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Nanopore Sensing of Single-Biomolecule: a New
Procedure to Identify Protein Sequence Motifs from
Molecular Dynamics†

Adrien Nicolaï,∗ Aniket Rath, Patrice Delarue and Patrick Senet

Solid-state nanopores have emerged as one of the most versatile tools for single-biomolecule
detection and characterization. Nanopore sensing is based on measuring the variations in ionic
current as charged biomolecules immersed in an electrolyte translocate through nanometer-sized
channels, in response to an external voltage applied across the membrane. The passage of the
biomolecule through the pore yields information about its structure and chemical properties, as
demonstrated experimentally with sub-microsecond temporal resolution. However, extracting the
sequence of the biomolecule without the information about its position remains challenging due
to the fact there is a large variability of sensing events recorded. In this paper, we performed mi-
crosecond time scale all-atom non-equilibrium Molecular Dynamics (MD) simulations of peptide
translocation (motifs of alpha-synuclein, associated to Parkinson disease) through single-layer
MoS2 nanopores. First, we present an analysis based on current threshold to extract and char-
acterize meaningful sensing events from ionic current time series computed from MD. Second,
a mechanism of translocation is established, for which side chains of each amino acid are ori-
ented parallel to the electric field when they are translocating through the pore and perpendicular
otherwise. Third, a new procedure based on permutation entropy (PE) algorithm is detailed to
identify protein sequence motifs related to ionic current drop speed. PE is a technique used to
quantify the complexity of a given time series and it allows to detect regular patterns. Here, PE
patterns were associated to protein sequence motifs composed of 1, 2 or 3 amino acids. Finally,
we demonstrate that this very promising procedure allows the detection of biological mutations
and could be tested experimentally, despite the fact that reconstructing the sequence information
remains unachievable at this time.

1 Introduction
Solid-state nanopore (SSN) technology for the detection and
analysis of proteins is an emerging experimental tool with promis-
ing applications in medical diagnostics1,2. In SSN sensing ex-
periments3, charged biomolecules, which are suspended in an
ionic solution, are driven by a transverse electric field through
a nanopore within an ultrathin membrane. During that time,
the ionic current I(t) is monitored to detect the passage of
biomolecules through the pore at a sub-microsecond temporal
resolution4. Typically, translocation events are detected as drops
in ionic current signal, i.e. ∆I, lasting for a certain time, i.e. dwell
time τd , and contain information about the biomolecule struc-
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ture and chemical properties5. However, as shown recently from
experiments for DNA sensing6 and from simulations for protein
sensing7, no consistent levels of ionic current can be visually
attributed to DNA segments (nucleotides) or to protein motifs
(amino acids), respectively. In fact, the fluctuations and noise
observed in ionic current traces due to the fast translocation of
biomolecules through the pore are very complicated8 and visu-
ally reading the primary structure of biomolecules from raw sig-
nals remains very challenging.

To overcome these limitations, various approaches have
been investigated experimentally in the past decade. For in-
stance, different materials have been tested to fabricate ultra-
thin nanoporous membranes such as silicon nitride6, graphene9,
hexagonal boron nitride10 or molybdenum disulfide11. 2D mate-
rials offer large signal-to-noise ratio (SNR) due to the fact mem-
branes are a few Angström thick. However, graphene shows
a lower SNR12 than MoS2

13, even though the thickness of
graphene is one atom thick (3 atoms thick in MoS2). Moreover,

Journal Name, [year], [vol.],1–10 | 1

Page 1 of 10 Nanoscale



various effort have been made to either increase the time resolu-
tion14 or slow down the translocation process15. Finally, differ-
ent experiments integrating additional detection methods have
been carried out using optical and/or electrical techniques16–19.

Another strategy is to consider the ionic current time series as
they are measured (raw signal) and apply time series analysis
tools in order to get insights into the origin of such a large vari-
ability in translocation events. In the past few years, sophisti-
cated algorithms have been developed to detect and statistically
characterize amplitude and time of translocation events from ex-
perimental measurements20,21. More recently, several mathe-
matical approaches have been used for pattern recognition from
nanopore raw data such as Hidden Markov Models (HMM)22,
Artificial Neural Networks (ANN)23 or Support Vector Machine
(SVM)24 for the classification/clustering of translocation events.
These algorithms from Machine Learning (ML) have been mainly
applied to DNA sequencing using biological nanopores. To the
best of our knowledge, only a few works report the application
of such ML methods for DNA/protein sequencing through solid-
state nanopores25,26. In addition, these methods require a very
large amount of data (thousands of translocation events) from
experiments or from extensive simulations27. In the later case,
biases are usually applied in order to generate sufficient data in a
reasonable computational time.

