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Identification of Novel Activators of the 
Metal Responsive Transcription Factor 
(MTF-1) Using a Gene Expression 
Biomarker in a Microarray Compendium
Abigail C. Jackson1,2, Jie Liu1, Beena Vallanat1, Carlton 
Jones1, Mark D. Nelms1,3, Grace Patlewicz1 and J. 
Christopher Corton1*

Environmental exposure to metals is known to cause a number of human 
toxicities including cancer. Metal-responsive transcription factor 1 (MTF-1) is 
an important component of metal regulation systems in mammalian cells. 
Here, we describe a novel method to identify chemicals that activate MTF-1 
based on microarray profiling data. MTF-1 biomarker genes were identified 
that exhibited consistent, robust expression across ten microarray 
comparisons examining the effects of metals (zinc, nickel, lead, arsenic, 
mercury, and silver) on gene expression in human cells. A subset of the 
resulting 81 biomarker genes was shown to be altered by knockdown of the 
MTF1 gene including metallothionein family members and a zinc 
transporter. The ability to correctly identify treatment conditions that 
activate MTF-1 was determined by comparing the biomarker to microarray 
comparisons from cells exposed to reference metal activators of MTF-1 
using the rank-based Running Fisher algorithm. The balanced accuracy for 
prediction was 93%. The biomarker was then used to identify organic 
chemicals that activate MTF-1 from a compendium of 11,725 human gene 
expression comparisons representing 2582 chemicals. There were 700 
chemicals identified that included those known to interact with cellular 
metals, such as clioquinol and disulfiram, as well as a set of novel chemicals. 
All nine of the novel chemicals selected for validation were confirmed to 
activate MTF-1 biomarker genes in MCF-7 cells and to lesser extents in 
MTF1-null cells by qPCR and targeted RNA-Seq. Overall, our work 
demonstrates that the biomarker for MTF-1 coupled with the Running Fisher 
test is a reliable strategy to identify novel chemical modulators of metal 
homeostasis using gene expression profiling. 

Introduction
Homeostasis of metal ions is tightly regulated in biological 
systems due to the toxicity of many metals  1-3. At high 
concentrations, even essential metals like copper, zinc, iron, 
and manganese, which have important structural and catalytic 
functions in proteins, can cause toxicity. Human exposures to 
metals have been increasing as a result of increased use in a 
number of applications 4. Sources of heavy metals in the 
environment include geogenic, industrial, agricultural, 
pharmaceutical, domestic effluents, and atmospheric sources 
5. Environmental pollution is significant from point sources 
involving mining and in foundries, smelters, and other metal-
based industrial operations 5, 6. Heavy metals, especially 
nonessential metals such as arsenic, cadmium, chromium, 
lead, and mercury are of public health significance due to their 
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ability to act as systemic toxicants that induce damage in 
multiple organs, even at low levels of exposure. Many of these 
metals are classified as known or probable human carcinogens 
according to the US Environmental Protection Agency (EPA) 
and the International Agency for Research on Cancer.
One of the most important biological mechanisms used by 
cells to regulate and protect against toxic metal exposure is 
sequestration by metallothioneins (MTs) which are small, 
cysteine-rich proteins that bind excess metal ions under 
conditions of metal overload 7. During metal overload, MT-
bound zinc ions are displaced, increasing levels of cellular zinc 
ions that activate the metal responsive transcription factor 1 
(MTF-1), the major transcriptional regulator of toxic responses 
to metal overload. MTF-1 contains six highly conserved DNA 
binding zinc finger domains, which are sensitive to changes in 
zinc concentration. Excess zinc binds to the zinc fingers 
increasing the binding affinity of MTF-1 with metal responsive 
elements (MREs) in the regulatory regions of target genes 
including MT family members allowing zinc-inducible gene 
regulation. The MTF-1-MT regulon forms a negative feedback 
loop in which activation of MTF-1 leads to increases in the 
expression of MT family members, sequestration of excess 
zinc, and subsequent decreases in MTF-1 activation 8-10. MTF-
1 also increases the expression of a zinc transporter (ZnT1) 
which reduces intracellular zinc availability by promoting zinc 
efflux from the cytoplasm or into intracellular vesicles 11.
There is evidence that increases in oxidative stress can activate 
MTF-1 through effects on MT family members. During 
conditions of oxidative stress or hypoxia, MTs become oxidized 
resulting in structural alterations that lead to release of zinc 
12-14. Like metal overload, the increase in free zinc in the cell 
leads to activation of MTF-1. The universality of oxidative 
stress-induced MTF-1 under different chemical exposure 
conditions has not been previously explored. Nuclear factor 
erythroid 2-related factor 2 (Nrf2) is another transcription 
factor that responds to cellular oxidative stress; however, the 
relationship between the activation of MTF-1 and Nrf2 
pathways is not fully defined but may include inactivation of 
the negative regulator of Nrf2 called Keap1 which has a 
phylogenetically conserved Zn binding site 15.
Because of the relevance of metal exposure to human health 
and disease, high-throughput screening (HTS) methods to 
identify conditions in which metal homeostasis is disturbed 
would be useful to predict cellular responses to toxic metal 
overload and oxidative stress. The only known HTS assay that 
potentially measures alterations in metal homeostasis through 
MTF-1 activation is part of the EPA ToxCast screening program 
(http://epa.gov/ncct/toxcast/; Attagene, “ATG_MRE_CIS_up”) 
which measures the ability of endogenously expressed MTF-1 
to activate a reporter gene in HepG2 cells. There are ~700 HTS 
assays representing ~350 molecular targets that have been 
used to screen more than 1800 chemicals 16. High-throughput 
transcriptomic (HTTr) technologies have now been added to 
the ToxCast screening battery 17 in which targeted sequencing 

