New Journal of Chemistry

NJC

Methane Conversion on Cobalt-Added Liquid-Metal Indium Catalysts

Journal:	New Journal of Chemistry
Manuscript ID	NJ-LET-07-2020-003808.R1
Article Type:	Letter
Date Submitted by the Author:	02-Sep-2020
Complete List of Authors:	Tajima, Hiroki; Saitama University Ogihara, Hitoshi; Saitama University, Yoshida-Hirahara, Miru; Sophia University, Department of Materials and Life Sciences; Saitama University, Research and Development Bureau Kurokawa, Hideki; Saitama University, Graduate School of Science & Engineering

SCHOLARONE[™] Manuscripts

8 9 10

11

12 13

14

15

16

17 18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

37

39

41

45

46

47

49

51

53

54 55 56

57

58

COMMUNICATION

Methane Conversion on Cobalt-Added Liquid-Metal Indium Catalysts

Hiroki Tajima,^a Hitoshi Ogihara,*^a Miru Yoshida-Hirahara^a Hideki Kurokawa^a

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Non-oxidative methane (CH₄) conversion was carried out using a silica-supported cobalt-added indium liquid metal catalyst (In-Co/SiO₂). In-Co/SiO₂ showed different activity from In/SiO₂ and Co/SiO₂. In-Co/SiO₂ promoted the formation of aromatics (e.g., benzene) from CH₄. The ethylene conversion reaction implied that Co present in indium liquid metal was effective for the aromatization reaction. We propose bifunctional catalysis by In-Co for CH₄ conversion: (1) indium liquid metal activates CH₄ molecules to form C₂ hydrocarbons by CH₄ coupling, and (2) a portion of C₂ hydrocarbons is converted to aromatics by Co species present in the liquid metal. This work was compared to reported systems such as supported catalytically active liquid metal solutions (SCALMS).

Petroleum is a raw material in the production of basic chemicals, such as olefins and aromatic compounds, but faces a depletion problem in the future. Therefore, natural gas is expected to be used 34 for the production of essential chemicals, and recent development of the shale gas extraction technology also boosts the use of natural 36 gas in chemical industries. However, methane (CH₄), the main 38 component of natural gas, is difficult to convert to useful chemicals because of its high stability that is attributed to strong C-H bonds and a symmetrical molecular structure ¹. For several decades, chemical 40 conversion of CH₄ has been intensely investigated ²⁻⁵, and a 42 dehydrogenative route is one of the most promising processes for 43 CH₄ conversion ⁶⁻¹³. In the dehydrogenative process, CH₄ is converted 44 into hydrogen, C₂ hydrocarbons, and aromatics. However, catalyst deactivation due to coke deposition is a crucial problem. Therefore, the design of catalysts with high coking resistance is necessary. So far, various catalysts have been reported, and liquid metal (LM) is 48 currently being paid attention to as a new catalyst for CH₄ conversion. Molten metal catalysts that can diminish the deactivation by coke 50 deposition have been examined in the complete dehydrogenation of CH₄ to form hydrogen and separable carbon ¹⁴. Recently, it is 52 reported that low melting-point metals, such as indium (In) and bismuth (Bi), are effective for dehydrogenative CH4 conversion,

59 60 where In and Bi LMs catalyze CH₄ activation, and C₂ hydrocarbons and aromatics are produced 7, 15, 16.

On the other hand, Wasserscheid and coworkers recently developed the idea of supported catalytically active liquid metal solutions (SCALMS); SCALMS presumably have homogeneously distributed metal atoms at the surface of a liquid metallic phase ¹⁷⁻¹⁹. For example, a liquid mixture of Ga (melting point is 303 K) and Pd deposited on porous glass was active for butane dehydrogenation, and was insensitive to deactivation by coke deposition ¹⁷. In addition, for propane dehydrogenation in the presence of CO, Ga₃₇Pt/Al₂O₃ SCALMS showed higher conversion than Pt/Al₂O₃ because of its high tolerance to the poisoning effect of CO adsorption and coke ¹⁸. These studies also suggested that the noble metals (Pd or Pt) added to Ga are present as isolated noble-metal atoms at the surface of a liquid Ga matrix, where it is considered that Ga LM is inert for catalytic reactions, and the isolated noble-metal atoms act as unique catalysts. Furthermore, it is reported that liquid metal galinstan containing Rh catalysts is effective for hydroformylation of olefins ²⁰.