In the present work, these approaches are not of interest since
our goal is first, to understand the variability of event signatures
by establishing the non-linear relationship existing between the
presence of the biomolecule inside the nanopore and the ionic cur-
rent variations measured and, second, to characterize their vari-
ability with a meaningful and reliable physical parameter. As al-
ready mentioned above, ionic current time series extracted from
nanopore sensing experiments are very complex time series since
they are characterized by large fluctuations and noise. In physics,
the complexity of a time series is associated to disorder degree,
i.e. randomness and unpredictability. In order to evaluate the
complexity of a given time series, entropy is one of the most pow-
erful metrics. For instance, Shannon entropy28 or Kolmogorov-
Sinaï entropy29 have been widely used. However, in these en-
tropy definitions, there is no information about the dynamics and
they can be computationally very expensive. In 2002, Bandt and
Pompe combined the concept of entropy and temporal order in
a time series, the so-called permutation entropy30 (PE). PE mea-
sures information based on the occurrence of absence of certain
permutation patterns of the ranks of values in a time series. In
addition, the main advantage of PE is the fact that it can be cal-
culated for arbitrary real-world time series, the method being ex-
tremely fast and robust. Last but not least, PE is preferable com-
pared to the methods mentioned above for huge data sets due
to the fact there is no need for pre-processing and fine-tuning of
parameters.

In this paper, we performed microsecond timescale all-atom
Molecular Dynamics (MD) simulations to investigate the translo-
cation of peptides through single-layer MoS2 nanopores, provid-
ing the knowledge of the exact position of the peptide that is
translocating through the pore at any time. From these MD runs,
we computed ionic current time series, as they are measured ex-

perimentally. Thanks to MD, we can analyse the non-linear re-
lationship between the actual peptide position and the ionic cur-
rent variations. The sequence of the peptide was extracted from
α-Synuclein protein, an intrinsically disordered protein which is a
major constituent of Lewy bodies31, the insoluble aggregates that
are the hallmark of one of the most prevalent neurodegenerative
disorders, Parkinson’s disease. This protein is characterized by
the presence of repeat motifs in its primary sequence, KTKEGV,
which are key mediators for the neurotoxicity32. The paper is
organized as follows. We present first the methods. Next, MD
trajectories are analysed. Particularly, a threshold of ionic current
was determined to ensure the detection of true sensing events
from raw MD data. Second, a statistical analysis of current drops
∆I along the amino acid sequence of the peptide is also presented
and mechanisms of translocation observed in MD simulations and
their origins are discussed. Third, permutation entropy algorithm
is applied to ionic current time series extracted from MD to quan-
tify their complexity. From this procedure, we extracted patterns
of current drops characterized by a new parameter ∆I/∆t, named
ionic current drop speed. Finally, we explored the effect of biolog-
ical mutations onto ionic current drop speed characteristics. The
paper ends with concluding remarks.

2 Materials and Methods

2.1 Molecular Dynamics

All-atom MD simulations using periodic boundary condi-
tions were performed using the LAMMPS software package
(http://lammps.sandia.gov)33. Each simulation box of dimen-
sion 8.0×8.0×16 nm3 is comprised of a MoS2 nanoporous mem-
brane, a biological peptide (capped with ACE and NME groups
at N anc C-terminal) plus a 1M KCL electrolyte and is globally
neutral (Fig. 1). Peptide translocation in MD simulations was
enforced by imposing a uniform electric field, directed normal
to the nanoporous membrane (z-direction), to all atomic partial
charges in the system. The corresponding applied voltage simu-
lated is V = −ELz, where Lz is the length of the simulation box
in the z-direction, with V = 1 V for all MD runs presented. Five
independent MD runs of 500 ns each were performed for each
peptide presented here, KTKEGV, KTKKGV and KTKEGR, for a to-
tal simulation time of 2.5µs for each peptide. Finally, an open
pore MD simulation (no peptide) of 500 ns using the same pro-
cedure as the one described above for translocation simulations,
was performed. Technical details are available in Electronic Sup-
plementary Information†.