techniques are used to assess the expression of the human 
genome in chemically-treated cells 18. HTTr is being used as a 
global assay to potentially identify any pathway that is 
perturbed upon chemical exposure, not just the ones that 
examined by HTS assays. Targeted HTS assays could then be 
used to confirm the putative modulators17. Approaches to 
assess MTF-1 activation in HTTr data have not been described 
but would be potentially useful to identify environmentally-
relevant chemicals that perturb metal homeostasis.
In the present study, we describe procedures for assessing 
MTF-1 activation using computational analysis of gene 
expression data. The large quantity of microarray data that 
already exists in public repositories and in commercial 
databases allows for in silico HTS prediction of chemical agents 
that activate or suppress a wide range of human molecular 
targets including MTF-1. As proof of principle, our lab has built 
and characterized gene expression biomarkers that predict 
modulation of the estrogen receptor and androgen receptor in 
human cell lines 19, 20. Using similar approaches, we 
constructed a gene expression biomarker that accurately 
detects MTF-1 activation by different metals. We used the 
biomarker to screen a library of microarray profiles from cells 
treated with ~2600 organic chemicals to identify novel 
activators of MTF-1. All chemicals selected for validation were 
found to exhibit the properties of MTF-1 activators in MCF-7 
cells.

Experimental
Use of a gene expression microarray experiment compendium. 
As described previously 21, data from BaseSpace Correlation 
Engine (BSCE) (https://www.illumina.com/products/by-
type/informatics-products/basespace-correlationengine.html; 
formally NextBio) were used to build an annotated 
spreadsheet of statistically filtered gene expression 
comparisons (biosets) from experiments carried out using 
human cell lines and tissues. This compendium included bioset 
name, cell line, tissue, chemical name, chemical concentration, 
treatment time, and study ID. Of the biosets included, 11,725 
biosets were derived from experiments in which cells were 
treated with one or more chemicals. Methods used to derive 
the statistically filtered gene lists are described in detail in 
Kuperschmidt et al. 22. 
Construction of the MTF-1 biomarker. Biosets from the BSCE 
database were selected to represent a variety of human cell 
lines and metal treatment conditions expected to activate 
MTF-1, including treatments with silver, arsenic, mercury, zinc, 
and nickel. From these biosets, ten were selected whose fold-
changes were consistent across treatments and included genes 
which exhibited opposite regulation to those in which MTF-1 
was knocked down using siRNA 23. Raw expression microarray 
data for each of the ten biosets was downloaded from the 
NCBI GEO database and processed using Partek Genomics 
Suite to generate gene lists with expression fold-change values 
for each bioset. Gene lists were filtered to include only genes 
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which had an absolute fold change magnitude of ≥1.2 and p < 
0.05 derived using a one-way ANOVA. The gene lists were 
uploaded to BSCE and the Meta-Analysis function was used to 
identify genes with the greatest degree of overlap between 
the 10 biosets. To construct the biomarker, genes were 
selected that were differentially expressed in the same 
direction in at least 5 of the 10 biosets and had an average fold 
change across those biosets which showed significant 