As described above, researches on catalysis by LM are categorized into two concepts: (1) the catalysis by LMs themselves (e.g. molten metals and low melting point metals) and (2) the catalysis by isolated metal atoms on SCALMS. In this study, CH₄ conversion was performed on an In-Co catalyst in which Co was added as a second component to In LM. In-Co acted as a bi-functional catalyst to convert CH₄ into value-added molecules: In LM converted CH₄ into C₂ hydrocarbons, and successively the added Co species promoted the aromatization of the formed C₂ hydrocarbons. The synergy effect of LM and the secondary component (Co) has been considered, and it may help shed light on catalysis in hydrocarbon conversion processes.

^{a.} Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan

⁺ Footnotes relating to the title and/or authors should appear here.

Electronic Supplementary Information (ESI) available: [details of any supplementary

information available should be included here]. See DOI: 10.1039/x0xx00000x

COMMUNICATION

Journal Name

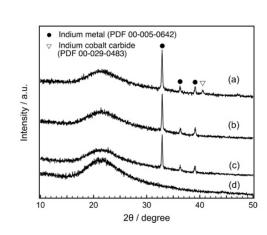
Table 1 Reaction results of CH₄ conversion at 1073 K. Catalyst mass: 0.2 g; flow rate: 10 mL min⁻¹; p(CH₄): 1 bar; reaction time: 2 h.

entry catalysts	aatalvata			у	ield / µm	coke / mg	conv./%	carbon				
	Catalysis	H_2	C_2H_6	C_2H_4	C_2H_2	C_3H_6	C_6H_6	C_7H_8	$C_{10}H_8$	h ⁻¹ g _{cat} ⁻¹	COIIV. / /0	balance / %
1	SiO ₂	200	19.1	8	n.d.	1	n.d.	n.d.	n.d.	1	0.1	98.5
2	Co/SiO ₂	665	51.1	60	2.0	6	n.d.	n.d.	n.d.	3	0.4	99.3
3	In/SiO ₂	3025	74.7	207	6.0	13	n.d.	n.d.	n.d.	15	1.6	100.8
4	In-Co (1) /SiO ₂	4250	55.3	248	6.1	19	1.4	n.d.	n.d.	22	2.1	99.5
5	In-Co (2) /SiO ₂	4486	53.3	261	5.9	21	2.7	0.7	0.5	23	2.2	97.7
6	In-Co (9) /SiO ₂	5281	49.1	262	4.8	22	4.0	1.2	0.6	28	2.6	99.1
7	In-Co (17) /SiO ₂	5648	47.5	253	4.1	20	4.9	1.4	0.6	30	2.7	99.6
8	In-Co (50) /SiO ₂	5874	42.5	229	3.7	19	5.3	1.4	0.7	32	2.8	100.0

All catalysts were prepared by a typical impregnation method. Loading of In was 5 wt% in all catalysts. The loading of Co in Co/SiO₂ was 0.5 wt%. In-Co/SiO₂ catalysts with 1, 2, 9, 17, 50 atomic% of Co were prepared, and hereafter denoted as In-Co(1), In-Co(2), In-Co(9), In-Co(17), and In-Co(50)/SiO₂, respectively. The Co loadings for In-Co(1), In-Co(2), In-Co(9), In-Co(17), and In-Co(50)/SiO₂ were 0.026, 0.051, 0.26, 0.51, and 2.6 wt%, respectively. The detail in CH₄ and ethylene (C₂H₄) conversion reactions, a schematic of reaction system (Fig. S1) and catalyst characterization are shown in supplementary data.