2.2 Ionic Current Time Series

Ionic current time series were computed from MD production
runs using z-coordinates of K+ and Cl− ions as a function of time,
as:

I(t) =
1

∆tLz

N

∑
i=1

qi[zi(t +∆t)− zi(t)] (1)

where ∆t is the time between MD snapshots chosen for the calcu-
lations (∆t = 1 ns), Lz is the dimension of the simulation box in
the z-direction, which is the direction of the applied electric field,
N is the total number of ions, qi is the charge of the ion i and zi(t)
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Fig. 1 A) Atomic representation of the nanopore system simulated in the
present work. Left panel shows the simulation box used in the present
work (red lines). MoS2 nanoporous membrane is represented in ball
and stick (Mo atoms in blue and S atoms in yellow), peptide is drawn
in surface representation and KCl electrolyte is shown with transparent
spheres (K+ ions in gray and Cl− ions in green). Water molecules are not
drawn for more clarity. Right panels represent top and side views of the
nanopore (in gray). Pore characteristics (diameter D, thickness h and ef-
fective thickness h∗) are indicated. B) Atomic representation of KTKEGV
peptide translocated through single-layer MoS2 nanopores. The licorice
representation is used here. Positively (+) and negatively (-) charged
amino acids are indicated. The figure was created using VMD 1.9.3 soft-
ware 34.

is the z-coordinate of the ion i at time t.

2.3 Permutation Entropy
A time series is defined by successive measurements of a variable
x as a function of time, at discrete time values, regularly spaced
or not. Hence, given a time series X of length T , X = {xi}i=1,2....,T ,
the calculation of the permutation entropy involves considering
the temporal order of the values xi in the time series. It gives the
rank order of successive xi in sequences of length n in the time
series X . The calculation of the permutation entropy on a given
time window T depends on the initialization of 2 parameters: n,
which is the order of permutation or the number of elements that
need to be compared with each other and τlag, which is the time
separation between the elements that need to be compared. For
example, consider the time series X = {5,7,8,1,3,2,4} with T = 7,
the permutation order being set to n = 3 and the time separation
being set to τlag = 1. Then, we extract the following triplets (n =

3): [5,7,8], [7,8,1], [8,1,3], [1,3,2], [3,2,4], which are shifted by
1 time value (τlag = 1). In each triplet, the order of the values

are labeled as 0,1, and 2 by increasing values. Therefore [5,7,8]
is associated to the pattern π1 = (0,1,2), [7,8,1] to π4 = (1,2,0),
[8,1,3] to π5 = (2,0,1), [1,3,2] to π2 = (0,2,1) and finally [3,2,4]
to π3 = (1,0,2). Overall, each triplet is associated to one of the
j = 1, ...,n! = 6 possible permutation patterns π j.

Permutation entropy measures the disorder of successive values
by using the probability of the different permutation patterns in
each time window. Hence, we define normalized PE as:

PE =− 1
log2(n!)

n!

∑
j=1

p j log2(p j), (2)

where p j represent the relative frequencies of the possible permu-
tation pattern π j. For T � n, the probability of each permutation
of a completely random signal would be equal to 1/n and the PE
maximum. Finally, the smaller PE is (minimum value PE=0), the
more regular and more deterministic the time series is. Contrar-
ily, the larger PE is (maximum value PE=1), the more noisy and
random the time series is. More details about PE algorithm can be
found in reference35. In the present work, PE algorithm applied
to ionic current time series of translocation data was calculated
using a dimension n = 3 and a time lag τlag = 1 for a given time
window T = 1,000 samples of the signal, then sliding the time
window by 500 samples.

3 Results and Discussion

3.1 Sensing Event Detection from Ionic Current Time Series

In nanopore experiments, single-biomolecule sensing events are
usually detected from ionic current time series using a threshold
value, which is extracted from open pore measurements6 (de-
fined as no biomolecule present in the electrolyte). A drop of
ionic current ∆I is considered to be a sensing event if values of
current measured during a certain amount of time, called dwell
time τd , are below the threshold. The main advantage using MD
to perform in silico simulations of nanopore sensing experiments
is that the position of the biomolecule as a function of time is
known at every single time step of the simulation. Therefore the
passage of a biomolecule through the pore can be validated from
its coordinates, as already done in a previous work7. In order to
mimic as close as possible experimental investigation of sensing
events from nanopore measurements, we decided, first, to per-
form a "blind" detection of sensing events from ionic current time
series extracted from MD trajectories based on a threshold as in
experiments.

