NJC

Pictet-Spengler condensations using 4-(2aminoethyl)coumarins

Journal:	New Journal of Chemistry
Manuscript ID	NJ-ART-05-2020-002664.R1
Article Type:	Paper
Date Submitted by the	09-Jul-2020
Complete List of Authors:	Sviripa, Vitaliy; University of Kentucky, Pharmacetical Sciences Fiandalo, Michael; Roswell Park Comprehensive Cancer Center, Department of Urology Begley, Kristin; University of Kentucky, Molecular and Cellular Biochemistry Wyrebek, Przemysław; Laboratory of Organometallic Synthesis, Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Kril, Lilia; University of Kentucky, Molecular and Cellular Biochemistry Balia, Andrii; University of Kentucky Parkin, Sean; University of Kentucky, Chemistry Subramanian, Vivek; University of Kentucky, Pharmaceutical Sciences Chen, Xi; South-Central University for Nationalities, College of Chemistry and Material Science Williams, Alexander; University of Kentucky, Pharmaceutical Sciences Zhan, Chang-Guo; University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy Liu, Chunming; University of Kentucky, Lucille Parker Markey Cancer Center Mohler, James; Roswell Park Comprehensive Cancer Center, Department of Urology Watt, David; University of Kentucky, Molecular and Cellular Biochemistry

ARTICLE

Received 00th January 20xx,
Accepted 00th January 20xx
DOI: 10.1039/x0xx00000x

Pictet-Spengler condensations using 4-(2-aminoethyl)coumarins

Abstract

Vitaliy M. Sviripa, ${ }^{* a, b, c}$ Michael V. Fiandalo, ${ }^{d}$ Kristin L. Begley, ${ }^{\text {b,e }}$ Przemyslaw Wyrebek, ${ }^{\text {b,e }}$ Liliia M.

Androgen-deprivation therapy (ADT) is only a palliative measure, and prostate cancer invariably recurs in a lethal, castrationresistant form (CRPC). Prostate cancer resists ADT by metabolizing weak, adrenal androgens to growth-promoting $5 \alpha-$ dihydrotestosterone (DHT), the preferred ligand for the androgen receptor (AR). Developing small-molecule inhibitors for the final steps in androgen metabolic pathways that utilize 17-oxidoreductases required probes that possess fluorescent groups at C-3 and intact, naturally occurring functionality at C-17. Application of the Pictet-Spengler condensation to substituted 4-(2-aminoethyl)coumarins and 5α-androstane-3-ones furnished spirocyclic, fluorescent androgens at the desired $\mathrm{C}-3$ position. Condensations required the presence of activating $\mathrm{C}-7$ amino or N, N-dialkylamino groups in the 4-(2aminoethyl)coumarins component of these condensation reactions. Successful Pictet-Spengler condensation, for example, of DHT with 9-(2-aminoethyl)-2,3,6,7-tetrahydro-1H,5H,11H-pyrano[2,3-f]pyrido[3,2,1-ij]quinolin-11-one led to a spirocyclic androgen, (3R,5S,10S,13S,17S)-17-hydroxy-10,13-dimethyl-1,2,2', '', 4, 5, 6, 7, 8, $8^{\prime}, 9,9^{\prime}, 10,11,12,12^{\prime}, 13,13 ', 14,15,16,17-$ docosahydro-7'H,11'H-spiro-[cyclopenta[a]phenanthrene-3,4'-pyrido[3,2,1-ij]pyrido[4',3':4,5]pyrano[2,3-f]quinolin]- $5^{\prime}\left(1^{\prime} \mathrm{H}\right)$-one. Computational modeling supported the surrogacy of the C-3 fluorescent DHT analog as a tool to study 17oxidoreductases for intracrine, androgen metabolism.

Introduction

Prostate cancer growth and progression rely on the activation of the androgen receptor (AR) by the circulating, testicular androgen, testosterone (T) or its intracellular metabolite, 5α dihydrotestosterone (DHT), the preferred ligand for $A R$ transactivation ${ }^{1-2}$. Men, who present with advanced prostate cancer or who fail potentially curative therapy, undergo androgen-deprivation therapy (ADT) intended to lower circulating testosterone levels, to deprive the AR of activating ligands and to induce cancer regression. ${ }^{3-4}$ Unfortunately, androgen-deprivation therapy is only a temporary, palliative measure, since prostate cancer produces intratumoral

[^0]androgen levels during ADT that are low but sufficient to activate the $A R^{1,5}$ and promote cancer recurrence as lethal, castration-recurrent/resistant prostate cancer (CRPC). Current therapies for CRPC rely on inhibitors for enzymes that function well before the final steps in the biosynthetic pathways leading to DHT, and we sought to identify new, small-molecule inhibitors ${ }^{6}$ for late-stage, $N A D(P) H$-dependent 17β hydroxysteroid dehydrogenases ${ }^{7}$.
Prostate cancer cells utilize three, late-stage, androgenmetabolic pathways ${ }^{8-12}$ driven by oxidoreductases to acquire DHT (1) (Fig. 1).

Fig. 1. Late-stage metabolic pathways converging on 5α-dihydrotestosterone (DHT). Legend: frontdoor (orange), primary backdoor (green) and secondary backdoor (purple) pathways.

The "frontdoor" pathway converts the adrenal androgens, such as dehydroepiandrosterone and 4 -androstene-3,17-dione (2), to testosterone (3) that subsequently undergoes Δ^{4}-reduction to DHT (1). The "primary backdoor" pathway converts the penultimate 5α-androstane- $3 \alpha, 17 \beta$-diol (4) directly to DHT^{12-16} (1) without passing through testosterone (3) as an intermediate. The "secondary backdoor" pathway converts 4-androstene-3,17-dione (2) to 5α-androstane-3,17-dione (5) that undergoes reduction of the C-17-keto group to $\mathrm{DHT}^{12,14,16-23}(1)$, also without passing through testosterone (3) as an intermediate. One commonality among these pathways involved C-17 redox reactions mediated by the aldo/ketoreductase ${ }^{24-26}$ (AKR1C3; HSD17B5) and 17β hydroxysteroid dehydrogenase ${ }^{8}$ (HSD17B3) for the conversion of 4 -androstene-3,17-dione (2) to testosterone (3); the conversion of 5α-androstane-3,17-dione (5) to DHT (1); and the conversion of 5α-androstan- 3α-ol-17-one (6) to 5α -androstane- $3 \alpha, 17 \beta$-diol (4) (Fig. 1).
Our focus on developing small-molecule inhibitors for various 17-oxidoreductases, alone or in combination ${ }^{27}$, that perform these interconversions required fluorescent probes that had a C-3 fluorophore with excitation and emission patterns in the $550-650 \mathrm{~nm}$ range and that retained the intact, natural functionality at C-17. These combined challenges led us to select coumarins as fluorophores and to explore methodology for their attachment to the C-3 position of 5α-androstan-3ones ${ }^{28-30}$. We now report the scope of the Pictet-Spengler condensation ${ }^{31-34}$ of $\mathrm{C}-7$ amino-substituted 4 -(2aminoethyl)coumarins with aldehydes and ketones, NMR and X-ray crystallography studies that established the diastereoselectivity in adducts derived from 5α-androstan-3ones, the mechanism of these reactions and computational modeling of adducts in the active site of 17β-hydroxysteroid dehydrogenase type 5^{35-36} (17β-HSD5; AKR1C3). Our findings auger well for the application of these probes in drug discovery.

Results

Variants of the Pechmann condensation ${ }^{37-38}$ provided access to C-7 substituted 4-(2-aminoethyl)coumarins 9a-9e for this study (Scheme 1). Specifically, the condensation of

Scheme 1. Pechmann synthesis of substituted 4-(2-aminoethyl)coumarins 9. Legend: a, $\mathrm{CH}_{3} \mathrm{OC}(=\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{~K}$; b, $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}, \mathbf{7}$; c, conc. HCl ; d, $\mathrm{TiCl}(\mathrm{OiPr})_{3}, 7$.

3-(trifluoroacetamido)propanoic acid with methyl potassium malonate furnished methyl 3-oxo-5-(trifluoroacetamido)pentanoate (7); a second condensation with either methyl (3hydroxyphenyl)carbamate (8a), 3-(N,N-dimethylamino)phenol (8b), resorcinol (8c), or 3-methoxyphenol (8d) furnished intermediate trifluoroacetamides; and the final, acid-catalyzed hydrolysis of these intermediates provided the 4-(2aminoethyl)coumarins 9a-9d, respectively, as their hydrochloride salts. A related procedure using a benzyloxy urethane in place of the trifluoroacetamide derivative (i.e.,

B

Scheme 2. Representative Pictet-Spengler reactions of C-7 amino-substituted 4-(2aminoethyl)coumarins 9. Legend: Panel A: a, 1:10 (v/v) conc. HCl acid-abs. ethanol; Panel B: b, p-tolualdehyde; $1: 10(\mathrm{v} / \mathrm{v}) \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{TFA}, 25^{\circ} \mathrm{C} ; \mathrm{c}, \mathrm{CuBr}_{2}, \mathrm{O}_{2}, \mathrm{DBU}, \mathrm{DMSO}$.
methyl-5-benzyloxycarbonylamino-3-oxopentanoate) in a condensation with 8 -hydroxy-2,3,6,7-tetrahydro-1H,5Hbenzo[ij]quinolizine ${ }^{38}$ (8e) furnished the 4-(2-
aminoethyl)coumarin 9e (Scheme 1). The Pictet-Spengler condensations of coumarins $9 \mathbf{9}, \mathbf{9 b}$ or $9 \mathbf{e}$ that possessed $\mathrm{C}-7$ amino or C-7 N, N-dialkylamino groups with either acyclic and monocyclic ketones 10a-10f or 3-ketosteroids $\mathbf{1 0 g}$ - $\mathbf{1 0 k}$ under acidic conditions afforded 1,2,3,4-tetrahydro-5H-chromeno[3,4-c]pyridin-5-ones 11 (Scheme 2A) in good yields (Table 1). For example, the condensation of coumarin 9 e with 5α-androstan- 17β-ol-3-one (DHT) ($\mathbf{1 0 i}$) afforded a single diastereomer of the spirocyclic, fluorescent adduct 11ei that was more compact than previously reported, bulky DHT analogs that possessed a linker between umbelliferone and 3β-amino5α-androstan- 17β-ol ${ }^{28}$ or possessed a linker between fluorescein isothiocyanate and either a C-3 hydrazone or Ocarboxymethyloxime derivative of DHT^{29-30}. The hygroscopic nature of some of the hydrochloride and trifluoroacetate salts of the adducts $\mathbf{1 1}$ necessitated their isolation as N -acetyl derivatives, as noted in Table 1.

Table 1. Synthesis conditions and yields of Pictet-Spengler adducts $\mathbf{1 1}$ formed from C-7 amino-substituted 4-(2-aminoethyl)coumarins 9 and ketones 10.

Ketone		Conditions ${ }^{1}$	Isolated yields of Pictet-Spengler adducts 11 from 4-(2-aminoethyl)coumarins		
			9 a	9b	9
acetone	10a	A		11ba (88\%)	11ea (94\%) ${ }^{4}$
cyclopentanone	10b	B			11eb (68\%) ${ }^{2}$
cyclohexanone	10c	B			11ec (63\%) ${ }^{\text {P }}$
tetrahydro-4t-pyran-4-one	10d	в			11ed (79\%)
tetrahydro-4H-thiopyran-4-one	10e	в			11ee (81\%) ${ }^{4}$
1-methylpiperidin-4-one	10 f	в		11bf (73\%)	11ef (84\%)
5a-androstan-3-one 5a-androstane-3,17-dione	$\begin{aligned} & 10 \mathrm{~g} \\ & 10 \mathrm{~h} \\ & \hline \end{aligned}$	c	11ag (21\%) ${ }^{3}$	11bg (70\%) ${ }^{3}$	$\begin{aligned} & \text { 11eg }(86 \%)^{3} \\ & \text { 11eh }(57 \%) \end{aligned}$
5a-androstan-17b-ol-3-one	10i	c	11ai (57\%) ${ }^{3}$	11bi (85\%) ${ }^{3}$	11ei ($71 \%)^{3}$
17a-methyl-5a-androstan-17b-ol-3-one	10j	c			11ej (20\%)
5a-cholestan-3-one	10k	c			11ek (78\%) ${ }^{3}$

Legend: ${ }^{1}$ Condition A: 1:10 (v/v) acetone-TFA, reflux; condition B: 1:10 (v/v) TFA-CH2Cl2, 250 C ; condition C : $1: 10(\mathrm{v} / \mathrm{v})$ conc. HCl acid-abs. ethanol, reflux; ${ }^{2}$ isolated as N -acetyl derivative; ${ }^{3}$ isolated as hydrochloride salt; ${ }^{4}$ isolated as a trifluoroacetate salt.