Table 1 summarizes the reaction results for dehydrogenative conversion of CH₄ on various catalysts. Products for CH₄ conversion were C₂ hydrocarbons (C₂H₆, C₂H₄, and C₂H₂), propylene (C₃H₆), aromatics (C_6H_6 , C_7H_8 , and $C_{10}H_8$), and coke. For all catalysts, except for SiO₂, the main hydrocarbon product was C_2H_4 . Time courses for CH₄ conversion and formation rate for gaseous products are shown in Fig. S2. When using only SiO₂ (entry 1), CH₄ hardly converted, which indicated CH₄ is so stable that pyrolysis did not proceed at 1073 K. As previously reported, In/SiO₂ was active for the reaction ⁷; the yield of C₂H₄ was much higher than SiO₂ (entries 1 and 3). For Co/SiO₂ (entry 2), the reaction proceeded, but the amount of formed hydrocarbon was inferior to In/SiO₂. For In-Co/SiO₂, the yields of the main product (C₂H₄) were higher than In/SiO₂ and Co/SiO₂, regardless of the In-Co ratio. Interestingly, the formation of aromatics (i.e., benzene, toluene, and naphthalene) was observed with In-Co/SiO₂, while aromatics were not detected for In/SiO₂ and Co/SiO₂. The results suggest that In-Co/SiO₂ has different catalytic functions than In/SiO₂ and Co/SiO₂; In-Co/SiO₂ had higher activities for CH₄ coupling and aromatization reactions than In/SiO₂ and Co/SiO₂. TG/DTA analysis for In-Co(17)/SiO₂ after reaction was carried out, and we can see that the weight loss for coke combustion was 3^{4} wt% (Fig. S3).

Table 2 shows product yields for the conversion of C_2H_4 in the presence of H_2 at 1023 K on In-Co(17)/SiO₂, In/SiO₂, Co/SiO₂, and SiO₂. Note that the reaction temperature for C_2H_4 was lower than CH₄ conversion (Table 1) and H₂ was coexisted in C_2H_4 because C_2H_4 has higher reactivity than CH₄. Time courses for C_2H_4 conversion and formation rate for gaseous products are shown in Fig. S4. In the reactions, CH₄ (a cracking product), C_2H_6 (a hydrogenation product), trace amounts of C₃ hydrocarbons, aromatics, and coke were formed. For SiO₂ and In/SiO₂ (entries 9 and 11), similar reaction results were observed, which indicated that In LM has no catalytic activity for converting C_2H_4 . Compared to In/SiO₂, Co/SiO₂ promoted the formation of CH₄, C_2H_6 , C_2H_2 , and aromatics (entry 10). Interestingly,


Table 2 Reaction results of C₂H₄ conversion at 1023 K. Catalyst mass: 0.5 g; flow rate of mixture of Ar/H₂/C₂H₄: 47/3/3 mL min⁻¹; reaction time: 2 h.

entry catalysts	aatalyata -	yield / µmol h ⁻¹ g _{cat} ⁻¹							coke / mg	conv. / %	carbon
	CH_4	C_2H_6	C_2H_2	C_3H_6	C_6H_6	C_8H_8	$C_{10}H_8$	h ⁻¹ g _{cat} ⁻¹	COTIV. / %	balance / %	
9	SiO ₂	91	243	133	26	0.9	n.d.	n.d.	3	3.8	95.6
10	Co/SiO ₂	114	290	228	29	4.5	n.d.	0.3	9	6.6	97.5
11	In/SiO ₂	26	185	183	5	n.d.	n.d.	n.d.	3	3.1	92.7
12	In-Co(17)/SiO ₂	572	340	86	31	15.9	0.6	1.5	31	13.4	91.4

This journal is © The Royal Society of Chemistry 20xx

Journal Name

COMMUNICATION

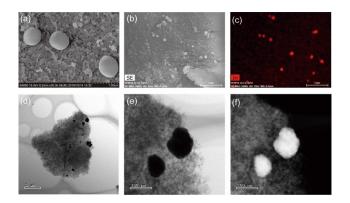


Fig. 1. XRD patterns of (a) In-Co(17)/SiO₂ after CH₄ conversion reaction, (b) In/SiO₂ after CH₄ conversion reaction, (c) In/SiO₂ after reduction with H₂, and (d) Co/SiO₂ after CH₄ conversion reaction.

In-Co(17)/SiO₂ (entry 12) showed higher yields of CH₄, C_2H_6 and aromatics than Co/SiO₂ and In/SiO₂. Here, it should be noted that In-Co(17)/SiO₂ showed the highest aromatics yields for C_2H_4 conversion in Table 2. The results shown in Table 2 indicated that the aromatization is strongly promoted on Co interacted with In LM.