Fig. 2A represents ionic current time series computed from
translocation of KTKEGV peptides through SL-MoS2 nanopores.
First, fluctuations of the signal extracted from MD are very large
and noisy, the corresponding probability distribution P(I) being
very broad and unimodal. It means that drops of current asso-
ciated to the passage of biomolecules through the pore cannot
be distinguished from the raw signal. From this observation, we
filtered the data in order to remove high frequency fluctuations
by computing the moving mean of the ionic current signal over
T = 10,000 samples. As shown in Fig. 2A, current drops visually
appear in the filtered signal, which is confirmed by the bimodal
characteristics of the probability distribution. The maximum peak
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Fig. 2 A) Typical ionic current I [in nA] as a function of time [in µs] com-
puted from five independent concatenated MD simulations (500 ns each)
of translocation. The translocation of KTKEGV peptide through SL-MoS2
nanopore is shown (left panel). Green dashed line represents the mean
open pore current value < Io >. Gray and black lines correspond to raw
and filtered data, respectively. Right panel represents probability distri-
butions of ionic current time series P(I). The color code is the following:
raw data (gray), filtered data (black) and open pore data (green). Red
(data 1) and blue (data 2) shaded areas represent current values be-
low and above the 5σo threshold, respectively. B) Ionic current drop ∆I
vs time patterns for 5 of the 49 sensing events detected in the present
work. Maximum current drop ∆IMAX and dwell time τd for each event are
indicated. Event index is given in red.

of P(I) is centered around the mean value of open pore current
< Io >= 3.1 nA, with the same width as the one computed from
open pore current simulation. This clearly demonstrates that this
part of the translocation signal is associated to an open pore sit-
uation. In addition, the second peak of the distribution, which
is centered around 2.0 nA (1.1 nA smaller than < Io >), corre-
sponds to a decrease associated to the passage of the biomolecule
through the nanopore. Finally, the SNR calculated from MD sim-
ulations is around 5.5 (IRMS = 0.2 nA and ∆I = 1.1 nA). This value
is very close to experimental SNR of single-layer MoS2 nanopore
of comparable dimension (D =1.4 nm)8.

From the standard deviation of the open pore current extracted
from MD (σo = 0.2 nA), we defined the threshold for the detec-
tion of sensing event as 5σo. In other words, with this threshold,
each sensing event in our simulations corresponds to an event
for which at least one amino acid is present inside the pore. Us-
ing this value, we avoid the detection of false sensing events for
which the peptide is not inside the pore during the recording of
ionic current values. In fact, these particular events correspond to
a shadow effect of the peptide on the top (or bottom) of the pore
which reduces the current values beyond the fluctuations of the
open pore case (data not shown). As shown in Fig. 2A, the 5σo-
threshold corresponds to the part of the signal which belongs to
the tail of the ionic current probability distribution. A total of 49
sensing events were detected, representing cumulatively∼ 20% of

the total 2.5µs ionic current time series. Five of them are shown
in Fig. 2B, the others being shown in Fig. S1†. As observed exper-
imentally for DNA6, there is a large variability of current versus
time signatures within sensing events. For instance, some events
maintain fairly constant current drop and others show switching
levels and bumps. The origin of such a variability and the rela-
tionship between levels and bumps observed in time series and
the sequence of the peptide being inside the pore during these
events is discussed next.

3.2 Statistical Characterization of Amino-Acid Patterns from
Sensing Event

For each of the 49 sensing events detected from ionic current time
series (see Fig. 2), we associated ionic current drop values ∆I to
each amino acid of KTKEGV peptide. Namely, an ionic current
drop value ∆I at time t is associated to a specific amino acid if the
amino acid is inside the pore at the same time t in the simulation.
Similarly, a motif is associated to a drop ∆I at time t if all amino
acids of the motif are present in the pore at the same time. This
analysis is described in detail for a specific event in ESI†. Knowing
which amino acids are in the nanopore as a function of time, we
were able to statistically differentiate amino-acid patterns from
ionic current fluctuations in our in silico simulations of the exper-
imental device. As shown in Fig. 3A, glutamic acid E4 is the most
consistently sensed amino acid from ionic current data (Fig. 2),
this specific negatively charged amino acid being present in the
pore for 48 over 49 of sensing events. Glycine G5 is the second
most sensed residue followed by threonine T2 and lysine K3. The
two terminal parts, N-terminal lysine K1 and C-terminal valine
V6 are the least sensed residues, with almost a zero probability
for K1. This statistical analysis demonstrates that the position of
a residue in the primary structure of the peptide drastically in-
fluences the sensing of amino acids, more than the size or other
properties of its side-chain.