A range of steroidal and non-steroidal carbonyl compounds served to define the scope of these Pictet-Spengler reactions with coumarins 9 as illustrated by the condensation of 1-methylpiperidin-4-one (10f) with $\mathbf{9 b}$ and the condensation of 5α-androstan-17 β-ol-3-one (10i) with coumarins 9a and 9e (Scheme 2A). In general, condensations with unhindered ketones varying from acyclic to monocyclic ketones were successful in yields of $60-90 \%$ (Table 1). In contrast, the condensations of the coumarin $9 \mathbf{e}$ either with hindered ketones such as 5α-androstan-17-one or with α, β-unsaturated ketones such as testosterone (3) were unsuccessful. This differential reactivity proved advantageous in the regiospecific modification of 5α-androstane-3,17-dione (10h) with coumarin 9e that led exclusively to the C-3 adduct 11eh in 57% yield. Contrary to a prior report of a successful Pictet-Spengler reaction of an amino-substituted coumarin with formaldehyde ${ }^{39}$, condensations of aldehydes with coumarins 9 led to poor yields of isolated products, presumably because of adventitious air-oxidation. Deliberate efforts to oxidize the intermediate 1,2,3,6-tetrahydropyridines from condensations with aldehydes led to poor yields of pyridines. For example, a Pictet-Spengler reaction of coumarin $9 \mathbf{e}$ with p-tolualdehyde followed by cupric bromide-catalyzed air oxidation ${ }^{40}$ of the intermediate tetrahydropyridine 12 led to only a 20% yield of the $\mathbf{5 H}$-chromeno[3,4-c] pyridin-5-one $\mathbf{1 3}$ (Scheme 2B).

Confirmation of the C-3R stereochemical assignments in the spirocyclic DHT adduct 11ei (Scheme 2A) relied on twodimensional ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ heteronuclear single quantum coherence (HSQC), gradient-correlation spectroscopy (gCOSY) and 2D rotating frame NOESY (2D ROESY) experiments ${ }^{41-42}$. The resonance for the protonated amine in the spirocyclic ring system appeared at $\delta 9.24 \mathrm{ppm}$ in the 2D ROESY spectrum and was the starting point for this stereochemical assignment at C 3. The ammonium group $\left(\mathrm{NH}_{2}{ }^{+}\right)$at $\mathrm{C}-3$ was identified using a $\mathrm{D}_{2} \mathrm{O}$ exchange experiment in DMSO- d_{6}. Correlations in the ROESY spectrum between this ammonium group and individually the $\mathrm{C}-1 \alpha \mathrm{C}-2 \alpha, \mathrm{C}-4 \alpha$ and $\mathrm{C}-5 \alpha$ protons (Fig. 2) confirmed the 3α-orientation of the ammonium group in 11ei.

Fig. 2. 2D ROESY spectrum of DHT analog 11ei. Spectrum recorded using Agilent 400 MHz at $25^{\circ} \mathrm{C}$. Dotted lines show region expanded that displays the NOE connectivity between $\mathrm{NH}_{2}{ }^{+}$and ring A protons (i.e., $\mathrm{H}-5$ (and $\mathrm{H}-1$ overlapping), $\mathrm{H}-4, \mathrm{H}-2$, and CH_{2} adjoining $\mathrm{NH}_{2}{ }^{+}$).

The Pictet-Spengler reactions of coumarins 9 and various ketones employed three different conditions that depended on the solubility of the ketone component and the desire, in the case of steroid condensations, to precipitate the products from acidic, ethanol solutions using water. A mixture of acetonetrifluoroacetic acid at reflux sufficed for reactions with acetone (condition A); trifluoracetic acid in dichloromethane at $25^{\circ} \mathrm{C}$; (condition B) effected the condensations of 9 with monocyclic ketones 10b-10f, and 1:10 concentrated hydrochloric acid in ethanol at reflux (condition C) promoted successful reactions with steroidal ketones $\mathbf{1 0 g} \mathbf{- 1 0 k}$ to give the desired adducts $\mathbf{1 1}$ (Table 1). Depending on conditions, the acid-catalyzed condensation of 17α-methyl- 5α-androstan-17 β-ol-3-one (10j)

B

Fig. 3. Wagner-Meerwein Rearrangment. Panel A: Products of Pictet-Spengler condensation of coumarin 9 e and 17α-methyl-5 α-androstan- 17β-ol-3-one ($\mathbf{1 0 j}$). Panel B: An ellipsoid plot (50% probability) for the single-crystal structure of rearrangement product (14). Hydrogen atoms were omitted to enhance clarity.
with coumarin 9 e led not only to the expected product 11ej but also to a Wagner-Meerwein rearrangement ${ }^{43}$ product 14 (Fig. 3A). The rearrangement product 14 provided suitable crystals for an X-ray crystallographic structure determination (CSD deposition number CCDC 1888376) that again confirmed the C3α orientation of the ammonium group in accord with the aforementioned NMR-based stereochemical assignments (Fig. 3B).

Discussion

In the course developing small-molecule therapies for CRPC, we required fluorescent analogs for the androgens that appear in the penultimate, intratumoral pathways converging on $5 \alpha-$ dihydrotestosterone (DHT). Specifically, we focused our interest on inhibitors for the 17-oxidoreductases that appear in three places in the late-stage metabolism of androgens to DHT, and we required fluorescent androgen probes with fluorescent groups at $\mathrm{C}-3$ and natural functionality at $\mathrm{C}-17$. The acidcatalyzed Pictet-Spengler reaction of coumarins $9 \mathbf{a}, \mathbf{9 b}$ and $9 \mathbf{e}$ bearing C-7 amino or C-7 N, N-dimethylamino substituents with 3 -ketosteroids, such as 5α-androstane-3,17-dione (10h) and 5α-androstan- 17β-ol-3-one ($\mathbf{1 0 i}$), met these objectives and provided the adducts 11 with an intensely fluorescent, spirocyclic group attached at C-3 in good yield (Table 1). These reactions required either a $1: 10(\mathrm{v} / \mathrm{v})$ mixture of trifluoroacetic acid and dichloromethane for ketones 10a-10f or a 1:10 (v/v) mixture of concentrated hydrochloric acid and absolute ethanol for steroidal ketones $\mathbf{1 0 g} \mathbf{- 1 0 k}$. A combination of sophisticated NMR experiments and an X-ray structure of a WagnerMeerwein rearrangement ${ }^{43}$ product 14 (Fig. 3) established the $\mathrm{C}-3 R$-diastereoselectivity of these reactions with steroid substrates. Similar Pictet-Spengler reactions, however, of coumarins 9c and 9d bearing C-7 hydroxyl or methoxy substituents, respectively, in place of C-7 amino substituents were unsuccessful. Likewise, extension of this Pictet-Spengler reaction to the condensations of coumarins 9 with aldehydes was largely unsuccessful, even after attempts to effect the deliberate oxidation of the intermediate adduct to a pyridine (Scheme 2B).
The classic Pictet-Spengler reaction ${ }^{31-32}$ involved an acid-catalyzed condensation of activated 2-(1H-indol-3-yl)ethan-1-amine with

Fig. 4. Contrasting skeletons of key participants in Pictet-Spengler reactions.
either an aldehyde or a ketone to give an intermediate imminium salt and a subsequent cyclization via a spirocyclic intermediate to provide a substituted 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole. Superficially, the Pictet-Spengler reaction of coumarins 9 was a vinylogous extension of the classic reaction involving 3 -(2-aminoethyl)-1 H -indoles, as displayed in a skeletal format (Fig. 4), in which the iminium carbon linked to the α carbon in the indole case and to the ζ-carbon in the coumarin case.
A mechaism for these acid-catalyzed Pictet-Spengler reactions of coumarins $\mathbf{9 a}, \mathbf{9 b}$ and $\mathbf{9 e}$ with ketones $\mathbf{1 0}$ must take into account the following observations: [1] the requirement for highly acidic, aqueous conditions; [2] the rapid formation of the products from the intermediate, iminium salts derived from the condensation of the C-7 amino- or N, N-dialkylaminosubstituted coumarins $\mathbf{9 a}, \mathbf{9 b}$ and 9 e with ketones 10; and [3] the failure of the 7-hydroxy- and 7-methoxy substituted 4-(2aminoethyl)coumarins $\mathbf{9 c}$ and 9 d , respectively, to participate in these reactions.
We propose a mechanism for the successful Pictet-Spengler condensations of C-7 amino-substituted 4-(2aminoethyl)coumarins 9a, 9b and 9e with ketones $\mathbf{1 0}$ that involves an initial, rapid condensation leading to an intermediate imine and a rate-determining cyclization to a tetrahydropyridine product 11. For example, the acid-catalyzed condensation of coumarin 9 e with 5α-androstan-17 β-ol-3-one (10i) furnishes an intermediate, biscationic iminium ion 14a (Scheme 3). The acidic conditions (est. pH 1) used for these

Scheme 3. Mechanism of Pictet-Spengler reactions of 4-(2-aminoethyl)coumarins 9 with ketones (10).
condensations and the calculated pK_{a} values for $7-(\mathrm{N}, \mathrm{N}$ dimethylamino)coumarin $\left(\mathrm{pK}_{\mathrm{a}} \quad 3.48\right)$ and N methylcyclohexanimine ($\mathrm{pK} \mathrm{a}_{\mathrm{a}}$ 10.14), using the ChemAxon software (version 19.18; ChemAxon, Inc., Cambridge, MA), support a biscationic structure involving protonation of both the imine and aniline moieties in 14a. The agreement between calculated pK_{a} values for N, N-dimethylaniline ($\mathrm{pK} \mathrm{a}_{\mathrm{a}} 5.02$) and experimental values ($\mathrm{pK} \mathrm{K}_{\mathrm{a}} 5.06^{44}-5.07^{45}$) supported the veracity of these calculated pK_{a} values. This suggestion for a biscationic
species finds precedent a similar species generated from p aminostyrene with strong acids having Hammett acidities H_{0} greater than one ${ }^{46}$. In our case, protonation followed by tautomerization leads to the biscationic, enolic form of the coumarin 14b that undergoes rate-limiting condensation to furnish the iminoquinone methide 14c. Addition of the si-face of the enol to the β-face of the iminium ion in $14 b$ (i.e., equatorial addition) produces an iminoquinone methide 14c with $\mathrm{C}-3 R$ and $\mathrm{C}-3^{\prime} R$ stereochemistry. The alternative, re-face addition provides the $\mathrm{C}-3$ 'S epimer but proceeds through a transition state that is more sterically hindered than that from the re-face based on MM2 calculations for the relative stability of the $3 R, 3^{\prime} R$ and the $3 R, 3^{\prime} S$ products. Final, irreversible deprotonation of $\mathbf{1 4 c}$ at $\mathrm{C}-\mathbf{3}^{\prime}$ affords the observed product $\mathbf{1 1} \mathbf{e i}$ (Scheme 3).
Heating the adduct 11ef with tetrahydro-4H-thiopyran-4-one $\mathbf{(1 0 e)}$) in dichloromethane-trifluoroacetic acid (condition B) for 3 days failed to provide any of the spirocyclic ketone-exchange product 11ee. In summary, an electron-donating partner in the coumarin-based Pictet-Spengler reaction is a vinylogous analog of the indole partner in the classic Pictet-Spengler reaction. The activating $\mathrm{C}-7$ amino substituent in the coumarin moiety 9 e counterbalances the deactivating carbonyl group and leads to a biscationic enol intermediate, such as $\mathbf{1 4 b}$ (Scheme 3) that then leads to successful condensations. Analogous reactions of 4-(2aminoethyl)coumarins 9c and 9d (Scheme 1) that possess either a C-7 hydroxy or C-7 methoxy group fail to generate a bicationic enol intermediate and hence, fail to produce adducts $\mathbf{1 1}$ just as benzofuran cases fail in the classic Pictet-Spengler reactions. Computational modeling of the binding of the fluorescent, spirocyclic adduct 11eh in the ligand-binding domain of human 17β-hydroxysteroid dehydrogenase-5 (17 β-HSD5) indicated that the compact nature of this fluorescent androgen 11eh did not interfere with binding to the active site. The adduct 11eh adopted the same pose as the naturally occurring ligand, 5α -androstane-3,17-dione (5; ASD) ${ }^{35}$ (Fig. 5).

Fig. 5. Computational modeling. Panel A: 5α-Androstane-3,17-dione (5) in the SP1 binding site of AKR1C3 (PDB: 1XFO) containing proximal NADP ${ }^{+35}$. Panel B: PictetSpengler adduct (11eh) derived from 5α-androstane-3,17-dione (5) in the SP1 binding site of AKR1C3 (PDB: 1XFO) containing proximal NADP ${ }^{+35}$.

The BCD rings of 11eh were inserted into the SP1 binding pocket in an identical fashion as seen for 5 , and the $\mathrm{C}-18$ and $\mathrm{C}-19$ angular methyl groups of 5 and 11ei projected into the oxyanion hole of 17β-HSD5 bounded by Y55, H117 and NADP ${ }^{+}$. Hydrogen bonding with S129 further stabilizes the observed binding mode with 11eh. These binding features indicated that the fluorescent ASD-based adduct 11eh possessed a binding mode that matched that of ASD itself. In a similar fashion, the ASD adduct 11eh occupied the same binding pocket seen for a previously described inhibitor, 3-carboxamido-1,3,5-(10)-estratrien-17R-spiro-2-(5,5-dimethyl-6-oxo)tetrahydropyran (EM1404) that bound to17 β-HSD5 (PDB:1ZQ5) ${ }^{36}$.