In/SiO₂ is reported as an effective catalyst for dehydrogenative coupling of CH₄ to form C₂ hydrocarbons ⁷. The structure of In catalysts was examined using temperature programmed XRD ⁷, first-principle molecular dynamics calculation ¹⁵, and in-situ X-ray absorption fine structure analysis ¹⁶, revealing that In is present as LM and the liquid-state is the origin for the catalysis of CH₄ coupling. In this study, we used Co added In/SiO₂, and according to the phase diagram of In-Co ²¹, a few percent of Co dissolves in In LM at reaction temperature (1073 K). Therefore, it is considered that a part of added Co dissolved in In LM particles under reaction condition and it is likely that the dissolved Co showed different catalytic activity from Co supported on SiO₂. However, the LM state of In and the dissolution of Co in LM In at reaction conditions were not directly observed in this work and assumed based on the previous works ⁷, 15, 16.

In this regard, the effect of Co content in In-Co/SiO₂ was investigated. The results were shown in Table 1 (entries 3~8). As the Co ratio increased from 0 to 17 at%, the yields of aromatics increased, indicating Co species played a role in the aromatization. The formation of aromatics seemed to occur equally at 17 and 50 at% of Co (entries 7, 8). As mentioned above, Co dissolves in In LM at reaction temperature and the amount of dissolved Co is a few percent. We will discuss the catalysis by the dissolved Co later in detail; briefly, we consider that the dissolved Co promoted the aromatization reaction. The dissolved Co species increased with the amount of added Co, which would promote the formation of aromatics. It is considered that not all of the added Co necessarily dissolved in the In particles, so that a part of Co was supported on the SiO₂ support apart from In LM. Therefore, when Co exceeding the solubility limitation was added, the dissolution of Co in In LM reached the limitation. Considering the result that the aromatics yields were

Fig. 2. (a, b) SEM, (c) EDX mapping of In, (d, e) TEM, and (f) STEM images for In-Co(17)/SiO₂ after CH₄ conversion reaction.

almost the same for 17 and 50 at% of Co, we assume that the addition of 17 at% of Co maximized the dissolution of Co in In LM and leveled off the aromatics formation.

Fig. 1 shows the XRD patterns of catalysts. For In/SiO_2 , diffraction lines attributed to In metal were observed in before and after reactions. For $In-Co(17)/SiO_2$, similar XRD patterns to In/SiO_2 were observed. The phase diagram indicates that In-Co solid solution was not formed at low temperature ²¹, therefore, phase separation cannot be avoided at room temperature. This is because the XRD patterns of In/SiO_2 and $In-Co(17)/SiO_2$ were the same. For Co/SiO_2 , no diffraction lines were detected because the loading of Co was quite small (0.5 wt%).

The specific surface areas of catalysts were as follows: SiO₂ (186 m²g⁻ ¹), In/SiO₂ (171 m²g⁻¹), Co/SiO₂ (163 m²g⁻¹), and In-Co(17)/SiO₂ (173 m²g⁻¹). Fig. 2a shows a SEM image of In-Co(17)/SiO₂ after the CH₄ dehydrogenation reaction. Spherical particles with a diameter of approx. 0.5 µm were observed. EDX analysis confirmed that the spherical particles consisted of In (Fig. 2b and 2c). The SEM and EDX analysis suggested that In was present as spherical LM under the reaction conditions. At the same time, EDX analysis for Co was performed, but information on the In-Co solid solution was not obtained, because the low loading of Co in the catalysts (e.g. 0.51 wt% for In-Co (17)/SiO₂) made it difficult to confirm Co species using EDX analysis. TEM images also indicated that large particles are present on SiO₂ support and an STEM image suggested the particles are metal (Fig. 2d-f). Temperature programmed reduction (TPR) profiles for In/SiO₂, Co/SiO₂, and In-Co(17)/SiO₂ after calcination at 1073 K are shown in Fig. S5. For In-Co(17)/SiO₂, two reduction peaks were observed at 700 and 920 K. Taking account of TPR profile of Co/SiO₂ (reduction was observed at 600~800 K) into account, the first peak would be the reduction of cobalt oxide. In addition, similar reduction peaks were observed for In-Co(17)/SiO₂ and In/SiO₂, indicating the reduction of In₂O₃. The reduction peak for In-Co(17)/SiO₂ was slightly shifted to higher temperature than In/SiO₂. The difference in reduction behaviour implies the interaction between In and Co.