In addition, we computed average ionic current drops < ∆I >
associated to each amino acid of the peptide (Fig. 3B). Except for
valine V6 which presents the largest ionic current drop pattern,
all < ∆I > patterns are similar within the error bars. Therefore,
despite a large variability of sensing event dwell times and lev-
els of current drop, < ∆I > patterns along the primary structure
of the peptide may not be an appropriate characteristics to se-
quence proteins. By computing < ∆I > associated with the pres-
ence of protein sequence motifs in the pore (Fig. 3C), there is
a much larger variability in current drop values, which confirms
that from ionic current traces recorded at the microsecond time
scale, measurement of current drops are associated to protein se-
quence motifs and not specifically to single amino acids. This be-
haviour comes from the fact that at a given time t and despite the
fact that single-layer MoS2 is an extremely thin material (Fig. 1),
only E or T amino acids can reside alone inside the pore. Most
of the time, pairs or triplets even quadruplets of amino acids are
simultaneously inside the pore during a sensing event. For in-
stance, G residue is always associated to motifs EG, EGV, TKEG,
TEG, TKG. Therefore, characterizing amino acids with an aver-
age current drop does not make sense in the context of protein
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Fig. 3 A) Probability Pin to find an amino acid of KTKEGV peptide inside the nanopore vs event index computed from MD data shown in Fig. 2. White
squares represent an exact zero probability. B) Probability Pin to find a single amino acid inside the pore for all 49 sensing events (top panel) and
average current drop [in nA] associated to it. Error bars correspond to standard deviation. C) Same as panel B but for protein sequence motifs. D)
Atomic representation of KTKEGV peptide inside SL-MoS2 nanopore during a sensing event. The color code is similar to the one used in Fig. 1.
Side chains of each amino acid are shown with tube and their orientation compared to the electric field θ is indicated for K1. E) Average side-chain
orientations < cosθ > of amino acid along the peptide sequence. Red and blue bars represent average values when the amino acid is inside or outside
the pore, respectively. Error bars representing the standard deviation are shown with black lines.

sensing.

Finally, to get insights into what causes drops of ionic cur-
rent during the passage of the peptide through the nanopore,
we studied different mechanisms of peptide translocation. From
MD trajectories, we extracted three time series that may cause
directly or indirectly ionic current drops: the variation of vol-
ume inside the pore due to the presence of the peptide ∆V (t),
the variation of charge ∆q(t) and, last but not least, the orien-

tation of amino-acid side-chains cosθ(t) during the diffusion of
the peptide through the pore or at the surface of the nanoporous
membrane (Fig. S3†). First, we computed temporal correla-
tion between variation of volume and charge and ionic current
drops. From this analysis (described in detail elsewhere†), it ap-
pears that, statistically, all different mechanisms exist, i.e. drops
are due to increase/decrease of volume or increase/decrease of
charge. Second, we computed averaged orientations of amino-
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acid side chains when they are inside the pore or diffusing at
the surface of the membrane (Fig. 3D). From this analysis, we
statistically observed that side-chain orientations change drasti-
cally when amino acids are present inside the pore. By averaging
side-chain orientations < cosθ > over all the 49 sensing events
(Fig. 3E), a mechanism is established, i.e. side chains of each
amino acid are parallel to the electric field when they are inside
the pore whereas side chains of amino acid are oriented perpen-
dicular to the electric field when diffusing at the surface of MoS2

membrane. This mechanism is verified for K, E, G and V residues.
In the case of T2, the residue is parallel to the electric field and
in the same direction when inside the pore whereas T2 is paral-
lel to the electric field and in the opposite direction when out-
side the pore. It might come from the fact that threonine amino
acid is comprised of an OH group at the end of its side-chain,
which means that the orientation is extremely sensitive to the
chemistry groups composing amino acids. To conclude, the fact
that side-chain orientations are parallel to the electric field when
inside the pore means that the volume occupied by the peptide
when translocating is relatively small. The consequence is that
the nanopore sensor is less sensitive to the side-chain size and
volume, at least for single-layer MoS2 membranes. This may be
problematic to design a nanopore protein sequencing device in
the future.