Conclusions

In summary, the Pictet-Spengler condensation of substituted 4-(2-aminoethyl)coumarins and ketones furnished fluorescent (4aS, 14bS)-1,2,3,4,4a, 8,9,12,13,14b-decahydro-5H,7H,11H-pyrido[3,2,1-ij]pyrido[4',3':4,5]pyrano[2,3-f]quinolin-5-ones. This work describes the scope of this variant of the PictetSpengler reaction with various coumarins, proposes a mechanism consistent with the substituents in the coumarin moiety, and defines the stereochemistry at C-3 in spirocyclic products derived from 3-ketosteroids by a combination of detailed NMR studies and an X-ray structure. Computational modeling supported the surrogacy of a C-3 fluorescent derivative of 5α-androstan- 17β-ol-3-one as a tool to study 17 oxidoreductases for intracrine, androgen metabolism in prostate cancer. Future studies will describe applications of these fluorescent androgens for image flow cytometry and will elucidate the effects of these fluorescent androgens on the prevention of prostate cancer growth promotion during ADT and on the stimulation of androgen receptor-regulated gene expression.

Experimental

Chemicals were purchased from Millipore Sigma (St. Louis, MO, USA) or Fisher Scientific (Hampton, NH, USA) or were synthesized according to literature procedures. Solvents were used from commercial vendors without further purification unless otherwise noted. Nuclear magnetic resonance spectra were acquired on a Varian $\left({ }^{1} \mathrm{H}\right.$ at 400 MHz and ${ }^{13} \mathrm{C}$ at 100 MHz or ${ }^{1} \mathrm{H}$ at 500 MHz and ${ }^{13} \mathrm{C}$ at 125 MHz) instruments. High resolution electrospray ionization (ESI) mass spectra were recorded on an LTQ-Orbitrap Velos mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). The FT resolution was set at 100,000 (at $400 \mathrm{~m} / \mathrm{z}$). Samples were introduced through direct infusion using a syringe pump with a flow rate of $5 \mu \mathrm{~L} / \mathrm{min}$. Purity of compounds was established using combustion analyses (Atlantic Microlabs, Inc. Norcross, GA, USA). Compounds were chromatographed on preparative layer Merck silica gel F254 (Fisher Scientific) plates unless otherwise indicated.

Methyl 3-Oxo-5-((2,2,2-trifluoroacetyl)amino)pentanoate (7). To a solution of 22.3 g (250 mmol) of β-alanine in 125 mL of methanol at $25^{\circ} \mathrm{C}$ was added $35 \mathrm{~mL}(250 \mathrm{mmol})$ of triethylamine. After $5 \mathrm{~min}, 37 \mathrm{~mL}(312 \mathrm{mmol}, 1.25 \mathrm{eq})$ of ethyl trifluoroacetate was added, and the mixture was allowed to stir for 24 h at $25^{\circ} \mathrm{C}$. The solvent was evaporated under reduced pressure, and the residue was diluted with 50 mL of $\mathrm{H}_{2} \mathrm{O}$ and acidified with concentrated hydrochloric acid. The mixture was extracted with ethyl acetate, and the combined organic layers were washed with brine and dried over anhydrous MgSO_{4}. After filtration, the solvent was evaporated at reduced pressure to give 42.1 g (91%) of 3-(2,2,2-trifluoroacetamido) propanoic acid 47 as a white solid: $\mathrm{mp} 114-116^{\circ} \mathrm{C}$ (lit ${ }^{47} \mathrm{mp} 114-116^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}$) $\delta 12.3$ ($\mathrm{s}, 1 \mathrm{H}$), 9.47 (br s, 1 H), 3.42$3.3(\mathrm{~m}, 2 \mathrm{H})$, and 2.54-2.46 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSOd_{6}) $\delta 172.5,156.4\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=35.7 \mathrm{~Hz}\right), 116\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=286.9 \mathrm{~Hz}\right), 35.6$, 32.8. A suspension of $3.08 \mathrm{~g}(32.3 \mathrm{mmol})$ of magnesium chloride and $7.2 \mathrm{~g}(46.2 \mathrm{mmol}, 1.4 \mathrm{eq})$ of monomethyl monopotassium malonate in 45 mL of anhydrous THF was stirred for 4 h at $50^{\circ} \mathrm{C}$ under a nitrogen atmosphere. In a second flask, $6 \mathrm{~g}(37 \mathrm{mmol}$, $1.2 \mathrm{eq})$ of 1.1'-carbonyldiimidazole was added portionwise to a solution of $5.7 \mathrm{~g} \quad(30.8 \mathrm{mmol})$ of $3-[(2,2,2-$ trifluoroacetyl)amino] propanoic acid in 30 mL of anhydrous THF at $0-5^{\circ} \mathrm{C}$. The mixture in the second flask was stirred for 1 h at $25^{\circ} \mathrm{C}$ and was added dropwise to the methylmagnesium malonate suspension at $25^{\circ} \mathrm{C}$. The mixture was stirred for 16 h , concentrated, and diluted with ethyl acetate. The ethyl acetate solution was washed with saturated, aqueous NaHCO_{3} solution and brine. After drying over anhydrous MgSO_{4}, the mixture was filtered and concentrated. The product was chromatographed on silica gel using 2% methanol-dichloromethane to give 6.1 g of $\mathbf{7}$ as a colorless oil (82%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13$ (br s, 1H), $3.27(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 2.87(\mathrm{t}, \mathrm{J}$ $=5.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d ${ }_{6}$) $\delta 202.1,167.4$, $157.4\left(q,{ }^{2} J_{\text {CF }}=37 \mathrm{~Hz}\right), 115.8\left(q,{ }^{1} J_{\text {CF }}=287.6 \mathrm{~Hz}\right), 52.7,48.8,41.5$, 34.5. HRMS (ESI) Calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{4} \mathrm{NF}_{3}\left[\mathrm{MH}^{+}\right]:$242.0635. Found: 242.0636.
Methyl \mathbf{N}-(3-Hydroxyphenyl)carbamate (8a). A solution of 10 g (91.6 mmol) of 3-aminophenol in 35 mL of ethyl acetate was refluxed for 30 min . To the clear solution was added 4 mL (45.8 $\mathrm{mmol}, 0.5 \mathrm{eq}$) of methyl chloroformate dropwise over a period of 30 min . The mixture was cooled to $25^{\circ} \mathrm{C}$. The white solid was collected by vacuum filtration and washed with 1:1 ethyl acetate-hexanes to give $7.67 \mathrm{~g}(50 \%)$ of $8 \mathrm{a}:{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d d_{6}) $\delta 9.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.98-7.05(\mathrm{~m}, 2 \mathrm{H})$, 6.82-6.84 (m, 1H), 6.36-6.39 (m, 1H), 3.63 (s, 3H, CH ${ }_{3}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d d_{6}) $\delta 158.1,154.3,140.6,129.8,109.9,109.4$, 105.7, 51.9.

7-Amino-4-(2-aminoethyl)-2H-chromen-2-one
Dihydrochloride (9a). To a stirred solution of 4.94 g (20.5 mmol) of methyl 3-oxo-5-[(2,2,2-trifluoroacetyl)amino]pentanoate (7) in 60 mL of methanesulfonic acid was added $3.42 \mathrm{~g} \quad(20.5 \mathrm{mmol}, 1 \mathrm{eq})$ of methyl N -(3hydroxyphenyl)carbamate (8a) portion-wise at $0^{\circ} \mathrm{C}$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 16 h and quenched by pouring into cold water. The precipitate was collected by filtration and recrystallized from methanol to give 5.59 g (76\%) of methyl (2-
oxo-4-(2-(2,2,2-trifluoroacetamido)ethyl)-2H-chromen-7-
yl)carbamate: mp $215-216^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) δ $10.19(\mathrm{~s}, 1 \mathrm{H}), 9.57(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (d, J = $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.4(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 159.9,156.4\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=35.7 \mathrm{~Hz}\right.$), $154.2,153.8,153.1,142.8,125.6,115.9$ ($\left.\mathrm{q}^{1}{ }^{1} \mathrm{~J}_{\mathrm{CF}}=287 \mathrm{~Hz}\right), 114.3$, 113.4, 112.2, 104.6, $52.1\left(\mathrm{CH}_{3}\right), 38\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right)$. HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{MH}+]$: 359.085. Found: 359.085. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 50.29; $\mathrm{H}, 3.66 ; \mathrm{N}, 7.82$. Found: C, $50.53 ; \mathrm{H}, 3.75 ; \mathrm{N}, 7.80$. A solution of $5 \mathrm{~g}(14 \mathrm{mmol})$ of methyl (2-oxo-4-(2-(2,2,2-trifluoroacetamido)ethyl)-2H-chromen-7-
yl)carbamate was refluxed in 60 mL of concentrated hydrochloric acid for 42 h . The solvent was removed in vacuo. The residue was recrystallized from methanol to give 3.63 g (94\%) of 9a as a bishydrochloride salt: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 7.61(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.2(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{t}, \mathrm{J}$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO$\left.\mathrm{d}_{6}\right) \delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.6(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.46(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 3.2-3(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 162.9,153.6,152.5,138.5,126.2,117.9,116.1,113.2,109$, 37.4, 28.6. HRMS (ESI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{MH}+]$: 205.0972. Found: 205.0977. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: $\mathrm{C}, 47.67 ; \mathrm{H}$, 5.09; $N, 10.11$. Found: C, $47.41 ; \mathrm{H}, 4.94 ; \mathrm{N}, 9.95$.

4-(2-Aminoethyl)-7-N,N-dimethylamino-2H-chromen-2-one

Hydrochloride (9b). To a stirred suspension of $1.37 \mathrm{~g}(10 \mathrm{mmol})$ of 3 -(N, N-dimethyamino) phenol and $2.41 \mathrm{~g}(10 \mathrm{mmol})$ of methyl 3-oxo-5-[(2,2,2-trifluoroacetyl)amino]-pentanoate (7) in 30 mL of toluene was added 20 mL of $1 \mathrm{M}(20 \mathrm{mmol})$ chlorotriisopropyloxytitanium(IV) in hexanes. The mixture was refluxed for 10 h under a nitrogen atmosphere, cooled and diluted with 40 mL of hexane. The precipitate was collected by filtration and washed with 40 mL of hexane. The product was purified by recrystallization from methanol to give 2.2 g (67\%) of a yellow solid: mp 195-196 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta 9.57(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.58(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, \mathrm{J}$ $=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{dt}$, $J=6.8,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{~s}, 6 \mathrm{H}), 2.93(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right) \delta 160.6,156.2\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=35.7 \mathrm{~Hz}\right), 155.5$, $153.5,152.8,125.4,115.9$ ($\mathrm{q},{ }^{1}{ }_{\mathrm{CF}}=286.5 \mathrm{~Hz}$), 109.1, 108.1, 107.8, 97.6, 39.7, 38.2, 30.1. HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$ [MH^{+}]: 329.1108. Found: 329.1108. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $54.88 ; \mathrm{H}, 4.61 ; \mathrm{N}, 8.53$. Found: C, $55.01 ; \mathrm{H}$, $4.43 ; \mathrm{N}, 8.58$. A mixture of $2.2 \mathrm{~g}(6.7 \mathrm{mmol})$ of N - $(2-(7-(\mathrm{N}, \mathrm{N}-$ dimethylamino)-2-oxo-chromen-4-yl)ethyl)-2,2,2-trifluoroacetamide in 4.5 mL of concentrated hydrochloric acid was refluxed for 4 h . After cooling, the product was concentrated in vacuo. The residue was recrystallized from methanol to give 1.14 g (63%) of $9 \mathrm{~b}:{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 7.54(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.83 (dd, $J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H})$, $3.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 6 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}\right) \delta 8.18(\mathrm{~s}, 3 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.75 (dd, $J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H})$, 3.2-2.98 (m, 10H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 163.8,154.4$, 153.1, 150.1, 125.7, 112.6, 112, 110.1, 102.1, 41.8, 37.7, 28.7. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta 160.6,155.5,152.4,152.3$, 125.7, 109.8, 109.4, 108.4, 98.6, 40.2, 37.8, 28.8. HRMS (ESI)

Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right]$: 233.1285. Found: 233.1283. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2}$: C, 58.10; H, 6.38; N, 10.42; Cl, 13.19. Found: C, 58.08; H, 6.45; N, 10.45; Cl, 13.26.
4-(2-Aminoethyl)-7-hydroxy-2H-chromen-2-one
Hydrochloride (9c). To a stirred solution of 3.3 g , (13.7 mmol) of methyl 3-oxo-5-((2,2,2-trifluoroacetyl)amino)pentanoate (7) in 25 mL of methanesulfonic acid was added 1.37 g (12.4 mmol) of resorcinol portionwise at $0-5^{\circ} \mathrm{C}$. The mixture was stirred for 3 h at this temperature and was quenched by pouring into 100 mL of ice water. The precipitate was collected by filtration and recrystallized from methanol to give $2.32 \mathrm{~g}(62 \%)$ of the $2,2,2$ -trifluoro- N -(2-(7-hydroxy-2-oxo-2H-chromen-4-yl)ethyl)acetamide: mp $219-220^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}$) $\delta 10.56(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}), 9.57(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.68(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (dd, $J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.1(\mathrm{~s}, 1 \mathrm{H}), 3.5$ ($\mathrm{dt}, J=7,5.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.97(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 161.2,160.2,156.4\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=36.1 \mathrm{~Hz}\right), 155.2,153.5$, $126.2,115.9\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=287.8 \mathrm{~Hz}\right), 113,111.2,110.5,102.5,38.1$, 30.2. HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}_{4}[\mathrm{MH}+]$: 302.0635 . Found: 302.0635. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{4}$: C, $51.84 ; \mathrm{H}$, 3.35 ; N, 4.65. Found: C, 51.98; H, 3.50; N, 4.62. A mixture of 1.51 g (5 mmol) of 2,2,2-trifluoro- N -(2-(7-hydroxy-2-oxo-chromen-4-yl)ethyl)acetamide in 20 mL of concentrated hydrochloric acid was refluxed for 2 h . After cooling, the product was concentrated in vacuo. The residue was recrystallized from methanol to give $945 \mathrm{mg}(78 \%)$ of 9 c : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 7.67$ (d, $\left.J=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.95$ (dd, $J=8.8$, $2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 10.7$ $(\mathrm{s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 3 \mathrm{H}), 7.7(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.76 ($\mathrm{d}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $6.2(\mathrm{~s}, 1 \mathrm{H}), 3.2-3(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 163.4,159.9,153.9,153.2,125.6$ (CH), $113.4(\mathrm{CH}), 111,109.7(\mathrm{CH}), 102.5(\mathrm{CH}), 37.4\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d d_{6}) $\delta 161.4,160.2,155.2 .152,126.2$ $(\mathrm{CH}), 113.1(\mathrm{CH}), 111.2(\mathrm{CH}), 110.8,102.6(\mathrm{CH}), 37.5\left(\mathrm{CH}_{2}\right), 28.8$ $\left(\mathrm{CH}_{2}\right)$. HRMS (ESI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~N}[\mathrm{MH}+]$: 206.0812. Found: 206.0813. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClNO}_{3}$: C, 54.67; H , 5.01; N, 5.80. Found: C, 54.81; H, 4.97; N, 5.80.