58

59 60

COMMUNICATION

Based on the above results, the reaction route of CH₄ conversion over In-Co/SiO₂ and roles of the catalysts were proposed as shown in Scheme 1. We considered that CH₄ dehydrogenation proceeds by sequential reactions. At first, a CH₄ molecule is activated by abstracting a hydrogen atom and the CH₃ species couple to form C₂H₆ (step (a) in Scheme 1). For step (a), the activation mechanism of CH₄ by In LM was proposed on the basis of density functional theory calcinations, indicating low-coordinated In atoms continuously appear on In LM surface, and promote the dissociation of C-H bond in CH₄ molecule ¹⁵. Furthermore, it is reported that In LM works as a catalyst for C₂ hydrocarbons formation from CH₄ ⁷. Indeed, the results in Table 1 suggested that In/SiO₂ showed higher CH₄ coupling activity than Co/SiO₂ and SiO₂. In-Co/SiO₂ produced almost the same amount of C₂ hydrocarbons as In/SiO₂, indicating that In LM of In-Co/SiO₂ also acted as a coupling catalyst.

$$CH_4 \xrightarrow{(a)} C_2H_6 \xrightarrow{(b)} C_2H_4 \xrightarrow{(c)} aromatics$$

 $LM \xrightarrow{(a)} C_2H_6 \xrightarrow{(b)} C_2H_4 \xrightarrow{(c)} in LM$

Scheme 1. The proposed reaction route for dehydrogenative conversion of CH_4 on $In-Co/SiO_2$ catalyst.

Because C₂H₆ readily converts to C₂H₄ in gas phase without catalysts at 1073 K (step (b) in Scheme 1) $^{\rm 22},$ the formation of C_2H_4 mainly occurred without the aid of catalysts. In Table 1, In-Co/SiO₂ showed slightly higher C₂H₄ yield than In/SiO₂, implying a part of C₂H₄ was produced via the dehydrogenation of C₂H₆ on Co present in LM. The final step is the aromatization of C2 hydrocarbons. It should be noted again that C₂ hydrocarbons yields in CH₄ conversion were similar with In/SiO_2 and $In\mbox{-}Co/SiO_2,$ but aromatics were observed only for $In\mbox{-}$ Co/SiO₂ (Table 1). In addition, as shown in Table 2, In-Co/SiO₂ had higher catalytic activity for aromatization of C_2H_4 than In/SiO_2 and Co/SiO₂. Taking these reaction results into account, we considered that C_2H_4 formed via the coupling of CH_4 converted to aromatics by the In-Co catalyst. We presumed that Co dissolved in LM showed catalytic activity for the aromatization reaction. Although the origin of catalysis due to Co present in LM is not clear at the present, it is reported that the recombination of propargyl radicals $(C_3H_3\cdot)$ provides benzene during CH₄ pyrolysis ^{23, 24}, therefore, Co in LM might promote the formation of propargyl radicals from C₂H₄.

Previous reports of LM catalysts were focused on the concept of catalysis by LM itself. Furthermore, for SCALMS system, isolated metal atoms on LM are the catalysts, where LM itself does not work as catalysts. This study is different from the previous works. We proposed a new bifunctional catalyst based on the LM system: In LM activated CH₄ molecules along with additional Co present in LM was effective for the aromatization of C₂ hydrocarbons. For In-Co/SiO₂, both LM and the added metal acted as catalysts.

Conclusions

60

For the dehydrogenative conversion of CH₄, In-Co/SiO₂ showed different activity from In/SiO₂ and Co/SiO₂. As previously reported, In/SiO₂ catalyzed the coupling of CH₄ to form C₂ hydrocarbons. For In-Co/SiO₂, not only the coupling activity of CH₄, but also the aromatization ability was exhibited. Examining the catalytic activity for C₂H₄, which is the main product of CH₄ conversion, it was revealed that In/SiO₂ has no activity for C₂H₄, while In-Co/SiO₂ catalyzed the aromatization of C₂H₄. SEM and EDX analysis implied that LM was present in In-Co/SiO₂. Based on the results, we propose a unique catalytic mechanism of In-Co/SiO₂ for the conversion of CH₄: LM assists CH₄ coupling and Co present in LM promotes the aromatization. Such bifunctional mechanism is proposed for the first time in an LM catalyst system.