expression of at least 1.5 in either direction. Genes in the 
biomarker that overlapped with those in the Nrf2 biomarker 
(SLC7A11, GCLM, ADM, SRXN1, TXNRD1, SLC3A2, LARP6)24 
were excluded from the MTF-1 biomarker. The final biomarker 
consisted of 81 genes and average fold-change levels. The 
biomarker was uploaded to BSCE without any further filtering.
Comparison of the biomarker to microarray compendium 
biosets. The MTF-1 biomarker was uploaded to BSCE and 
compared with all biosets in the database using the Running 
Fisher test. This method provides an assessment of the 
statistical significance of the correlation of the overlapping 
genes between the biomarker and each bioset providing a 
summary p-value. A complete description of the Running 
Fisher test is provided in 22. The results were exported and 
each p-value was converted to a -log(p-value), with negative 
values used to indicate negative correlation between the 
biomarker and the bioset. Biosets with -log(p-value) ≥ 4 or ≤ -4 
were considered significant based on prior studies using this 
threshold 20, 25. A column in the human gene expression 
spreadsheet was populated with the -log(p-value) for each 
bioset. Biosets that were positively correlated with the 
biomarker were predicted to activate MTF-1, either directly or 
indirectly, such as by inducing oxidative stress or increasing 
labile cellular Zn; biosets that were negatively correlated were 
predicted to suppress MTF-1. The minor number of biosets 
identified here that exhibited negative correlation were not 
considered further.
Selection of positive and negative controls and calculation of 
biomarker accuracy. In the database of human gene 
expression comparisons, 57 biosets were selected as true 
positives as they were expected to activate MTF-1, based on 
the fact that they came from human cells treated with known 
activators of MTF-1 such as zinc, arsenic, iron, gold, or silver. 
The ten biosets used to create the biomarker (the training set) 
were not included in this list. Negative controls were identified 
using data from the EPA ToxCast program. In the EPA ToxCast 
online dashboard (https://comptox.epa.gov/dashboard), the 
ATG_MRE_CIS_up assay (carried out by contract with the EPA 
by Attagene, Inc) was selected, and all chemical data was 
downloaded. Tested chemicals that were examined in both the 
HTS assay and the human microarray compendium were 
identified. This list was filtered to include only 1) chemicals 
with no activity in the ATG_MRE_CIS_up assay and 2) 
microarray biosets from chemical treatments that used 75-
100% of the maximum concentration tested in the ToxCast 
assay. Using these criteria, there were 23 chemicals classified 

as true negatives. The values for predictive accuracy were 
calculated as follows: sensitivity (true positive rate) = True 
Positive (TP)/(TP+False Negative (FN)); specificity (true 
negative rate) = True Negative (TN)/(False Positive (FP)+TN); 
positive predictive value (PPV) = TP/(TP+FP); negative 
predictive value (NPV) = TN/(TN+FN); balanced accuracy = 
(sensitivity+specificity)/2.
Virtual screen for potential MTF-1 activators using the 
biomarker. Biosets were ranked by -log(p-value), and a list was 
generated of the top organic chemicals predicted to activate 
MTF-1 (Supplemental File 1). Chemicals were excluded if they 
were not activated in the majority (more than half) of available 
biosets in which the chemical was tested in human cells. Of the 
top predicted MTF-1-activating chemicals remaining, nine 
commercially-available chemicals were selected for in vitro 
validation in our study.