4-(2-Aminoethyl)-7-methoxy-chromen-2-one Hydrochloride (9d). To a stirred solution of $2.65 \mathrm{~g}(11 \mathrm{mmol})$ of methyl 3 -oxo-5-[(2,2,2-trifluoroacetyl)amino]pentanoate (7) in 20 mL of methanesulfonic acid was added $1.24 \mathrm{~g}(10 \mathrm{mmol})$ of 3 methoxyphenol portionwise at $0-5^{\circ} \mathrm{C}$. The mixture was stirred for 30 min at this temperature and diluted with ice water. The precipitate was collected by filtration and recrystallized from methanol to give 2.28 g (72\%) of 2,2,2-trifluoro- N -(2-(7-methoxy-2-oxo- 2 H -chromen-4-yl)ethyl)acetamide: mp 156$158^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta 9.58(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}$, NH), $7.78(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=$ $8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{dt}, J=7,4.4 \mathrm{~Hz}$, 2 H), 3 ($\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta 162.4$, $160,156.4\left(\mathrm{q},{ }^{2}{ }_{\mathrm{CFF}}=35.7 \mathrm{~Hz}\right), 155.1,153.3,126(\mathrm{CH}), 115.9$ (q, ${ }^{1} J_{\mathrm{CF}}=286.9 \mathrm{~Hz}$), 112.2 (quaternary C and CH), $111.4(\mathrm{CH}), 101$ (CH), $55.9\left(\mathrm{CH}_{3}\right), 38\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right)$. HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{4}\left[\mathrm{MH}^{+}\right]: 316.0791$. Found: 316.0793. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{4}$: C, $53.34 ; \mathrm{H}, 3.84 ; \mathrm{N}, 4.44$. Found: C, $53.44 ; \mathrm{H}$, 3.97 ; $\mathrm{N}, 4.29$. A mixture of 2.69 g (8.54 mmol) of 2,2,2-trifluoro-
N-(2-(7-methoxy-2-oxo-chromen-4-yl)ethyl)acetamide was refluxed in 25 mL of concentrated hydrochloric acid for 3 h . After cooling, the product was concentrated in vacuo. The residue was recrystallized from methanol to give $1.67 \mathrm{~g}(76 \%)$ of 9d. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 8.02(\mathrm{~s}, 3 \mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.2-3$ ($\mathrm{m}, 4 \mathrm{H}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 7.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (dd, J=8.8, 2.4 Hz, 1H), $7.02(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 3.91$ (s, 3H), 3.39 (t, J=7.4 Hz, 2H), 3.22 (t, J=7.4 Hz, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }^{\text {}}$) δ 162.4, 160, 155.2, 151.9, 126.1, 112.2 (two C), 112, 101.1, 56, 37.5, 28.8. HRMS (ESI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{MH}+]: 220.0968$. Found 220.0976. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClNO}_{3}: \mathrm{C}, 56.37 ; \mathrm{H}, 5.52 ; \mathrm{N}, 5.48$. Found: C, $56.32 ; \mathrm{H}$, 5.59; N, 5.54.

8-(2-Aminoethyl)-2,3,4,5-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de]anthracen-10-one Hydrochloride (9e). The procedure of Wirtz and Kazmaier ${ }^{38}$ was repeated using 8.33 g (44 mmol) of 8 -hydroxy-2,3,6,7-tetrahydro-1H,5Hbenzo[ij]quinolizine, $10.8 \mathrm{~g}(44 \mathrm{mmol})$ of methyl-5-(benzyloxycarbonylamino)-3-oxopentanoate, and 88 mL (88 mmol, 2 eq) of a 1 M solution of chlorotriisopropyloxytitanium(IV) in hexanes to afford $13 \mathrm{~g}(77 \%)$ of a 1:9 mixture of the benzyl and isopropyl [2-(10-oxo-2,3,5,6-tetrahydro$1 \mathrm{H}, 4 \mathrm{H}, 10 \mathrm{H}$-11-oxa-3a-aza-benzo[de]anthracen-8-yl)ethyl]-
carbamates as a yellow solid. To $5.05 \mathrm{~g}(13.6 \mathrm{mmol})$ of this mixture of esters was added 12 mL of concentrated HCl . The solution was heated at $95^{\circ} \mathrm{C}$ for 9 h , cooled, and concentrated in vacuo. The residue was suspended in a mixture of methanolacetone and was filtered to afford $4.3 \mathrm{~g}(98 \%)$ of 9 e as a yellow hydrochloride salt: $\mathrm{mp} 238-239^{\circ} \mathrm{C}$ (lit. ${ }^{38} \mathrm{mp} 114-118^{\circ} \mathrm{C}$ for free base). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8(\mathrm{~s}, 3 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H})$, $5.93(\mathrm{~s}, 1 \mathrm{H}), 3.3-3.16(\mathrm{~m}, 4 \mathrm{H}), 3.12-2.92(\mathrm{~m}, 4 \mathrm{H}), 2.8-2.7(\mathrm{~m}, 4 \mathrm{H})$, 1.94-1.84 (m, 4H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d d_{6}) $\delta 160.7,152.2$, 150.9, 145.6, 121.7, 118, 107.5, 106.8, 105.7, 49.2, 48.7, 37.9, 28.9, 27, 21, 20.1, 20. HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right]$: 285.1598. Found 285.1597. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$: C, $60.26 ; \mathrm{H}, 6.84 ; \mathrm{N}, 8.27$. Found: C, $60.46 ; \mathrm{H}, 6.57$; N, 8.19.
Condition A for the Pictet-Spengler Reaction of 4-(2Aminoethyl)coumarins 9 with Acetone. 8-(N,N-Dimethylamino)-4,4-dimethyl-1,2,3,4-tetrahydro-5H-chromeno[3,4-c]pyridin-5-one (11ba). To a stirred solution of 50 mg (0.19 mmol) of $9 \mathbf{b}$ in 0.5 mL of trifluoroacetic acid were added 0.5 mL of acetone. The mixture was stirred under reflux for 30 min . After cooling, the mixture was neutralized with a saturated, aqueous solution of NaHCO_{3} and stirred for 2 h at $25^{\circ} \mathrm{C}$. A precipitate was collected by filtration and purified by chromatography using 1:25 methanol-dichloromethane (R_{f} $0.29)$ to provide $45 \mathrm{mg}(88 \%)$ of $\mathbf{1 1 b a} . \mathrm{mp} 179-181^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 7.47(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=9,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.5(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 6 \mathrm{H}), 2.96(\mathrm{t}, J=5.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.67(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d ${ }_{6}$) $\delta 159.27,153.73,152.04,148.14,124.98,123.54$, 109.02, 108.6, 96.88, 51.42, 36.69, 26.68, 26.03. HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right]$: 273.1598 . Found: 273.1600 .
Condition B for the Pictet-Spengler Reaction of 4-(2Aminoethyl)coumarins 9 with Monocyclic Ketones. 2,2',3,3',5,6,8',9',12',13'-Decahydro-7'H,11'H-spiro[pyran-4,4'-
pyrido[3,2,1-ij]pyrido[4',3':4,5]pyrano[2,3-f]quinolin]-5'(1'H)one (11ed). To a stirred suspension of $100 \mathrm{mg}(0.31 \mathrm{mmol}, 1$ eq) of $9 \mathbf{e}$ in 2 mL dichloromethane was added 0.2 mL of trifluoroacetic acid followed by $125 \mathrm{mg}(1.25 \mathrm{mmol}, 4 \mathrm{eq})$ of tetrahydro- 4 H -pyran-4-one. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 2-5 days with monitoring by TLC for the disappearance of starting material. Diethyl ether ($c a .5 \mathrm{~mL}$) was added to the mixture. A precipitate was collected by filtration to provide $2,2^{\prime}, 3,3^{\prime}, 5,6,8^{\prime}, 9^{\prime}, 12^{\prime}, 13^{\prime}$ 'decahydro-7'H, 11^{\prime} 'H-spiro[pyran-4,4'-pyrido[3,2,1-ij]pyrido[4',3':4,5]pyrano[2,3-f]quinolin]-5'(1'H)one 2,2,2-trifluoroacetate that was treated with saturated, aqueous solution of NaHCO_{3} to give a free base that was purified by chromatography using 1:10 methanoldichloromethane ($\mathrm{R}_{f} 0.51$) to furnish $90 \mathrm{mg}(79 \%)$ of 11ed. mp $204-206{ }^{\circ} \mathrm{C}$ (decomp). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 7.06$ (s, 1 H), 3.87-3.71 (m, 2H), 3.57 (dd, $J=10.8,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{q}, \mathrm{J}$ $=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.89(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.68-$ $2.59(\mathrm{~m}, 4 \mathrm{H}), 1.95-1.8(\mathrm{~m}, 4 \mathrm{H}), 1.2(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 159.36,149.97,149.19,144.75,121.2$, 117.78, 107.99, 104.85, 62.46, 51.34, 49.15, 48.66, 36.09, 31.91, 27.12, 26.06, 21.11, 20.24, 19.85. HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{MH}+]: 367.2016$. Found: 367.2020.
Condition C for the Pictet-Spengler Reaction of 4-(2Aminoethyl)coumarins 9 with Steroidal Ketones. ($3 R, 5 S, 10 S, 13 S, 17 S$)-17-Hydroxy-10,13-dimethyl-1,2,2',3',4,5,6,7,8,8',9,9',10,11,12,12',13,13',14,15,16,17-docosahydro-7'H,11'H-spiro[cyclopenta[a]phenanthrene-3,4'-pyrido[3,2,1-ij]pyrido[4',3':4,5]pyrano[2,3-f]quinolin]-5'(1'H)-one Hydrochloride (11ei). To a suspension of 66 mg ($0.21 \mathrm{mmol}, 1.2 \mathrm{eq}$) of 9 e hydrochloride in 2 mL of absolute ethanol was added $50 \mathrm{mg}(0.17 \mathrm{mmol}, 1 \mathrm{eq})$ of 5α-androstan17β-ol-3-one (10i). To this suspension in a sealed tube was added 0.2 mL of concentrated HCl , and the mixture was stirred under reflux for 24 h . The suspension became a clear solution within the first hour of heating, and a precipitate of the desired product then appeared. The reaction was quenched by the addition of $c a .3 \mathrm{~mL}$ of water, and the precipitate was collected by filtration to provide $73 \mathrm{mg}(71 \%)$ of 11ei. Additional purification was achieved by recrystallization from methanol: ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta 9.41-9.13(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H})$, $4.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.45(\mathrm{t}, 2 \mathrm{H}), 3.29-3.22(\mathrm{~m}, 4 \mathrm{H}), 3.12-3(\mathrm{~m}, 2 \mathrm{H})$, 2.82-2.64 (m, 4H), 2.57 (t, J=14.2 Hz, 1H), 1.96-1.8 (m, 4H), 1.8$1.7(\mathrm{~m}, 2 \mathrm{H}), 1.7-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.3(\mathrm{~m}$, $3 \mathrm{H}), 1.28-1.06(\mathrm{~m}, 5 \mathrm{H}), 1.05-0.77(\mathrm{~m}, 7 \mathrm{H}), 0.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d ${ }_{6}$) δ 158.61, 149.23, 147.42, 145.69, 121.59, 118.47, 114.52, 106.22, 104.7, 80.04, 58.69, 52.91, 50.82, 49.16, 48.65, 42.59 (two C), 36.7, 35.26, 35.05, 34.83, 32.41, 31.64, 31.17, 29.84, 27.47, 27.09, 25.4, 23.05, 22.54, 20.88, 20.12, 19.96, 19.69, 11.42, 11.37. HRMS (ESI) Calcd for $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{3}$ [MH+]: 557.3738. Found: 557.3744. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{ClN}_{2} \mathrm{O}_{3} . \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 70.74 ; \mathrm{H}, 8.41 ; \mathrm{N}, 4.58 ; \mathrm{Cl}, 5.80$. Found: $\mathrm{C}, 70.51 ; \mathrm{H}, 8.43, \mathrm{~N}, 4.66 ; \mathrm{Cl}, 5.72$. The hydrochloride salt of the desired product was suspended in dichloromethane and washed with an aqueous, saturated solution of NaHCO_{3}. The dichloromethane layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by chromatography on silica gel using 1:10 methanol-dichloromethane ($\mathrm{R}_{f} 0.55$) to afford