Acknowledgement

This work is supported by the technology development project carried out in Japan Petroleum Energy Center (JPEC) under the commission of the Ministry of Economy, Trade and Industry (METI) and also by JST CREST, Grant Number JPMJCR15P4. We appreciate the technical support of Comprehensive Analysis Center for Science (Saitama University) for FE-SEM, EDX, and XRD analyses. We thank the technical support of Mr. Usui for nitrogen adsorption measurements of catalysts. A part of this work was supported by NIMS microstructural characterization platform as a program of "Nanotechnology Platform" of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Conflicts of interest

There are no conflicts to declare.

Notes and references

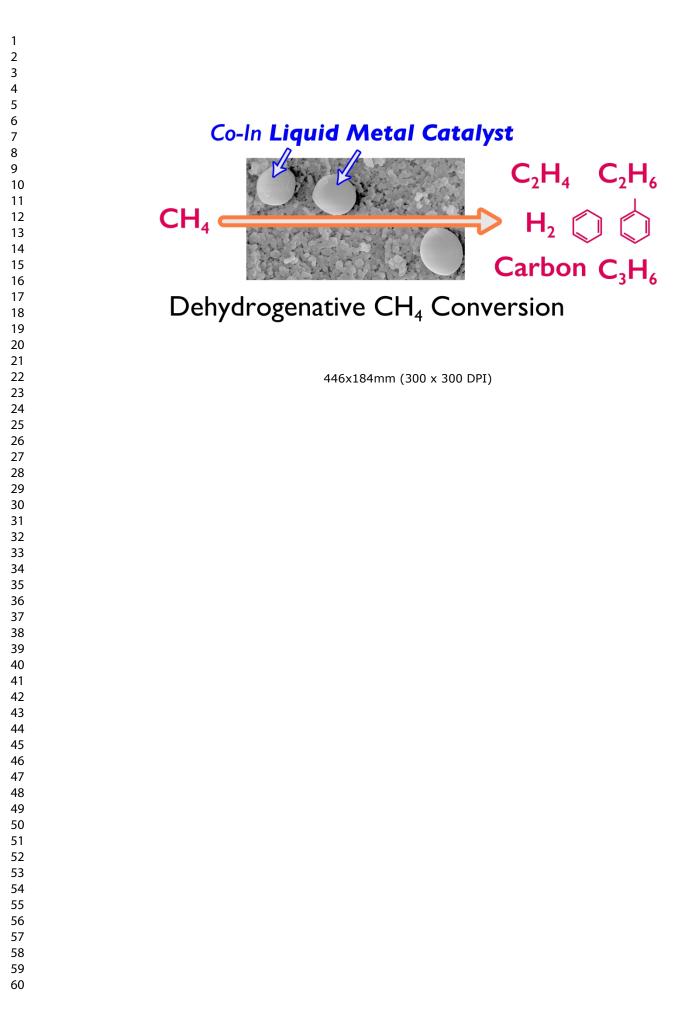
2.