Ingenuity pathway analysis. The MTF-1 biomarker genes 
were analyzed using the canonical pathway and upstream 
analysis functions of Ingenuity Pathway Analysis (IPA, Qiagen 
Bioinformatics, Redwood City, California). IPA calculates 
significance using a right-tailed Fisher’s Exact test. The p-value 
is the probability of the overlap between the MTF-1 biomarker 
gene list and the IPA pathway gene list. Upstream analysis 
used the number of differentially expressed genes to predict 
upstream regulators of the biomarker genes.

Creation of a MTF1 knockout cell pool. The Knockout Cell 
Pool, MTF-1 Knockout MCF7, was created by Synthego, Inc. 
The MCF-7 cells were engineered by CRISPR-Cas9 to knock out 
the MTF-1 gene. The guide RNA was designed to bind to the 
antisense strand, in exon 2, of MTF1 gene to create a double 
stranded break at location 37,857,591 on chromosome 1. The 
knockout efficiency was determined by Synthego’s Inference 
of CRISPR Edits (ICE) analysis; 96% of cell pool exhibited a 
disruption of the MTF-1 open reading frame.

Culture and treatment of wild-type and MTF-1-null MCF-7 
cells. Chemicals were purchased from Sigma-Aldrich. All 
chemicals were ≥ 95% purity except for thiostrepton and 
sulforaphane (90%). All chemical stock solutions were made in 
DMSO. MCF-7 cells were cultured in DMEM media (GIBCO) 
supplemented with 10% FBS (Omega Scientific, Australia) and 
1x penicillin/streptomycin/glutamine. An initial range finding 
experiment (data not shown) was conducted to determine the 
optimal concentration of the tested chemicals. Based on these 
preliminary results, the highest concentration that was clearly 
non-cytotoxic was chosen as the test concentration for each 
chemical. Cells were plated at 15 x10^5 cells per well in 12-
well plates. After 48 hours, media was replaced with dosing 
solutions containing DMSO (0.05%) or 1-100 uM of each 
chemical (final concentration of DMSO = 0.05%). After 6 hours 
of exposure, media was removed; cells were lysed in 0.5 mL 
Trizol, followed by RNA extraction.

Evaluation of gene expression by RT-qPCR.  Expression of 
selected genes were quantified using reverse transcription 
quantitative PCR (RT-qPCR) analysis. Briefly, 1µg of total RNA 

Page 3 of 26 Metallomics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



ARTICLE Journal Name

4 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

was reverse transcribed with the SensiFAST™ cDNA Synthesis 
Kit (Bioline, London, UK). The primers were designed with 
Primer3 and listed in Supplemental Table 1.  Real-time PCR 
was conducted with Sso Advanced Universal SYBR Green 
Supermix (Bio-Rad) in 384-well format. Expression of genes 
was calculated by the 2−△△Ct method and normalized with β-
actin of the same sample, and the relative transcript levels 
were expressed as percentage of control.
Evaluation of gene expression using TempO-Seq. Gene 
expression in wild-type and MTF1-null cells were evaluated for 
gene expression changes after chemical exposure in a focused 
study using the human 1500+ Tempo-Seq platform (BioSpyder, 
Inc, Carlsbad, CA). After RNA extraction, samples were sent to 
BioSpyder for analysis. Raw read counts were normalized and 
statistically-filtered gene lists (p-value < 0.05 with no multiple 
test correction) were generated using the DESeq2 module in 
Partek Flow. The data is publicly available at Gene Expression 
Omnibus, accession number GSE152703. 

Measurement of oxidative stress. MCF-7 cells were treated 
with 10 µM of the reactive oxygen species probe 2’, 7’-
dichlorofluorescin diacetate (DCFDA, Sigma-Aldrich) or no 
probe in Hank’s balanced salt solution (HBSS) for 30 min. This 
solution was removed and cells were washed twice before 
treatment with each compound or DMSO control for two 
hours. Fluorescence was measured (excitation 490 nm, 
emission 530 nm) with a SpectraMax i3X, Molecular Devices, 
San Jose, CA plate reader. The fluorescence for the no-probe 
controls was subtracted from the fluorescence of DCFDA 
conditions and normalized to the DMSO condition. The data 
was subjected to ANOVA analysis, followed by Duncan’s 
multiple range tests with significance criteria of p < 0.05.