11ei as a free base: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta 7.03(\mathrm{~s}, 1 \mathrm{H})$, $4.4(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.2(\mathrm{q}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H})$, $2.84(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.7(\mathrm{q}, J=6 \mathrm{~Hz}, 4 \mathrm{H}), 2.58(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.52-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{t}, \mathrm{J}=13 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.76(\mathrm{~m}, 6 \mathrm{H})$, 1.75-1.67 (m, 1H), 1.66-1.54 (m, 2H), 1.54-1.43 (m, 2H), 1.39$1.26(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.03(\mathrm{~m}, 5 \mathrm{H}), 1-0.75(\mathrm{~m}, 7 \mathrm{H}), 0.74-0.64(\mathrm{~m}$, $1 \mathrm{H}), 0.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d d_{6}) $\delta 159.5,149.38$, 149.08, 144.58, 122.52, 121.11, 117.68, 108.18, 104.87, 80.11, $53.89,53.82,50.79,49.16,48.67,42.59,39.94,36.76,36.13$, 35.69, 35.28, 35.25, 33.32, 31.48, 29.88, 28.18, 27.84, 27.13, 26.3, 23.11, 21.16, 20.28, 20.22, 19.88, 11.61, 11.39. HRMS (ESI) Calcd for $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{MH}+]$: 557.3738. Found: 557.3738. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 77.66 ; \mathrm{H}, 8.69 ; \mathrm{N}, 5.03$. Found: C, 77.41; H, 8.95, N, 4.99.
4,4-Dimethyl-1,2,3,4,8,9,12,13-octahydro-5H,7H,11H-pyrido[3,2,1-ij]pyrido[4',3':4,5]pyrano[2,3-f]quinolin-5-one 2,2,2-trifluoroacetate (11ea). The procedure described under Condition A was repeated using 60 mg (0.19 mmol) of 9-(2-aminoethyl)-2,3,6,7-tetrahydro-1H,5H,11H-pyrano[2,3-
f]pyrido[3,2,1-ij]quinolin-11-one hydrochloride (9e) in 0.5 mL of trifluoroacetic acid and 0.5 mL of acetone. The mixture was cooled and diluted with 3 mL of diethyl ether. A precipitate was collected by filtration to provide $77 \mathrm{mg}(94 \%)$ of analytically pure 11ea as trifluoroacetate salt: $\mathrm{mp} 230-231^{\circ} \mathrm{C}$ (decomp). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}$) $\delta 9.35(\mathrm{~s}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 3.43(\mathrm{t}, \mathrm{J}$ $=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.02(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.79-$ $2.64(\mathrm{~m}, 4 \mathrm{H}), 1.95-1.8(\mathrm{~m}, 4 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d ${ }_{6}$) $\delta 158.26,149.27,146.13,145.65,121.61,118.42$, 115.21, 106.08, 104.88, 55.14, 49.17, 48.65, 34.93, 27.07, 23.8, 22.28, 20.9, 20, 19.74. HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$ [MH+]: 325.1911. Found: 325.1911. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 60.27; H, 5.75; N, 6.39. Found: C, 59.99; H, 5.63, N, 6.29.

3'-Acetyl-2',3', $8^{\prime}, 9^{\prime}, 12$ ',13'-hexahydro-7'H,11'H-spiro[cyclo-pentane-1,4'-pyrido[3,2,1-ij] pyrido[4',3':4,5]pyrano[2,3f]quinolin]-5'(1'H)-one (11eb). To $123 \mathrm{mg}(0.26 \mathrm{mmol})$ of 2', $3^{\prime}, 8^{\prime}, 9^{\prime}, 12^{\prime}, 13^{\prime}$-hexahydro-7'H,11'H-spiro[cyclopentane-1,4'-pyrido[3,2,1-ij]pyrido[4',3':4,5]pyrano[2,3-f]quinolin]-5'(1'H)one 2,2,2-trifluoroacetate obtained under Condition B in 2 mL of dichloromethane at $0^{\circ} \mathrm{C}$ was added $59 \mathrm{mg}(0.58 \mathrm{mmol}, 2.2 \mathrm{eq})$ of triethylamine followed by $25 \mathrm{mg}(0.32 \mathrm{mmol}, 1.2 \mathrm{eq})$ of acetyl chloride. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h , poured into water, and extracted with dichloromethane. The organic layers were dried over anhydrous MgSO_{4} filtered, and concentrated. The product was purified by chromatography using 1:50 methanol-dichloromethane ($\mathrm{Rf}=0.37$ after two developments) to provide 71 mg of $11 \mathrm{eb}(68 \%) . \mathrm{mp} 234-236^{\circ} \mathrm{C}$ (decomp). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$ d $\delta 7.06(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.23(\mathrm{q}, J=5.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.83(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{q}, J=6.2 \mathrm{~Hz}$, $4 \mathrm{H}), 2.28-2.12(\mathrm{~m}, 4 \mathrm{H}), 2.1(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~m}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) δ 169.51, 159.14, 148.84, 147.32, 144.91, 121.89, 121.26, 117.92, 107.16, 104.81, 70, 49.15, 48.65, 42.21, 38.77, 27.63, 27.13, 25.78, 25.01, 21.05, 20.16, 19.81. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{MH}^{+}\right]: 393.2173$. Found: 393.2158.
3'-Acetyl-2',3',8',9',12',13'-hexahydro-7'H,11'H-spiro[cyclo-hexane-1,4'-pyrido[3,2,1-ij]pyrido[4',3':4,5]pyrano[2,3-
f fquinolin]-5'(1'H)-one (11ec). To $110 \mathrm{mg}(0.23 \mathrm{mmol})$ of
$2^{\prime}, 3^{\prime}, 8^{\prime}, 9^{\prime}, 12^{\prime}, 13^{\prime}-$ hexahydro-7'H,11'H-spiro[cyclohexane-1,4'-pyrido[3,2,1-ij]pyrido[4',3':4,5]pyrano[2,3-f]quinolin]-5'(1'H)one 2,2,2-trifluoroacetate in 2 mL of dichloromethane at $0^{\circ} \mathrm{C}$ was added $51 \mathrm{mg}(0.51 \mathrm{mmol}, 2.2 \mathrm{eq})$ of triethylamine followed by 22 mg ($0.28 \mathrm{mmol}, 1.2 \mathrm{eq}$) of acetyl chloride. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h , poured into water, and extracted with dichloromethane. The organic layers were dried over anhydrous MgSO_{4} and concentrated. The product was purified by chromatography using 1:20 methanol-dichloromethane ($\mathrm{R} f=$ 0.37 after two developments) to provide 59 mg of $11 \mathrm{ec}(63 \%)$. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.83(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.29-3.17 (m, 4H), $2.84(\mathrm{q}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.74(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.67-2.53 (m, 4H), 2.24 (s, 3H), 2.06-1.9 (m, 4H), 1.77-1.62 (m, $2 \mathrm{H})$, 1.51-1.38 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.15$, 160.01, 149.92, 146.37, 145.21, 123.36, 120.58, 118.01, 108.62, 106.3, 62.36, 50.01, 49.66, 39.76, 33.83, 27.97, 26.71, 25.42, 25.41, 22.56, 21.86, 20.9, 20.46. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{MH}^{+}\right]: 407.2329$. Found: 407.2314 .
2,2',3,3',5',6',8,9,12,13-Decahydro-7H,11H-spiro[pyrido[3,2,1-ij]pyrido[4',3':4,5]pyrano[2,3-f]quinoline-4,4'-thiopyran]-5(1H)-one 2,2,2-Trifluoroacetate (11ee). Condition B: mp > $220{ }^{\circ} \mathrm{C}$; yield $81 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.7$ (br. s, $2 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 3.44-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{q}, \mathrm{J}=6.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.19$ $(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{td}, J=14.3,4$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.73 ($\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 4 \mathrm{H}$), 2.57-2.48 (m, 2H), 2.15 (br. d, J $=14.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{q}, \mathrm{J}=5.4,5 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) δ 158.49, 149.32, 147.75, 145.72, 121.7, 118.47, 106.25, 104.71, 64.91, 49.17, 48.66, 34.51, 30.23, 27.09, 21.32, 20.9, 19.99, 19.72, 15.17. HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ [MH+]: 383.1788. Found: 383.1791.
8-(Dimethylamino)-1'-methyl-2,3-dihydrospiro[chromeno-[3,4-c]pyridine-4,4'-piperidin]-5(1H)-one (11bf). Condition B: $\mathrm{mp}>220^{\circ} \mathrm{C}$; yield $73 \%{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 7.48$ (d , $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3(\mathrm{~s}, 6 \mathrm{H}), 2.9(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.73-2.66(\mathrm{~m}, 4 \mathrm{H}), 2.62-1.58$ ($\mathrm{m}, 4 \mathrm{H}$), $2.3(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, DMSO-d d_{6}) $\delta 159.22,153.86,152.16,150.31,125.05,122.14$, 109.1, 108.67, 96.71, 50.97, 49.93, 44.9, 35.8, 30.32, 26. HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}$ [MH+]: 328.2020. Found: 328.2023.
1-Methyl-2', $3^{\prime}, 8^{\prime}, 9^{\prime}, 12^{\prime}, 13^{\prime}-$ hexahydro-7'H,11'H-spiro[piperidine-4,4'-pyrido[3,2,1-
ij]pyrido[4',3':4,5]pyrano[2,3-f]quinolin]-5'(1'H)-one (11ef). Condition B: $m p=144-146^{\circ} \mathrm{C}$ (decomp); yield 84%; chromatographic solvent: 1:10 methanol-dichloromethane (R_{f} $0.13) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 7.1(\mathrm{~s}, 1 \mathrm{H})$, $3.31-3.11(\mathrm{~m}, 8 \mathrm{H}), 2.9(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{dt}, J=14.8,13.8$, $4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.69(\mathrm{~m}, 4 \mathrm{H}), 2.67(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.02-1.8(\mathrm{~m}, 4 \mathrm{H}), 1.6(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 159.5, 157.92, 157.62, 151.09, 149.26, 145.05, 121.32, 119.13, 118.87, 118.03, 115.87, 107.72, 104.82, 49.96, 49.16, 48.66, 35.97, 27.12, 25.74, 21.05, 20.17, 19.83. HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{MH}+]$: 380.2333. Found: 380.2337.
($4 R, 5^{\prime} S, 8$ 'S,9'S,10'S,13'S,14'S)-8-Amino-10',13'-dimethyl-1',2,2',3,4',5',6',7',8',9',10',11',12',13',14',15',16',17'-octadecahydrospiro[chromeno[3,4-c]pyridine-4,3'-cyclopenta[a]phenanthren]-5(1H)-one (11ag). Condition C:
yield 21%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.22$ (br.d, $J=38.9$ $\mathrm{Hz}, 3 \mathrm{H}), 7.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.40(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 2 \mathrm{H}), 3.13-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.57$ $(\mathrm{m}, 2 \mathrm{H}), 1.97-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.56(\mathrm{~m}, 3 \mathrm{H})$, 1.57-1.43 (m, 6H), 1.44-1.03 (m, 8H), $0.97(\mathrm{~s}, 3 \mathrm{H}), ~ 0.95-0.74(\mathrm{~m}$, $4 \mathrm{H}), 0.70(\mathrm{~s}, 3 \mathrm{H})$. Calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{MH}+]: 461.3163$. Found: 461.3167.
(4R,5'S,8'S,9'S,10'S,13'S,14'S)-8-(Dimethylamino)-10',13'-dimethyl-1',2,2',3,4',5',6',7', $\mathbf{8}^{\prime}, 9^{\prime}, 10^{\prime}, 11^{\prime}, 12^{\prime}, 13^{\prime}, 14^{\prime}, 15^{\prime}, 16^{\prime}, 17^{\prime}-$ octadecahydrospiro[chromeno[3,4-c]pyridine-4,3'-
cyclopenta[a]phenanthren]-5(1H)-one hydrochloride (11bg). Condition C: yield 70%; purified by trituration with hot methanol. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CF}_{3} \mathrm{COOD}$) $\delta 7.96$ (d, $J=8.8 \mathrm{~Hz}$, 1 H), 7.87 (br. s, 1 H), 7.77 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.73 (dd, $J=8.9,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.86-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 6 \mathrm{H}), 3.11(\mathrm{t}, \mathrm{J}=13.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.94(\mathrm{t}, \mathrm{J}=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.9(\mathrm{~m}, 1 \mathrm{H}), 1.9-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.72$ (d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.47-1.32(\mathrm{~m}, 5 \mathrm{H}), 1.32-$ $1.23(\mathrm{~m}, 3 \mathrm{H}), 1.22-1.1(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.04-0.87(\mathrm{~m}, 2 \mathrm{H})$, 0.78 (dt, $J=11.7,11,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), $0.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CF}_{3} \mathrm{COOD}$) $\delta 162.54,154.54,149.99,146.98,129.77$, 126.7, 122.58, 120.00, 111.85, 64.46, 56.5, 49.28, 43.36, 42.64, 41.94, 40.43, 38.2, 37.98, 37.9, 35.14, 34.58, 33.80, 29.71, 28.46, 26.96, 25.12, 22.68, 21.76, 18.15, 12.68. HRMS (ESI) Calcd for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{MH}+]$: 489.3476. Found: 489.3478 .
(3R,5S,8S,9S,10S,13S,14S)-10,13-Dimethyl-1,2,2',3',4,5,6,7, 8,8',9,9',10,11,12,12',13,13',14,15,16,17-docosahydro-
7'H,11'H-spiro[cyclopenta[a]phenanthrene-3,4'-pyrido[3,2,1-ij]pyrido[4',3':4,5]pyrano[2,3-f]quinolin]-5'(1'H)-one hydrochloride (11eg). Condition C: yield 86%; purified by trituration with hot methanol. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CF}_{3} \mathrm{COOD}\right) \delta$ 7.98-7.43 (m, 1H), 3.94-3.69 (m, 6H), 3.5 (t, J=6.2 Hz, 2H), 3.25 $(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.05(\mathrm{t}, \mathrm{J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.41(\mathrm{~m}, 4 \mathrm{H})$, $2.03(\mathrm{~d}, \mathrm{~J}=14 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.77-1.57(\mathrm{~m}, 5 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 5 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.3-$ $1.2(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.12-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{dt}, J=12.3$, $11.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CF}_{3} \mathrm{COOD}$) δ 162.99, 150.42, 150.15, 137.1, 131.52, 126.21, 123.77, 121.25, 64.47, 56.55, 56.27, 43.42, 42.67, 41.98, 40.47, 38.29, 38, 37.94, $35.25,34.63,33.84,29.74,28.5,27,26.84,25.12,22.71,21.8$, 21.55, 21.36, 20.57, 18.19, 12.7. HRMS (ESI) Calcd for $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{MH}+]: 541.3789$. Found: 541.3790 .