3.3 Quantifying the Complexity of Ionic Current Time Se-
ries: Permutation Entropy

The statistical analysis of ionic current time series presented in
Fig. 3 cannot be directly applied to experimental nanopore mea-
surements due to the fact that this analysis is based on the knowl-
edge of peptide exact position compared to the nanopore and
this information is not accessible from experiments. Only sens-
ing event detection using a 5σo-threshold can be extracted from
experimental time series. Moreover, as described above, the vari-
ability of current levels observed in ionic current time series arises
from different mechanisms of translocation and most of them can-
not be visually associated to the primary structure of the peptide.
Nevertheless, information about biomolecule that goes through
the pore might be hidden in ionic current time series and the
question is where is the information localized. In other words,
which levels of current and its variations are relevant for the se-
quencing technology and how much information do they contain.
To answer these questions, we decided to quantify the complexity
of ionic current time series extracted from MD using permutation
entropy algorithm. As explained in the Materials and Methods
section, we applied PE to shifting windows of 1 ns duration along
the ionic current time series presented in Fig. 2A. Results are pre-
sented in Fig. 4.

We applied PE algorithm to three different sets of data ex-
tracted from ionic current time series: data 1, which corresponds
to all ionic current values below the 5σo-threshold recorded from
translocation MD simulations (red area in Fig. 2); data 2, which
corresponds to all ionic current values above the 5σo-threshold
and recorded from translocation MD simulations (blue area in
Fig. 2) and finally, open, which corresponds to values of ionic cur-

rent recorded from an independent open pore MD simulation. As
shown in top panel of Fig. 4A, the probability to have PE=0 is
much larger from data 1 than from data 2 and open, which means
that much more regular patterns exist in ionic current time series
when the peptide is inside the pore. In addition, by looking at
the probability distribution for larger PE values (bottom panel of
Fig. 4A), distributions look very similar for the three set of data.
Since we are interested in regular patterns associated to sensing
events, we extracted from data 1 sub-events for which PE is lower
than < PE >−σPE = 0.11 (Fig. 4B). We applied this method to all
49 events. As shown in panel B of Fig. 4 for a specific sensing
event (index 41, Fig. 3A) of 19.5 ns duration and shown in Fig. 2,
4 sub-events were detected, for which PE is almost null, corre-
sponding to regular linear drops of ionic current, the correlation
coefficient of linear fitting R2 being larger than 0.97 for all the
sub-events detected this way (data not shown).

Then, from PE analysis, each sub-event was characterized by
the absolute value of its slope, i.e. ∆I/∆t, which corresponds to
an ionic current drop speed. Fig. 4C represents probability distri-
butions of ∆I/∆t extracted from the three sets of data. From the
distributions, we can clearly see that data 2 and open time series
contain similar information. It confirms that the 5σo-threshold is
a correct threshold to extract sensing events. Moreover, the dis-
tribution from data 1 is distinct from the two others. Therefore,
PE analysis clearly points out that data 1 contains more regular
patterns and that those patterns are characterized by lower values
of ∆I/∆t, which arises from the fact that drops of current last for
longer time. Finally, from data 1, we computed average values
of ionic current speed < ∆I/∆t > per protein sequence motif, as
performed for < ∆I > in Fig. 3C. As shown in Fig. 4D and E, 4
most probable motifs were extracted: EG, E, TK and EGV. These
four motifs are exactly the same as the ones extracted from ionic
current characteristics < ∆I > presented in Fig. 3C and the proba-
bilities Pin associated to each motif are also very similar. It means
that applying PE as a filter to extract sub-events within a sensing
event is consistent and contains the same quantity of information
than the one extracted from ionic current drops using peptide posi-
tion. This result is crucial since in experiments, the position of the
peptide is not available. Moreover, the variability of < ∆I/∆t > val-
ues associated to each motif is not very large, which confirms that
extracting the sequence of amino acids translocating through the
pore only from PE (Fig. 4) or ionic current drops (Fig. 3) analy-
sis remains challenging. Nonetheless, the detection of biological
mutations using PE analysis might be reachable.

3.4 Effect of Biological Mutations on Sensing Event Detec-
tion and Characterization

In order to study the impact of biological mutations onto ionic
current characteristics shown above for KTKEGV peptide (Fig. 4),
we first had a look at amino acids that show singular behaviours.
The goal here is to see if similar motifs are sensed by the nanopore
and if so, if the same sensed motifs are characterized by the same
ionic current drop speed. As already shown in Fig. 3B, E4 residue
(glutamic acid, negatively charged) is the best candidate for a
mutation since E4 is the amino acid being inside the pore for
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Fig. 4 A) Probability distributions of PE computed from ionic time series presented in Fig. 2A. Time series from translocation simulations were separated
in 2 sets: data 1 and data 2 (see main text for details). Data named open was extracted from open pore simulation. Top panel represents the probability
to have exactly PE=0. Bottom panel represents the total probability distribution. B) PE vs time (top panel) for a specific sensing event (index 41,
Fig. 3A) of 19.5 ns duration and shown in Fig. 2. Ionic current drop vs time (bottom panel) is also shown for comparison. Red lines correspond to parts
of the signal for which PE<0.11, named hereafter sub-events. C) Probability distribution of ionic current drop speed, which corresponds to the slope of
red lines shown in panel B. D) Probability to find a protein sequence motifs inside the pore from sub-events. E) Average current drop speed [in nA/ns]
associated to each motif. Error bars correspond to the standard deviation.