Measurement of free zinc. MCF-7 cells were treated with 
each compound or DMSO control in DMEM and incubated for 
one hour. Media was removed and cells were washed twice 
with HBSS. New media containing 5 µM of the fluorescent zinc 
probe Zinpyr-1 (Santa Cruz Biotechnology) or no probe was 
added and cells were incubated for 30 minutes. Media was 
removed and cells were washed twice again before reading 
fluorescence (excitation 490 nm, emission 530 nm) with a 
SpectraMax i3X, Molecular Devices, San Jose, CA plate reader. 
The fluorescence for the no-probe controls was subtracted 
from the fluorescence of Zinpyr-1 conditions and normalized 
to the DMSO condition. The analysis was conducted on 4-5 
independent experiments. The data was subjected to ANOVA 
analysis, followed by multiple range tests with significance 
criteria of p < 0.05

RT-qPCR analysis of MTF-1 biomarker genes. Wild-type 
MCF-7 cells and MTF-1 null cells were treated with 10 selected 
MTF-1 activators at concentrations indicated in Figure 6 for 6 
hr in 3-4 independent experiments. Total RNA was isolated in 
Trizol, reverse transcribed (Bioline, UK), and subjected to qPCR 
analysis with SYBR Green master mix (BioRad, CA) on Bio-Rad 
CFX real-time PCR system. The primers were designed with 
Primer3 (v 4.0). The Ct values were used to calculate the 

relative expression by the 2−△△Ct method and normalized 
with β-actin, setting WT control as 100%. The Student t-text 
was used to compare the difference between WT and MTF-1 
null cells, with significance criteria of p < 0.05. Preparation of 
chemicals for clustering and association rule mining. Chemicals 
from the CMAP 2.0 collection of chemicals with defined 
structural information and observed MTF1 activity in at least 2 
of the 3 cell lines were used to perform the clustering and 
association rule mining algorithms. Structures in the form of 
simplified molecular-input line entry system (SMILES) notation 
were taken from the EPA CompTox Chemicals dashboard 
(https://comptox.epa.gov/dashboard/, accessed November 
19th 2018) 26. Substances which did not meet the condition of 
activating MTF1 in 2 or 3 of the 3 cell lines were removed from 
the cheminformatic analysis. A chemical fingerprint file (a 
matrix of binary values [1,0] for each chemical-feature pair) 
was derived using the publicly available ToxPrint feature set 
(https://toxprint.org/) generated within the associated 
Chemotyper application (https://chemotyper.org/ accessed 
November 19th 2018), developed by Altamira [Altamira, 
Columbus, OH] and Molecular Networks [Molecular Networks, 
Erlangen, GmbH] under contract from FDA. The ToxPrint set 
(V2.0_r711) consists of 729 uniquely defined features designed 
to provide broad feature coverage of inventories consisting of 
tens of thousands of environmental and industrial chemicals, 
including pesticides, cosmetics ingredients, food additives, and 
drugs 27. 

Chemical clustering. To generate chemical clusters, the 
ChemmineR package (v.3.32.1) was used to calculate a 
distance matrix of the Tanimoto similarity index between each 
pair of ToxPrint fingerprints and, subsequently, chemicals were 
binned together using the single-linkage (nearest neighbor) 
clustering function 28. A range of different similarity 
thresholds from 0.6 (60%) to 0.9 (90%) in 5% increments were 
used to cluster the chemicals. The final threshold was chosen 
based upon a visual inspection of the clusters generated by 
each similarity threshold. 