($3 R, 5 S, 8 S, 9 S, 10 S, 13 S, 14 S$)-10,13-Dimethyl-

 1,2',3',4,5,6,7,8,8',9,9',10,11,12,12',13,13',14,15,16-icosahydro-7'H,11'H-spiro[cyclopenta[a]phenanthrene-3,4'-pyrido[3,2,1-i]]pyrido[4',3':4,5]pyrano[2,3-f]quinoline]$5^{\prime}, 17\left(1^{\prime} H, 2 H\right)$-dione (11eh). Condition C: yield $57 \% .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.04(\mathrm{~s}, 1 \mathrm{H}), 3.21(\mathrm{q}, J=5.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.85$ $(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{q}, J=6.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.58(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, 2.46-2.3 (m, 3H), 2.08-1.95 (m, 1H), 1.93-1.78 (m, 5H), 1.74 (dd, $J=12.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.7-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.4-$ $1.32(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.18(\mathrm{~m}, 4 \mathrm{H}), 1.18-1.08(\mathrm{~m}, 3 \mathrm{H}), 1.02-0.96(\mathrm{~m}$, $1 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}), 0.79-0.7(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 219.89,159.52,149.46,149.08,144.61$, 122.46, 121.13, 117.71, 108.15, 104.87, 53.87, 53.64, 50.83, 49.16, 48.66, 47.14, 36.12, 35.77, 35.32, 34.63, 33.23, 31.45, 30.65, 28.01, 27.8, 27.12, 26.28, 21.38, 21.15, 20.27, 19.86,13.49, 11.57. HRMS (ESI) Calcd for $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{MH}+]$: 555.3581. Found: 555.3584.
(4R,5'S,8'R,9'S,10'S,13'S,14'S,17'S)-8-Amino-17'-hydroxy-10',13'-dimethyl-1',2,2',3,4',5',6',7', $\mathbf{8}^{\prime}, 9^{\prime}, 10^{\prime}, 11^{\prime}, 12^{\prime}, 13^{\prime}, 14^{\prime}$, 15',16',17'-octadecahydro-spiro[chromeno[3,4-c] pyridine-4,3'-cyclopenta[a]phenanthrene]-5(1H)-one (11ai). The procedure described under Condition C was repeated using 87 $\mathrm{mg}(0.3 \mathrm{mmol}, 1 \mathrm{eq})$ of 5α-androstan- 17β-ol- 3 -one and 100 mg ($0.36 \mathrm{mmol}, 1.2 \mathrm{eq}$) of the dihydrochloride salt of 9 a in 3 mL of absolute ethanol and 0.3 mL of concentrated HCl to afford 94 $\mathrm{mg}(57 \%)$ of 11ai as an dihydrochloride salt: ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$) $\delta 9.33$ (br s, 3H), $7.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.6(\mathrm{dd}, J=$ $8.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), $6.4(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ (br. $\mathrm{s}, 2 \mathrm{H}), 4.43(\mathrm{~d}, \mathrm{~J}$ $=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.4(\mathrm{~m}, 1 \mathrm{H}), 3.13-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.57(\mathrm{~m}$, $2 \mathrm{H}), 1.9-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.57-$ $1.43(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.03(\mathrm{~m}, 8 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.95-0.74(\mathrm{~m}, 4 \mathrm{H})$, 0.64 ($\mathrm{s}, 3 \mathrm{H}$). HRMS (ESI) Calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{MH}+]: 477.3112$. Found: 477.3093. The procedure described previously for the conversion of hydrochloride salts to free bases was repeated to afford, after chromatography on silica gel using 1:10 methanoldichloromethane ($\mathrm{R}_{\mathrm{f}} 0.38$), 11ai as a free base: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.52(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.08(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.74-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{t}, \mathrm{J}=13.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.13-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 1 \mathrm{H})$, 1.57-1.39 (m, 4H), 1.38-1.34 (m, 1H), 1.34-1.3 (m, 1H), 1.3-1.26 $(\mathrm{m}, 2 \mathrm{H}), 1.26-1.22(\mathrm{~m}, 4 \mathrm{H}), 1.19-1.12(\mathrm{~m}, 2 \mathrm{H}), 1.11-1.06(\mathrm{~m}, 1 \mathrm{H})$, $1.04(\mathrm{~s}, 3 \mathrm{H}), 1.01-0.86(\mathrm{~m}, 3 \mathrm{H}), 0.82-0.73(\mathrm{~m}, 1 \mathrm{H}), 0.74(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 160.1, 154.37, 149.31, 148.26, 125.34, 125, 111.77, 100.78, 82.22, 55.1, 54.48, 51.37, 43.18, $41.3,37.02,36.62,36.31,35.88,35.76,34.07,31.83,30.72$, 29.86, 28.63, 28.34, 27.1, 23.54, 20.71, 11.98, 11.33. HRMS (ESI) Calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{MH}+]$: 477.3112 . Found: 477.3112. ($4 R, 5^{\prime} S, 8^{\prime} R, 9 ' S, 10^{\prime} S, 13 ' S, 14 '^{\prime} S, 17^{\prime} S$)-8-(Dimethylamino)-17'-hydroxy-10',13'-dimethyl-1',2,2',3,4', $5^{\prime}, 6^{\prime}, 77^{\prime}, 8^{\prime}, 9^{\prime}, 10^{\prime}, 11^{\prime}, 12^{\prime}$, $13 ', 14^{\prime}, 15^{\prime}, 16^{\prime}, 17^{\prime}$-octadeca-hydrospiro[chromeno[3,4-c]pyridine-4,3'-cyclopenta[a]phenanthren]-5(1H)-one hydrochloride (11bi). The procedure described under Condition C was repeated using $59 \mathrm{mg}(0.2 \mathrm{mmol}, 1 \mathrm{eq})$ of $5 \alpha-$ androstan- 17β-ol- 3 -one and $65 \mathrm{mg}(0.24 \mathrm{mmol}, 1.2 \mathrm{eq})$ of the hydrochloride salt of $\mathbf{9 b}$ in 2 mL of absolute ethanol and 0.2 mL of concentrated HCl to provide $94 \mathrm{mg}(85 \%)$ of 11bi. This product was triturated with hot methanol to achieve additional purification: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}$) $\delta 9.64-9.27(\mathrm{~m}, 2 \mathrm{H})$, $7.55(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=9.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.4(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.04$ $(\mathrm{m}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 6 \mathrm{H}), 2.71-2.58(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.78-$ $1.71(\mathrm{~m}, 1 \mathrm{H}), 1.7-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.4(\mathrm{~m}, 5 \mathrm{H}), 1.4-1.26(\mathrm{~m}$, 3 H), 1.26-1.09 (m, 5H), $0.96(\mathrm{~s}, 3 \mathrm{H}), 0.93-0.76(\mathrm{~m}, 4 \mathrm{H}), 0.64(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) δ 159.09, 154.34, 153.2, 125.94, 109.94, 97.07, 80.48, 53.32, 51.2, 43.03, 37.13, 35.75, $35.53,31.62,30.28,28.01,23.49,20.58,11.95,11.82$. HRMS (ESI) Calcd for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{MH}+]: 505.3425$. Found: 505.3405. ($3 R, 5 S, 8 R, 9 S, 10 S, 13 S, 14 S, 17 S$)-17-Hydroxy-10,13,17-trimethyl-1,2,2',3',4,5,6,7,8,8',9,9',10,11,12,12',13,13',14, 15,16,17-docosahydro-7'H,11'H-spiro[cyclopenta-
[a]phenanthrene-3,4'-pyrido[3,2,1-ij]pyrido[4',3':4,5]-pyrano[2,3-f]quinolin]-5'(1'H)-one (11ej) and ($3 R, 5 S, 8 R$, 9S,10S)-10,17,17-trimethyl-1,2,2',3',4,5,6,7,8,8',9,9',10, 11,12,12',13',15,16,17-icosahydro-7'H,11'H-spiro[cyclopenta-[a]phenanthrene-3,4'-pyrido-[3,2,1-ij]pyrido[4',3':4,5]pyrano-[2,3-f]quinolin]-5'(1'H)-one (14). A suspension of $200 \mathrm{mg}(0.62$ $\mathrm{mmol}, 1.2 \mathrm{eq}$) of 9 e and $160 \mathrm{mg}(0.52 \mathrm{mmol}, 1 \mathrm{eq})$ of $\mathbf{1 0} \mathbf{j}$ in 2 mL of absolute ethanol was stirred under reflux for 48 h to afford 240 mg of a crude as a mixture of 11ej and 14 that was suspended in water and dichloromethane and washed with a saturated NaHCO_{3} solution. The organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and chromatographed using 1:10 methanol-dichloromethane (R_{f} $0.25)$ to provide $57 \mathrm{mg}(19 \%)$ of 11ej: ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.\mathrm{d}_{6}\right) \delta 7.1-6.98(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 1 \mathrm{H}), 3.2(\mathrm{q}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.85$ $(\mathrm{t}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 2.7(\mathrm{q}, J=6 \mathrm{~Hz}, 4 \mathrm{H}), 2.58(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.48-$ $2.43(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{t}, \mathrm{J}=13 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.78(\mathrm{~m}, 5 \mathrm{H}), 1.72(\mathrm{t}, \mathrm{J}$ $=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.28(\mathrm{~m}, 8 \mathrm{H}), 1.29-1.09$ $(\mathrm{m}, 7 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.02-0.94(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.9-0.8(\mathrm{~m}$, $1 \mathrm{H}), 0.74(\mathrm{~s}, 3 \mathrm{H}), 0.71-0.62(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO$\left.\mathrm{d}_{6}\right) \delta 159.49,149.36,149.08,144.6,121.12,117.7,108.15$, 104.87, 79.72, 53.94, 53.71, 50.45, 49.16, 48.67, 45.21, 38.38, $36.13,36.07,35.68,35.22,33.32,31.65,31.55,28.22,27.8$, 27.13, 26.27, 26.19, 23.1, 21.15, 20.27, 19.87, 14.25, 11.61. HRMS (ESI) Calcd for $\mathrm{C}_{37} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{MH}+]$: 571.3894. Found: 571.3902. In addition to 11 ej , chromatography on silica gel using 1:10 methanol-dichloromethane ($\mathrm{R}_{\mathrm{f}} 0.48$) afforded 58 mg (20\%) of 14: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.91(\mathrm{~s}, 1 \mathrm{H}), 3.27-3.14$ $(\mathrm{m}, 4 \mathrm{H}), 3.09-3(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, \mathrm{J}=12.5$ $\mathrm{Hz}, 2 \mathrm{H})$, 2.69-2.65 (m, 2H), $2.6(\mathrm{t}, \mathrm{J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.15(\mathrm{~m}$, $1 \mathrm{H}), 2.12-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.88(\mathrm{~m}, 5 \mathrm{H}), 1.88-1.72(\mathrm{~m}, 2 \mathrm{H})$, 1.67-1.62 (m, 1H), 1.61-1.57 (m, 3H), 1.56-1.48 (m, 2H), 1.4-1.27 $(\mathrm{m}, 3 \mathrm{H}), 1.27-1.16(\mathrm{~m}, 2 \mathrm{H}), 1.16-1.08(\mathrm{~m}, 1 \mathrm{H}), 1.08-1(\mathrm{~m}, 2 \mathrm{H}), 1$ $(\mathrm{s}, 3 \mathrm{H}), 0.98-0.96(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 160.71,149.87,148.5,144.99,141.18$, 136.52, 123.18, 120.93, 118, 109.11, 106.38, 54.99, 51.95, 50.05, 49.68, 45.49, 41.33, 39.73, 36.86, 36.79, 36.25, 36.07, 33.96, 31.6, 29.89, 29.2, 28.26, 27.96, 27.19, 26.94, 26.64, 22.63, 22.55, 21.93, 21.01, 20.43, 11.4. HRMS (ESI) Calcd for $\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{MH}+]: 553.3789$. Found: 553.3789. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 80.39; $\mathrm{H}, 8.75 ; \mathrm{N}, 5.07$. Found: C, 80.17; H , 8.94, N, 5.13.
($3 R, 5 S, 8 R, 9 S, 10 S, 13 R, 14 S, 17 R$)-10,13-Dimethyl-17-((R)-6-methylheptan-2-yl)-1,2,2',3',4,5,6,7,8,8',9,9',10,11,12,12', 13,13 ',14,15,16,17-docosahydro-7'H,11'H-spiro[cyclopenta-[a]phenanthrene-3,4'-pyrido[3,2,1-ij] pyrido[$\left.4^{\prime}, 3^{\prime}: 4,5\right]$ pyrano-[2,3-f]quinolin]-5'(1'H)-one hydrochloride (11ek). Condition $\mathrm{C}: \mathrm{mp}>230{ }^{\circ} \mathrm{C}$; yield 78%. Purified by trituration with hot methanol. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CF}_{3} \mathrm{COOD}$) $\delta 7.57(\mathrm{~s}, 1 \mathrm{H}), 3.84-$ $3.76(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.61(\mathrm{~m}, 4 \mathrm{H}), 3.42(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, \mathrm{J}$ $=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.13-3.07(\mathrm{~m}, 1 \mathrm{H}), 3-2.9(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.34(\mathrm{~m}, 4 \mathrm{H})$, 3.48-3.38 (m, 1H), 2.11-2.01 (m, 3H), 1.98-1.73 (m, 2H), 1.64$1.54(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 7 \mathrm{H}), 1.42-1.3(\mathrm{~m}, 3 \mathrm{H}), 1.19-1.11(\mathrm{~m}$, $4 \mathrm{H}), 1.1(\mathrm{~s}, 3 \mathrm{H}), 1.07-0.91(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.8$ (dd, J=6.7, $1.5 \mathrm{~Hz}, 6 \mathrm{H}$), 0.78-0.72 (m, 2H), $0.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CF}_{3} \mathrm{COOD}$) $\delta 163.02,150.43,150.18,137.13,131.54$, $126.26,126.23,123.8,121.28,64.51,58.58,58.53,56.61,56.29$,
44.6, 43.44, 41.89, 41.46, 38.32, 38.09, 37.99, 37.85, 37.66, 35.27, 34.61, 33.52, 29.9, 29.76, 28.52, 26.87, 25.78, 25.66, 25.15, 23.51, 23.27, 22.72, 21.59, 21.39, 20.61, 19.6, 12.9, 12.71. HRMS (ESI) Calcd for $\mathrm{C}_{44} \mathrm{H}_{65} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{MH}+]$: 653.5041. Found: 653.5043.
4-(p-Tolyl)-8,9,12,13-tetrahydro-5H,7H,11H-pyrido[3,2,1-ij]pyrido[4',3':4,5]pyrano[2,3-f]quinolin-5-one (13). The procedure described under Condition B was repeated using 200 mg (0.62 mmol) of $9 \mathbf{e}$ and $0.29 \mathrm{~mL}(2.49 \mathrm{mmol})$ of 4 toluylaldehyde to afford crude 4 -(p-tolyl)-1,2,3,4,8,9,12,13-octahydro- $5 H, 7 H, 11 H$-pyrido[3,2,1-
ij]pyrido[4',3':4,5]pyrano[2,3-f]quinolin-5-one
2,2,2trifluoroacetate in 58% yield. To $100 \mathrm{mg}(0.2 \mathrm{mmmol})$ of this trifluoracetate salt in 6 mL of dimethyl sulfoxide was added 100 $\mu \mathrm{L}$ ($0.7 \mathrm{mmol}, 3.5 \mathrm{eq}$) of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and $94 \mathrm{mg}(0.42 \mathrm{mmol}, 2.1 \mathrm{eq})$ of cupric bromide. The solution was stirred at $25^{\circ} \mathrm{C}$ for 16 h . The mixture was poured into 20 mL of aqueous ammonia solution ($5 \% \mathrm{w} / \mathrm{w}$) and extracted with ethyl acetate. The organic layers were washed with brine dried over anhydrous MgSO_{4}, filtered and concentrated. The product was purified by chromatography using 1:50 methanol-dichloromethane ($\mathrm{R}_{f} 0.26$) to provide 15 $\mathrm{mg}(20 \%)$ of 13 as a yellow powder: mp $216-218^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} N M R$ ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.67(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.31-3.22(\mathrm{~m}, 4 \mathrm{H}), 2.79(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.37$ (s, 3H), 1.9 (d, J = $6.8 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 162.9, 158.91, 151.24, 149.32, 146.12, 144.32, 138.54, 137.33, 128.87, 127.89, 121.57, 118.18, 113.2, 110.85, 105.61, 102.94, 49.22, 48.67, 27.03, 20.96, 20.93, 20.07, 19.99. HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{MH}+]$: 383.1754 . Found: 383.1756.

