2N, and N number of images (graphs) depending on the time frames (1, 2, or 4 sec). While 

it is possible to maintain the x-axis length constant in each image for a particular time frame, 

keeping the same scale range (the difference between the upper and lower bound of current) was 

challenging for the y-axis (Fig. 1b) during the auto plotting of graphs. Thus, we have trained and 

validated the model with two sets of images. The first set of images are plotted (aka raw data) 

automatically, while the y-axis of the second set was transformed as

(2)𝐼𝑢𝑝 = 𝐼𝑙𝑜𝑤 +∆𝐼
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where  and  are upper bound and lower bound of current values, respectively and  is 𝐼𝑢𝑝 𝐼𝑙𝑜𝑤 ∆𝐼

the current change. In other words, the second set of graphs (termed as transformed data) are 

plotted by considering a fixed current change (ΔI) in the vertical axis for all three classes. 

Deep Neural Network for Classification of Virus Cargoes from Electrical Signal

We have developed a deep neural network algorithm by modifying last couple of layers of the 

ResNet50 – a residual deep neural network developed by Microsoft research team. The ResNet50 

has been trained for 1000 different classes with 13,000,000 natural images, and it requires a 

2242243 color image as input for proper identification within its database. However, for our 

classification problem, we have only three classes based on the cargo inside AAVs: empty, single 

stranded DNA, and double stranded DNA. Thus, from the extracted features of the fully connected 

layer (fc1000) of ResNet50, we have trained a multiclass support vector machine (SVM) using the 

one-versus-one method39 for three different classes. For the three class scenario, the one-versus-

one method yields three binary classifiers where each one is trained on data from two classes. For 

example, to train data from the th and the th classes, we solved an optimization problem as𝑖 𝑗

          (3) 
𝑚𝑖𝑛

𝑤𝑖𝑗,𝑏𝑖𝑗,𝜉𝑖𝑗         
1
2(𝑤𝑖𝑗)𝑇𝑤𝑖𝑗 +𝐶∑

𝑡𝜉
𝑖𝑗
𝑡

where , and  are the weight, bias, slack variable, and the penalty parameter, respectively. 𝑤, 𝑏, 𝜉 𝐶

Eq. (3) is subjected to the following constraints 

     (4) 
(𝑤𝑖𝑗)𝑇𝜑(𝑥𝑡) + 𝑏𝑖𝑗 ≥ 1 ― 𝜉𝑖𝑗

𝑡 ,  if  𝑦𝑡 = 𝑖 
(𝑤𝑖𝑗)𝑇𝜑(𝑥𝑡) + 𝑏𝑖𝑗 ≤ ―1 + 𝜉𝑖𝑗

𝑡 ,  if  𝑦𝑡 = 𝑗
𝜉𝑖𝑗

𝑡 ≥ 0

where  is the training data and  is the class of . The function  maps the training data  𝑥𝑡 𝑦𝑡 𝑥𝑡 𝜑 𝑥𝑡

to a higher dimensional space. In Eq. (3), the penalty (second) term   is used to reduce the 𝐶∑
𝑡𝜉

𝑖𝑗
𝑡
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number of training errors in case the data are not linearly separable, while optimization of the 

regularization (first) term   provides the maximum margin between two classes of 
1
2(𝑤𝑖𝑗)𝑇𝑤𝑖𝑗

data. Thus, the basic concept behind SVM is to find a balance between the regularization term and 

the training errors. 

Based on the optimized weight and bias, scores are calculated for each class from an unseen 

test/validation image, and the highest score is used for classification of that image. If  is the 𝑓𝑖𝑗

classifier to distinguish a pair of classes  (positive examples) and  (negative examples), the 𝑖 𝑗

classification criteria for a new image  𝑥

       (5) 𝑓(𝑥) =  𝑎𝑟𝑔 𝑚𝑎𝑥
𝑖  [∑

𝑗𝑓𝑖𝑗(𝑥)]

Software’s used for Figure Construction

Figure 1: OriginLab 2018b, TecPlot 9.0, GIMP 2.10.8

Figure 2: OriginLab 2018b, GIMP 2.10.8

Figure 3: TecPlot 9.0

Figure 4: OriginLab 2018b, GIMP 2.10.8

Software’s used for Machine Learning

MATLAB 2018b
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Solid-state nanopore based electro-deformation coupled with deep learning to distinguish AAV particles 

based on their cargo content 
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