Identification of association rules. Association rule mining 
(ARM), as implemented within the arules package in R 29, 30, 
was employed to investigate whether certain (sets of) 
ToxPrints were associated with a chemical having a positive 
designation. It should be noted that if a chemical was tested at 
two different concentrations and given a different designation 
at each concentration, only the concentration with the positive 
designation was retained. Briefly, ARM is a data mining 
method that can identify highly correlated (groups of) 
variables and has been utilized in a variety of application 
domains including bioinformatics, and chemoinformatics 31-
37. The ARM workflow comprises two main steps: frequent 
itemset mining (FIM) and generation of rules. More 
information on FIM and ARM can be found in studies by 
Agrawal, Bagelt and colleagues 38, 29, 39. 

The first step of FIM, aims to identify items in a dataset 
that frequently co-occur. Within FIM, there are 3 components 
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to consider; a set of items I, where I = {i1, i2, i3, …, in}, a set of 
transactions T, where T = {t1, t2, t3, …, tm} and a transaction t 
which contains a subset of the items in I (also called an 
itemset). In this analysis, the individual ToxPrints and the MTF-
1 activity call (positive or negative) represent the items i, 
whereas a given chemical represents a transaction t.

Once identified, frequent itemsets can then be examined 
and expressed as a collection of probabilistic if/then 
statements called association rules. They take the form of X → 
Y where X and Y are itemsets. Each association rule comprises 
two parts: 1) the “if” or antecedent (i.e. the left-hand side, 
LHS) and 2) the “then” or consequent (i.e. the right-hand side, 
RHS). The basic premise behind the generation of association 
rules is splitting a frequent itemset X into two disjoint subsets 
X and Y such that items present in the LHS are not present in 
the RHS (i.e. X ∩ Y = Ø). In this study, the ToxPrints served as 
the antecedent, whereas the MTF1 activity call served as the 
consequent. It should be noted that for the association rules 
generated the antecedent could be a set of up to three 
separate ToxPrints. Additionally, we filtered for only those 
rules containing a positive designation as the consequent.
Several interest measures were calculated to help identify a 
pragmatic and practical number of frequent itemsets and their 
resulting association rules for use. These measures themselves 
are defined as follows:

Support: The support of an association rule (X → Y) 
describes the proportion of transactions that contain all items 
in the rule (i.e. the union of X and Y).
support(X→Y)=t(X∪Y)/T

Confidence: The confidence of a rule meanwhile describes 
the proportion of all transactions containing X that also 
contain Y. Alternatively, confidence is the conditional 
probability of the transaction containing Y given the presence 
of X.
confidence(X→Y)=support(X∪Y)/(support(X))

Lift: The lift of a rule describes the factor by which the 
observed co-occurrence of X and Y exceeds what would be 
expected if X and Y were independent. 
lift(X→Y)=support(X∪Y)/(support(X)∙support(Y))

Odds ratio: The odds ratio of a rule describes the odds of X 
occurring given the presence of Y compared against X 
occurring in the absence of Y.
odds ratio(X→Y)=(support(X∪Y)⁄(support(X)-support(X∪Y) 
))/((support(Y)-support(X∪Y))⁄(1-support(X∪Y) ))
A combination of the support and confidence interest 
measures were used to limit the number of association rules 
generated, specifically, a rule had to have a minimum support 
of 4 (i.e., ToxPrints and positive activity outcome needed to 
appear in at least 4 chemicals within the dataset) and a 
minimum confidence of 75% (i.e., the ToxPrints needed to be 
associated with a positive activity call at least 75% of the time). 
The derived rules were subsequently applied to the set of 284 
unique chemicals from the list of CMAP chemicals where 1) no 
overall designation had been determined in the MTF1 assays, 