the longest period during in silico simultions of nanopore experi-
ments. Therefore, we decided to drastically changed the electro-
static properties of the peptide by performing the mutation E4-
>K4 (total charge of the peptide from +1 to +3), expecting rela-
tively important repercussions on ionic current time series. Next,
from < ∆I > characteristics shown in Fig. 3B, V6 (Valine, neutral)
shows also a different behaviour than the other amino acids with
a much larger averaged current drop. We also decided to perform
a drastic mutation but less than the previous one by replacing
V6 with a positively charged residue, an arginine (V6->R6, total
charge of the peptide from +1 to +2). Using the same two pro-
cedures as the ones presented above, we characterized sensing

events using on one hand, < ∆I > from the position of the pep-
tide extracted from MD and using, on the other hand, < ∆I/∆t >
from PE time series analysis. The goal here is to compare both
procedures and to show if they exhibit consistency from indepen-
dent simulations of mutant peptides.

As shown in Fig. 5, KTKKGV mutant (total charge +3) shows a
qualitatively and quantitatively different behaviour than the two
others sequence, KTKEGV (+1) and KTKEGR (+2). Drops of
current associated with the passage of KTKKGV peptide through
the pore are much larger than for the two other sequences, with
a maximum peak in the distribution around 0.7 nA (Fig. 5A).
KTKEGV and KTKEGR show similar current drop values and dis-
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Fig. 5 A) Probability distribution of ionic current drops computed from sensing event detection extracted from MD simulations of the translocation of
KTKEGV (red), KTKKGV (blue) and KTKEGR (green) peptides. B) Average current drops [in nA] per protein sequence motif. Error bars represent the
standard deviation. C) Probability distribution of ionic current drop speed ∆I/∆t computed from sensing sub-event extracted from MD simulations of the
translocation of KTKEGV, KTKKGV and KTKEGR peptides. The color code is the same as in panel A. D) Average current drop speed [in nA/ns] per
protein sequence motif. Error bars represent the standard deviation.

tributions look similar. In addition, from each independent se-
quence, four, three and three protein sequence motifs were ex-
tracted from < ∆I > analysis for KTKEGV, KTKKGV and KTKEGR
sequences, respectively (Fig. 5B). Among those ten motifs, three
are common to the detection of KTKEGV and KTKEGR sequences,
i.e. EG, E and TK. Motifs from KTKKGV are all different which
means that E4 → K4 mutation is drastic and, in this case, MoS2

nanopore does not sense motifs similar to KTKEGV and KTKEGR
and their characteristics cannot be directly compared to those of
the other peptides. They are shown in Fig. 5B and D and in Ta-
ble 1 for information only. Next, we will focus on the three motifs
common to KTKEGV and KTKEGR experiments.

First, EG motif is characterized by an average current drop
< ∆I >= 0.279 nA from the KTKEGV sequence detection whereas
the same motif is characterized by a < ∆I >= 0.421 nA from the

KTKEGV sequence detection (Table 1). It means that for mea-
surements of the same motif in different sequences, there is a
variation of 50% in the characteristics < ∆I > of the motif detec-
tion. In short, < ∆I > of a motif is context dependent. Similarly,
E motif is showing a difference of 40%. Only protein motif TK
shows a relatively small difference of 10%. Therefore, using the
procedure based on ionic current drops < ∆I > computed from
the knowledge of the position of the peptide, does not demonstrate
consistency from independent simulations, as similar motifs show
different characteristics.