X-Ray Crystallography

X-ray diffraction data were collected at 90.0(2) K on a Bruker D8 Venture κ-axis diffractometer using $\operatorname{MoK}(\alpha) X$-rays and using well-established, low-temperature crystal-handling techniques ${ }^{48}$. Raw data were integrated, scaled, merged and corrected for Lorentz-polarization effects using the APEX3 package (Bruker-AXS Inc., Madison, WI, US. Corrections for absorption were applied using SADABS ${ }^{49}$. The structure was solved by direct methods (SHELXT ${ }^{50}$) and refinement was carried out against F2 by weighted full-matrix least-squares (SHELXL ${ }^{50}$). Hydrogen atoms were found in difference maps placed at calculated positions and refined using riding models. Non-hydrogen atoms were refined with anisotropic displacement parameters. Absolute configuration was known due to the unchanging stereochemistry of the steroid ring system. Atomic scattering factors were taken from the International Tables for Crystallography. Experimental conditions, atomic coordinates, bond lengths and angles, as well as diffraction data and the crystallographic model were archived in the CIF, available free of charge from the Cambridge Crystallographic Data Centre (CCDC), structure code CCDC 1888376.

NMR Spectroscopy

NMR experiments were carried out at $25^{\circ} \mathrm{C}$ using DMSO- d_{6} on an Agilent 400 MHz spectrometer using a 5 mm probe equipped with a z-gradient optimized for 1 H detection. Chemical shifts were referenced relative to the residual protonated solvent signal set at $2.54 \mathrm{ppm}^{51}$. A normal one-dimensional 1 H and 13C (proton decoupled) and DEPT-135 (Distorsionless Enhancement of Polarization Transfer) spectra ${ }^{52}$ were acquired and twodimensional homonuclear $\left({ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\right)$ correlation spectroscopy (COSY and ROESY) ${ }^{41-42}$ 2D-heteronuclear correlations $\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right)$ spectra (HSQC and HMBC) were acquired using standard pulse sequences from the Agilent library. Spectral widths of 4340 Hz for both dimensions with 1024 complex data points in $t 2$ and 256 t1 increments were used for ROESY and COSY experiments. The relaxation delay between successive pulse cycles was set to 1 s and ROESY mixing time of 400 millisec was used. Forty transients for each increment were collected for ROESY, and 16 transients for each increment were collected for COSY experiments. Phase sensitive two-dimensional spectra were obtained using the time-proportional phase incrementation method (TPPI). Spectra were zero-filled to 2048×1024 real data points along $f 2$ and $f 1$, respectively. Sine-bell $\pi / 3$ window functions were used in both dimensions. HSQC adiabatic NMR spectrum was acquired with spectral widths of $4595 \mathrm{~Hz}\left({ }^{1} \mathrm{H}\right)$ and $20100 \mathrm{~Hz}\left({ }^{13} \mathrm{C}\right)$ with 1 s of recycled delay to show direct ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ connectivity and $\mathrm{C}-\mathrm{H}$ correlation.

Computational Modeling

The X-ray structure ${ }^{35}$ of the androgen-ligand binding domain in human 17β-hydroxysteroid dehydrogenase type 5 (PDB: 1XFO) with 5α-androstane-3,17-dione was selected as the template to model the binding of the fluorescent adduct 11eh. The initial enzyme structure was downloaded from the RCSB Protein Data Bank and was subsequently prepared for docking via Autodock Tools. ${ }^{53}$ The adduct 11eh was docked using Autodock Vina ${ }^{54}$ into the position occupied by 5α-androstane-3,17-dione in 17β HSD5. The binding poses of 11eh obtained from Vina that contained high overlap with that of 11eh. The binding pose was further refined by performing a series of energy minimization processes. Briefly, the AMBER14SB force field ${ }^{55}$ and the second generation of the general AMBER force field (gaff2) were used for the proteins and ligands, respectively. Partial charges for 11eh were generated via the Antechamber ${ }^{56}$ program in AMBER 18 using the AM1-BCC model. ${ }^{57}$ Two courses of minimization were conducted using a hybrid protocol of twenty five-hundred steps of steepest descent minimization followed by a conjugate gradient minimization until a maximum twenty five-hundred iteration steps was reached or the convergence criterion (the root-mean-square of the energy gradient is less than $1 \times 10-4$ $\mathrm{kcal} / \mathrm{mol} \cdot \AA ̊)$ was satisfied. During the first step of minimization, a force constant of $100 \mathrm{kcal} / \mathrm{mol} \cdot \AA ̊ 2$ was applied on the protein atoms. The second minimization step consisted of one thousand steps of steepest descent minimization, followed by fifteen hundred steps of conjugate gradient minimization, and this course of minimization had no restraints for either the ligand or the protein atoms.

Author contributions

James L. Mohler, Michael V. Fiandalo, Chunming Liu, Vitaliy M. Sviripa and David S. Watt conceived the overall experimental question, assisted with and contributed to the experimental design, and supervised data acquisition and analysis and manuscript preparation. Vitaliy M. Sviripa, Kristin L. Begley, Przemyslaw Wyrebek, Liliia Kril and David S. Watt planned and executed the synthetic chemistry. Vivekanandan Subramanian performed the 2D NMR studies. Sean R. Parkin performed the X-ray crystallography study. Xi Chen, Alexander H. Williams and Chang-Guo Zhan performed the pK_{a} calculations and the computational modeling studies. All authors reviewed the manuscript.

Conflicts of interest

CL and DSW have partial ownership in a for-profit venture, Epionc, Inc., that seeks to develop small-molecule inhibitors for cancer treatment. In accord with University of Kentucky policies, CL and DSW have disclosed this work to the University of Kentucky's Intellectual Property Committee and to a Conflict of Interest Oversight Committee.

Acknowledgements

VMS was aided in part by an institutional grant from the American Cancer Society (IRG-16-182-28). DSW was supported by NIH R01 CA172379, the Office of the Dean of the College of Medicine, the Markey Cancer Center, the Center for Pharmaceutical Research and Innovation (CPRI) in the College of Pharmacy, Department of Defense Idea Development Award PC150326P2, and NIH P20 RRO20171 from the National Institute of General Medical Sciences (to L. Hersh). CL was supported by NCI (R01 CA172379). JLM was supported by NCI (P01 CA77739, P20 RRO20171, R21 CA2051, and P30 GM110787); the Department of Defense (DoD Prostate Cancer Research Program Award W81XWH-16-1-0635 and Post-doctoral Training Award W81XWH-15-1-0409); the National Science Foundation for the D8 Venture diffractometer (MRI award CHE1625732); the Shared Instrument Award (NIH 1S10D018048); NCI research Specialist Award (R50CA211108) and the NCI Cancer Center Support Grant to Roswell Park Comprehensive Cancer Center (P30 CA016056) for the Flow and Image, Pathology Network, Biostatistics and Bioinformatics Shared Resources. This manuscript's contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH, NSF, NIGMS or the DoD.