and 2) structural information (in terms of SMILES notation) 
were present in the EPA’s CompTox Chemicals Dashboard 
(https://www.epa.gov/chemical-research/comptox-chemicals-
dashboard; accessed March 17, 2020). This was carried out to 
identify other chemicals that contain the structural features 
present in at least one of the rules derived from the ARM 
algorithm. 
Inventory comparison. As the ToxPrint chemotypes are a 
predefined set of structural features that cover a broad cross 
section of the available chemical space, they were used to 
compare the structural diversity of the chemicals studied 
within this analysis to those tested in the ATG_MRE_CIS_up 
assay as part of the ToxCast program. The comparison would 
provide an indication of whether the rules derived were 
generalizable. To do this the ToxPrint fingerprints were 
generated for those chemicals tested in the ATG_MRE_CIS_up 
assay. Subsequently, the fingerprints for both sets of chemicals 
were folded to reduce their length from 729 features to 70 
features so the comparison could be more easily visualized. 
This folding took advantage of the hierarchical nature of the 
ToxPrints such that more specific ToxPrints were collapsed into 
their more generalised form. For example, the 
“bond:C#N_cyano_acylcyanide”, 
“bond:C#N_cyano_cyanamide”, and “bond:C#N_nitrile_ab-
unsaturated” chemotypes would all fall under the more 
general “bond:C#N” chemotype. The relative quantities of 
each of these more general chemotypes were then calculated 
and compared between the two data sets.

Results and Discussion
Construction of an MTF-1 biomarker. A set of biomarker 

genes was identified to predict modulation of MTF-1 activity. 
Genes were identified from ten microarray comparisons 
(biosets) representing diverse metal treatment conditions and 
human cell types (Table 1). Raw gene expression data from the 
studies was used to generate the gene lists using Partek 
Genomics Suite. These statistically-filtered gene lists were 
compared to the corresponding gene lists found in BSCE 
(Figure S1); strong correlations were found between the two 
computationally-derived bioset gene lists. The Partek-
generated gene lists were used to identify biomarker genes.
Genes that exhibited relatively robust and consistent 
expression changes across the ten biosets were selected as 
candidate biomarker genes (absolute average fold-change ≥ 
1.5-fold in either direction). Given that metal exposure can 
lead to oxidative stress that activates Nrf2 8, we filtered out 
any genes that overlapped with a previously characterized 
biomarker for Nrf2 24. The behavior of the resulting 81 genes 
across the 10 biosets is shown in Figure 1A. The gene list and 
fold-change values were used as the MTF-1 biomarker. The 
biomarker consisted of 48 upregulated genes and 33 
downregulated genes. The genes with the highest fold-change 
values included seven MT family members (MT1E, MT1F, 
MT1G, MT1H, MT1M, MT1X, MT2A) and the zinc transporter 
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SLC30A1, all well known to be regulated by MTF-1 11. Several 
of the other top ranked genes in the biomarker are not known 
MTF-1 targets but have indirect connections to the oxidative 
stress response or metal detoxification and homeostasis. For 
example, a top ranked gene in the biomarker was AKR1C2 
(aldo-keto reductase family 1 member C2), which has known 
antioxidant effects in cancer cells 40. Other highly ranked 
genes in the biomarker were ATF3 (activating transcription 
factor 3) and CLU (clusterin), known to be activated under 
conditions of oxidative stress 41-43. 

To identify pathways enriched in biomarker genes, the 
canonical pathway and upstream analysis functions in 
Ingenuity Pathway Analysis were used (Figure 1B). The analysis 
identified the Nrf2-mediated oxidative stress response 
pathway and the iron homeostasis signaling pathways as the 
top overlapping pathways, with 3.5% (p = 9x10-6) and 2.9% (p 
= 2x10-3) of the genes overlapping, respectively. Several of the 
top upstream regulators predicted by the analysis were 
transcription factors and included MTF-1 (p = 6.0 x 10-6).

Comparison of the biomarker to individual biosets used to 
make the biomarker. BSCE was used to determine the 
correlation between the biomarker and each of the ten Partek-
generated biosets used in the construction of the biomarker. 
BSCE uses the rank-based Running Fisher algorithm to 
calculate the statistical significance of each pair-wise 
correlation. Statistically significant correlations were defined 
as those with a -log(p-value) ≥ 4 or ≤ -4, where negative values 
indicate a negative correlation. Chemical treatment conditions 
that resulted in positively correlated biosets were predicted to 
be activators of MTF-1, while those conditions that resulted in 
negatively correlated biosets were predicted to be suppressors 
of MTF-1. (Suppressors of MTF-1 were not examined in this 
study.) Of the ten biosets used to create the biomarker, nine 
were found to be significantly correlated with the biomarker 
(Figure 1C). The one bioset not significantly correlated (-log(p-
value) = 2.57) had only two significantly altered genes 
overlapping with the biomarker. We also compared the 
biomarker to the same 10 BSCE-derived biosets in the human 
compendium. Figure S2 shows that the biomarker correlations 
were similar independent of the method used to derive the 
bioset, although most of the biosets generated by the Partek 
approach had higher -Log(p-value)s.