From PE analysis, probability distributions P(∆I/∆t) extracted
from independent simulations for KTKEGV, KTKKGV and KTKEGR
sequences are much more similar than the ones from ∆I (Fig. ref-
fig6C). The main differences arise for KTKKGV peptide with a
maximum peak shifted to lower values and the presence of a
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Table 1 Protein sequence motifs detected from ionic current drop anal-
ysis and from permutation entropy analysis applied to independent MD
simulations of mutant peptides KTKEGV, KTKKGV and KTKEGR. < ∆I >
and < ∆I/∆t > characteristics are presented.

peptide sequence protein motifs < ∆I > [nA] < ∆I/∆t > [nA/ns]

KTKEGV

EG 0.279 0.098
E 0.152 0.115

TK 0.334 0.086
EGV 0.560 0.100

KTKKGV
TKG 0.759 0.071

TKKG 0.716 0.084
TG 0.784 0.072

KTKEGR

EG 0.421 0.102
TK 0.363 0.085
E 0.211 0.120

TKE 0.375 0.102

shoulder for large values. Although differences are less pro-
nounced than from ∆I analysis, distinguishing sensing sub-events
between mutants remains possible and it can be seen as some-
thing positive since the characteristics of protein motifs may be
similar. From PE, a total of eleven relevant motifs were extracted,
four from KTKEGV, three for KTKKGV and four from KTKEGR se-
quences. Ten of them are the same as the ones extracted from
current drops, only TKE motif is detected from KTKEGR. In fact,
as shown in Fig. 5D and in Table 1, among those eleven motifs,
three are common to the detection of KTKEGV and KTKEGR se-
quences, i.e. EG, E and TK. First, EG motif is characterized by
an average current drop velocity < ∆I/∆t >= 0.098 nA/ns from
KTKEGV sequence detection whereas the same motif is character-
ized by a < ∆I >= 0.102 nA from the KTKEGV sequence detection
(4% difference) Similarly, motif E shows a difference of 4% and
the TK motif a difference of 1%. This result confirms that ap-
plying PE algorithm to extract relevant characteristics of protein
sequence motifs from ionic current time series is appropriate and
particularly consistent.

4 Conclusion
In the present work, we investigated, using MD simulations,
nanopore sensing of single-biomolecule through MoS2 nanopores
and the possibility to identify protein sequence motifs. First, we
showed from ionic current time series that a threshold of 5σo is
necessary to avoid detection of false sensing events. Using this
threshold, 49 sensing events were detected for KTKEGV peptide,
a motif of alpha-synuclein protein related to Parkinson disease
and these events are visually characterized by a large variability
of current levels and bumps, as already observed experimentally
for DNA sensing. For each of the 49 sensing events, we estab-
lished the relationship between the presence of the biomolecule
inside the pore and current drops measured. This relationship
was established using a standard procedure where the average
ionic current drop of each residue along the protein sequence was
computed from the values of time series for which the residue is
inside the pore. To do so, the knowledge of the position of the
peptide is needed. Moreover, we showed that single amino acid
are mainly characterize by similar average current drops, which
makes the sequencing of protein not conceivable. It is much more
appropriate to associate sensing events with protein sequence mo-

tifs than with single amino acid. Indeed, more than one or two
amino acids can be inside the pore at the same time. From this
observation, a larger variability of < ∆I > was observed. This be-
haviour comes from the fact that mechanisms of translocation of
peptides through MoS2 nanopores are of different kinds, some be-
ing related to electrostatic effects, some related to steric effects,
some related to both and even some related to none. The ma-
jor consistent result in terms of mechanisms of translocation ob-
served in the present work is that the orientation of the side chain
of amino acids during their passage through the pore is collinear
to the applied electric field. Therefore, current drops are less sen-
sitive to the side-chain size and volume of amino acids.

This procedure, based on both current drops and the position
of each residue of the peptide cannot be applied to experimen-
tal measurements since the later are not accessible from experi-
ments. In the present work, we developed a new procedure that
allows to extract similar information by applying a filter to the
measured data: the permutation entropy algorithm. PE measures
the complexity of a given time series and allows to extract regular
patterns. From MD, PE analysis confirms that the 5σo-threshold
is appropriate to extract relevant sub-events related to the pres-
ence of the peptide in the pore. Moreover, PE used as a filter
to extract sensing events contains the same information as the
procedure which uses the position of the peptide plus the ionic
current measurements. The exact same motifs were extracted
from both procedure with less inputs using PE. The character-
istics extracted from PE is < ∆I/∆t >, which corresponds to an
ionic current drop speed, i.e. how fast (or slow) a drop of cur-
rent happens when residues of the peptide are located inside the
pore. Finally, PE applied to the detection of biological mutations
showed consistency from independent measurements, protein se-
quence motifs detected being identified with similar values of the
new parameter defined here, < ∆I/∆t > in different sequences.
This result confirms that nanopore sensing of single-biomolecule
using MoS2 nanopores is very promising although reconstructing
the sequence of a protein from ionic current time series even us-
ing PE procedure remains challenging.
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