Notes and references

1 Titus, M. A.; Schell, M. J.; Lih, F. B.; Tomer, K. B.; Mohler, J. L., Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 2005, 11 (13), 4653-7.
2 Swerdloff, R. S.; Dudley, R. E.; Page, S. T.; Wang, C.; Salameh, W. A., Dihydrotestosterone: Biochemistry, Physiology, and

Clinical Implications of Elevated Blood Levels. Endocr Rev 2017, 38 (3), 220-254.
3 Huggins, C.; Scott, W. W., Bilateral Adrenalectomy in Prostatic Cancer: Clinical Features and Urinary Excretion of 17Ketosteroids and Estrogen. Annals of surgery 1945, 122 (6), 1031-41.
4 Isaacs, J. T., Antagonistic effect of androgen on prostatic cell death. The Prostate 1984, 5 (5), 545-57.
5 Mohler, J. L.; Gregory, C. W.; Ford, O. H., 3rd; Kim, D.; Weaver, C. M.; Petrusz, P.; Wilson, E. M.; French, F. S., The androgen axis in recurrent prostate cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 2004, 10 (2), 440-8.
6 Frasinyuk, M. S.; Zhang, W.; Wyrebek, P.; Yu, T.; Xu, X.; Sviripa, V. M.; Bondarenko, S. P.; Xie, Y.; Ngo, H. X.; Morris, A. J.; Mohler, J. L.; Fiandalo, M. V.; Watt, D. S.; Liu, C., Developing antineoplastic agents that target peroxisomal enzymes: cytisine-linked isoflavonoids as inhibitors of hydroxysteroid 17-beta-dehydrogenase-4 (HSD17B4). Org Biomol Chem 2017, 15 (36), 7623-7629.
7 Selles Vidal, L.; Kelly, C. L.; Mordaka, P. M.; Heap, J. T., Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and application. Biochim Biophys Acta Proteins Proteom 2018, 1866 (2), 327-347.
8 Stuchbery, R.; McCoy, P. J.; Hovens, C. M.; Corcoran, N. M., Androgen synthesis in prostate cancer: do all roads lead to Rome? Nat Rev Urol 2017, 14 (1), 49-58.
9 Pippione, A. C.; Boschi, D.; Pors, K.; Oliaro-Bosso, S.; Lolli, M. L., Androgen-AR axis in primary and metastatic prostate cancer: chasing steroidogenic enzymes for therapeutic intervention. J. Cancer Metastasis Treat. 2017, 3, 328-361.
10 Fiandalo, M. V.; Stocking, J. J.; Pop, E. A.; Wilton, J. H.; Mantione, K. M.; Li, Y.; Attwood, K. M.; Azabdaftari, G.; Wu, Y.; Watt, D. S.; Wilson, E. M.; Mohler, J. L., Inhibition of dihydrotestosterone synthesis in prostate cancer by combined frontdoor and backdoor pathway blockade. Oncotarget 2018, 9 (13), 11227-11242.
11 Mohler, J. L.; Titus, M. A.; Wilson, E. M., Potential prostate cancer drug target: bioactivation of androstanediol by conversion to dihydrotestosterone. Clin Cancer Res 2011, 17 (18), 5844-9.

12 Mohler, J. L.; Titus, M. A.; Bai, S.; Kennerley, B. J.; Lih, F. B.; Tomer, K. B.; Wilson, E. M., Activation of the androgen receptor by intratumoral bioconversion of androstanediol to dihydrotestosterone in prostate cancer. Cancer Res 2011, 71 (4), 1486-96.

13 Mohler, J.; Titus, M., Tissue levels of androgens in castrationrecurrent prostate cancer. In Androgen Action in Prostate Cancer, Mohler, J. L.; Tindall, D., Eds. Springer Science: New York, NY, 2009; pp 175-185.
14 Chang, K. H.; Li, R.; Papari-Zareei, M.; Watumull, L.; Zhao, Y. D.; Auchus, R. J.; Sharifi, N., Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proceedings of the National Academy of Sciences of the United States of America 2011, 108 (33), 13728-33.
15 Auchus, R. J., The backdoor pathway to dihydrotestosterone. Trends in endocrinology and metabolism: TEM 2004, 15 (9), 432-8.
16 Bauman, D. R.; Steckelbroeck, S.; Williams, M. V.; Peehl, D. M.; Penning, T. M., Identification of the major oxidative 3alphahydroxysteroid dehydrogenase in human prostate that converts 5alpha-androstane-3alpha,17beta-diol to 5alphadihydrotestosterone: a potential therapeutic target for androgen-dependent disease. Mol Endocrinol 2006, 20 (2), 444-58.
17 Kavanagh, K. L.; Jornvall, H.; Persson, B.; Oppermann, U., Medium- and short-chain dehydrogenase/reductase gene and protein families : the SDR superfamily: functional and
structural diversity within a family of metabolic and regulatory enzymes. Cellular and molecular life sciences : CMLS 2008, 65 (24), 3895-906.
18 Fankhauser, M.; Tan, Y.; Macintyre, G.; Haviv, I.; Hong, M. K.; Nguyen, A.; Pedersen, J. S.; Costello, A. J.; Hovens, C. M.; Corcoran, N. M., Canonical androstenedione reduction is the predominant source of signaling androgens in hormonerefractory prostate cancer. Clin Cancer Res 2014, 20 (21), 5547-57.
19 Penning, T., Androgen biosynthesis in castration resistant prostate cancer. Endocr Relat Cancer 2014.
20 Fiandalo, M. V.; Stocking, J. J.; Pop, E. A.; Wilton, J. H.; Mantione, K. M.; Li, Y.; Attwood, K. M.; Azabdaftari, G.; Wu, Y.; Watt, D. S.; Wilson, E. M.; Mohler, J. M., Inhibition of dihydrotestosterone synthesis in prostate cancer by combined frontdoor and backdoor pathway blockade. Oncotarget 2017, 9 (13), 11227-11242.
21 Biswas, M. G.; Russell, D. W., Expression cloning and characterization of oxidative 17beta- and 3alphahydroxysteroid dehydrogenases from rat and human prostate. The Journal of biological chemistry 1997, 272 (25), 15959-66.
22 Day, J. M.; Tutill, H. J.; Purohit, A.; Reed, M. J., Design and validation of specific inhibitors of 17beta-hydroxysteroid dehydrogenases for therapeutic application in breast and prostate cancer, and in endometriosis. Endocrine-related cancer 2008, 15 (3), 665-92.
23 Cai, C.; Chen, S.; Ng, P.; Bubley, G. J.; Nelson, P. S.; Mostaghel, E. A.; Marck, B.; Matsumoto, A. M.; Simon, N. I.; Wang, H.; Chen, S.; Balk, S. P., Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res 2011, 71 (20), 6503-13.
24 Penning, T. M., Mechanisms of drug resistance that target the androgen axis in castration resistant prostate cancer (CRPC). J Steroid Biochem Mol Biol 2015, 153, 105-13.
25 Pfeiffer, M. J.; Smit, F. P.; Sedelaar, J. P.; Schalken, J. A., Steroidogenic enzymes and stem cell markers are upregulated during androgen deprivation in prostate cancer. Mol Med 2011, 17 (7-8), 657-64.
26 Miller, W. L.; Auchus, R. J., The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011, 32 (1), 81-151.
27 Schuster, D.; Kowalik, D.; Kirchmair, J.; Laggner, C.; Markt, P.; Aebischer-Gumy, C.; Strohle, F.; Moller, G.; Wolber, G.; Wilckens, T.; Langer, T.; Odermatt, A.; Adamski, J., Identification of chemically diverse, novel inhibitors of 17beta-hydroxysteroid dehydrogenase type 3 and 5 by pharmacophore-based virtual screening. J Steroid Biochem Mol Biol 2011, 125 (1-2), 148-61.
28 Exley, D.; Ekeke, G. I., Fluoroimmunoassay of 5alphadihydrotestosterone. J Steroid Biochem 1981, 14 (12), 1297302.

29 Yamaguchi, K.; Sumiya, H.; Fuse, H.; Matsuzaki, O.; Ito, H.; Ki, J. S., Androphilic protein studied histochemically in stage D2 prostatic cancer. Cancer 1988, 61 (7), 1425-9.
30 Lammel, A.; Krieg, M.; Klotzl, G., Are fluorescein-conjugated androgens appropriate for a histochemical detection of prostatic androgen receptors? Prostate 1983, 4 (3), 271-82.
31 Stockigt, J.; Antonchick, A. P.; Wu, F.; Waldmann, H., The Pictet-Spengler reaction in nature and in organic chemistry. Angew Chem Int Ed Engl 2011, 50 (37), 8538-64.
32 Cox, E. D.; Cook, J. M., The Pictet-Spengler condensation: a new direction for an old reaction. Chem. Rev. 1995, 95, 17971842.

33 Larghi, E. L.; Kaufman, T. S., The oxa-Pictet-Spengler cyclization: synthesis of isochromans and related pyran-type heterocycles. Synthesis 2006, 2, 187-220.

34 Larghi, E. L.; Kaufmann, T. S., Synthesis of oxacycles employing the oxa-Pictet-Spengler reaction: recent developments and new prospects. Eur. J. Org. Chem. 2011, 2011(27), 5195-5231.
35 Qiu, W.; Zhou, M.; Labrie, F.; Lin, S. X., Crystal structures of the multispecific 17beta-hydroxysteroid dehydrogenase type 5: critical androgen regulation in human peripheral tissues. Mol Endocrinol 2004, 18 (7), 1798-807.
36 Qiu, W.; Zhou, M.; Mazumdar, M.; Azzi, A.; Ghanmi, D.; LuuThe, V.; Labrie, F.; Lin, S. X., Structure-based inhibitor design for an enzyme that binds different steroids: a potent inhibitor for human type 5 17beta-hydroxysteroid dehydrogenase. J Biol Chem 2007, 282 (11), 8368-79.
37 Zambare, A. S.; Kalam Khan, F. A.; Zambare, S. P.; Shinde, S. D.; Sangshetti, J. N., Recent advances in the synthesis of coumarin derivatives via Pechmann condensation. Curr. Org. Chem. 2016, 20, 798-828.
38 Wirtz, L.; Kazmaier, U., A mild titanium-catalyzed synthesis of functionalized amino coumarins as fluorescence labels. Eur. J. Org. Chem. 2011, 35, 7062-7065.
39 Jadhav, V. B.; Nayak, S. K.; Row, T. N.; Kulkarni, M. V., Synthesis, structure and DNA cleavage studies of coumarin analogues of tetrahydroisoquinoline and protoberberine alkaloids. Eur J Med Chem 2010, 45 (9), 3575-80.
40 Zheng, B.; Trieu, T. H.; Li, F. L.; Zhu, X. L.; He, Y. G.; Fan, Q. Q.; Shi, X. X., Copper-Catalyzed Benign and Efficient Oxidation of Tetrahydroisoquinolines and Dihydroisoquinolines Using Air as a Clean Oxidant. ACS Omega 2018, 3 (7), 8243-8252.
41 Bothner-By, A. A.; Stephens, R. L.; Lee, J.; Warren, C. D.; Jenanloz, R. W., Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame. J. Am. Chem. Soc. 1984, 106, 811-813.
42 Bax, A.; Davis, D. G., Practical Aspects of Two-Dimensional Transverse NOE Spectroscopy J. Mag. Res. 1985, 61, 207-213.
43 Volkova, Y. A.; Antonov, Y. S.; Komkov, A. V.; Scherbakov, A. M.; Shashkov, A. S.; Menchikov, L. G.; Chernoburova, E. I.; Zavarzin, I. V., Access to steroidal pyridazines via modified thiohydrazides. RSC Adv. 2016, 6, 42863-42868.
44 Haynes, W. M., CRC Handbook of Chemistry and Physics 94th Edition. CRC Press LLC: Boca Raton, 2013-2014.
45 Brown, H. C.; McDaniel, D. H.; Hafliger, O., Determination of organic structures by physical methods, Chapter 14 "Dissociation constants". Academic Press: New York, NY, 1955; Vol. 1.
46 Schubert, W. M.; Jensen, J. L., Hydrationof p - and m aminostyrenes. Medium dependence of $\mathrm{f}_{\mathrm{SH}+} / \mathrm{f}_{\mathrm{tr}+}$. J. Am. Chem. Soc. 1972, 94 (2), 566-572.
47 Kojima, N.; Takebayashi, T.; Mikami, A.; Ohtsuka, E.; Komatsu, Y., Construction of highly reactive probes for abasic site detection by introduction of an aromatic and a guanidine residue into an aminooxy group. J Am Chem Soc 2009, 131 (37), 13208-9.

48 Parkin, S. A. H.; Hope, H., Macromolecular cryocrystallogarphy: Cooling, mounting, storage and transportation of crystals. J. Appl. Cryst. 1998, 31, 945-953.
49 Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Dietmar Stalke, D., Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst. 2015, 48, 3-10.
50 Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3-8.
51 Wilson, A. J. C., International Tables for Crystallography. Mathematical, Physical and Chemical Tables. Third ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; Vol. C.
52 Doddrell, D. M.; Pegg, D. T.; Bendall, M. R., Distortionless enhancement of NMR signals by polarization transfer J. Mag. Res. 1982, 48, 323-327.

53 Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009, 30 (16), 2785-2791.
54 Trott, O.; Olson, A. J., AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010, 31 (2), 455-461.

55 Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C., ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J Chem Theory Comput 2015, 11 (8), 3696-713.
56 Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A., Antechamber: an accessory software package for molecular mechanical calculations. J. Am. Chem. Soc 2001, 222, U403.
57 Jakalian, A.; Jack, D. B.; Bayly, C. I., Fast, efficient generation of high - quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 2002, 23 (16), 1623-1641.

For Table of Contents

Amino-substituted coumarins undergo Pictet-Spengler condensations with 3-ketosteroids to afford spirocyclic androgens for the study 17-oxidoreductases for intracrine, androgen metabolism.

C-7 amino-substituted 5α-dihydrotestosterone
4-(2-aminoethyl)coumarin

[^0]: a. Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA.
 b. Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA.
 c. Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 405360093 USA.
 ${ }^{\text {d. Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer }}$ Center, Buffalo, NY 14263 USA.
 e. Department of Molecular and Cellular Biochemistry, College of Medicine,

 University of Kentucky, Lexington, KY 40536-0509 USA.
 f. Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40506 USA.
 g. NMR Center, College of Pharmacy, University of Kentucky, Lexington, KY 405360596 USA.
 h. College of Chemistry and Material Science, South Central University for Nationalities, Wuhan 430074, People's Republic of China.
 i. Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA.
 \dagger Electronic Supplementary Information (ESI) available: Copies of NMR data for all synthesized compounds are available online. See DOI: 10.1039/x0xx00000x