- 1. U. P. M. Ashik, W. M. A. W. Daud and H. F. Abbas, *Renew. Sust. Energ. Rev.*, 2015, **44**, 221-256.
 - G. E. Keller and M. M. Bhasin, J. Catal., 1982, 73, 9-19.
- 3. K. Otsuka, K. Jinno and A. Morikawa, *Chem. Lett.*, 1985, 499-500.
- 4. T. Ito and J. H. Lunsford, *Nature*, 1985, **314**, 721-722.
- L. S. Wang, L. X. Tao, M. S. Xie, G. F. Xu, J. S. Huang and Y. D. Xu, *Catal. Lett.*, 1993, **21**, 35-41.
- X. G. Guo, G. Z. Fang, G. Li, H. Ma, H. J. Fan, L. Yu, C. Ma, X.
 Wu, D. H. Deng, M. M. Wei, D. L. Tan, R. Si, S. Zhang, J. Q. Li,
 L. T. Sun, Z. C. Tang, X. L. Pan and X. H. Bao, *Science*, 2014,
 344, 616-619.
- Y. Nishikawa, H. Ogihara and I. Yamanaka, *ChemistrySelect*, 2017, 2, 4572-4576.
- J. Hu, S. J. Wu, Y. Y. Ma, X. Y. Yang, Z. F. Li, H. Liu, Q. S. Huo, J. Q. Guan and Q. B. Kan, *New J. Chem.*, 2015, **39**, 5459-5469.
- J. Q. Hao, P. Schwach, G. Z. Fang, X. G. Guo, H. L. Zhang, H. Shen, X. Huang, D. Eggart, X. L. Pan and X. H. Bao, ACS Catal., 2019, 9, 9045-9050.
- 10. Y. Xiao and A. Varma, ACS Catal., 2018, 8, 2735-2740.
- 11. P. F. Xie, T. C. Pu, A. M. Nie, S. Hwang, S. C. Purdy, W. J. Yu,

Journal Name

1 2 **Journal Name**

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
10	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54 55	
54 55 56	
54 55	


59 60 D. Su, J. T. Miller and C. Wang, ACS Catal., 2018, 8, 4044-

- 4048.
 12. D. Gerceker, A. H. Motagamwala, K. R. Rivera-Dones, J. B. Miller, G. W. Huber, M. Mavrikakis and J. A. Dumesic, ACS Catal., 2017, 7, 2088-2100.
- 13. K. K. Zhao, L. T. Jia, J. G. Wang, B. Hou and D. B. Li, *New J. Chem.*, 2019, **43**, 4130-4136.
- 14. D. C. Upham, V. Agarwal, A. Khechfe, Z. R. Snodgrass, M. J. Gordon, H. Metiu and E. W. McFarland, *Science*, 2017, **358**, 917-920.
- Y. Ohtsuka, Y. Nishikawa, H. Ogihara, I. Yamanaka, M.
 Ratanasak, A. Nakayama and J. Hasegawa, J. Phys. Chem. A,
 2019, **123**, 8907-8912.
- U. Kashaboina, Y. Nishikawa, Y. Wakisaka, N. Sirisit, S. Nagamatsu, D. L. Bao, H. Ariga-Miwa, S. Takakusagi, Y. Inami, F. Kuriyama, A. L. Dipu, H. Ogihara, S. Iguchi, I. Yamanaka, T. Wada and K. Asakura, *Chem. Lett.*, 2019, **48**, 1145-1147.
- N. Taccardi, M. Grabau, J. Debuschewitz, M. Distaso, M.
 Brandl, R. Hock, F. Maier, C. Papp, J. Erhard, C. Neiss, W.
 Peukert, A. Gorling, H. P. Steinruck and P. Wasserscheid, *Nat. Chem.*, 2017, **9**, 862-867.
- T. Bauer, S. Maisel, D. Blaumeiser, J. Vecchietti, N. Taccardi,
 P. Wasserscheid, A. Bonivardi, A. Gorling and J. Libuda, ACS
 Catal., 2019, **9**, 2842-2853.
- 19.M. Kettner, S. Maisel, C. Stumm, M. Schwarz, C. Schuschke,
A. Gorling and J. Libuda, J. Catal., 2019, 369, 33-46.
- 20. H. Sun, W. Guo, J. Liu, Z. Feng, R. Li, X. Zhou and J. S. Huang, Appl. Organomet. Chem., 2018, **32**, e4555.
- 21. H. Okamoto, *J. Phase Equilib.*, 1997, **18**, 315-315.
- 22. H. Ogihara, H. Tajima and H. Kurokawa, *React. Chem. Eng.*, 2020, 5, 145-153.
- C. Keramiotis, G. Vourliotakis, G. Skevis, M. A. Founti, C.
 Esarte, N. E. Sanchez, A. Millera, R. Bilbao and M. U. Alzueta, Energy, 2012, 43, 103-110.
- 4 24. J. A. Miller and S. J. Klippenstein, *J. Phys. Chem. A*, 2003, **107**, 7783-7799.

A text for a table of contents entry

In-Co converts CH4 molecules by catalyzing CH4 coupling over indium liquid metal and aromatization over

Co in liquid metal.