MTF-1 dependence of biomarker genes. To determine if 
any of the biomarker genes exhibited MTF-1 dependence in 
their expression profiles, we examined expression of the genes 
after MTF-1 siRNA knockdown from a recent microarray study 
using colorectal cancer cells 23. For this analysis, the data from 
this bioset was processed in Partek to generate a gene list 
using a fold-change cutoff of 1.2 in either direction and a 
significance cutoff of p = 0.05. There were 20 significantly 
altered genes that overlapped between the biomarker and a 
comparison in which MTF-1 knockdown was compared to cells 
treated with control siRNA in which both groups were treated 
with 150 µM zinc. Out of 20 genes, 9 of the biomarker 

upregulated genes exhibited decreased expression by MTF-1 
siRNA (Figure 1D), and 5 of the biomarker downregulated 
genes exhibited increased expression by MTF-1 siRNA. This 
bioset was significantly negatively correlated with the 
biomarker (-log(p-value) = -4.68). These results indicated that 
at least a subset of the biomarker genes were dependent on 
MTF-1 for metal-induced expression. We also show MTF-1-
dependence of the biomarker gene responses in experiments 
described below. 

Correlation between MTF-1 and Nrf2 activation. Because 
metal toxicity is known to induce oxidative stress, we 
examined the relationship between activation of MTF-1 and 
Nrf2 by comparing biomarker responses across the biosets in 
the human compendium. Figure S3 compares the -log(p-
value)s for each of the 11,725 biosets for both biomarkers. The 
correlation coefficient was calculated to be r = 0.433 with p < 
10-300, indicating that predicted activation of the two 
transcription factors is correlated in a positive manner. This 
correlation does not change meaningfully when the biosets 
were filtered for time (e.g. r = 0.432, > 6 h treatment) or cell 
line (e.g. r = 0.408, > 6 h treatment, MCF7 cells). This analysis 
indicates a tight relationship between activation of MTF1 and 
Nrf2. The inclusion of a number of stress response genes in the 
MTF-1 biomarker including those that may not be directly 
regulated by MTF-1 indicates that the biomarker represents 
the gene expression profile of a general cellular response to 
metal-induced stress, not just the direct induction of metal 
regulatory genes by MTF-1. Using this biomarker as an 
indicator of the metal stress response may therefore be more 
useful as a measure of systems changes due to metal-induced 
toxicity than simply measuring changes in MT gene expression.

Predictive accuracy of the biomarker. In the compendium 
of human gene expression biosets, there were many examples 
of cells treated with metals under conditions expected to 
activate MTF-1 (excluding those used to make the biomarker). 
We randomly selected 57 to use as those that activate MTF-1. 
Using the Running Fisher test, correlation between each of 
these biosets and the biomarker was determined and 52 of the 
57 were predicted to activate MTF-1 resulting in a sensitivity of 
91%. Results from the EPA’s ToxCast chemical screening 
program (MTF-1 activation assay run by Attagene, Inc.) were 
used to identify 9 chemicals represented by 23 biosets in the 
database which were classified as true negatives for MTF-1 
activation. Of these, only one of the 23 was predicted by the 
biomarker to activate MTF-1, demonstrating a specificity of 
96%. Combining these results, the biomarker gave a balanced 
accuracy of 93%. Figure 2 shows the distribution of the -log(p-
value)s for the true positives and true negatives, 
demonstrating that the biomarker reliably identifies MTF-1 
activators from non-activators. 

Virtual screen for chemical activators of MTF-1. Given the 
high predictive accuracy of the biomarker, we performed an 
in-silico screen to identify novel chemicals that activate MTF-1. 
In the human compendium, there were 11,725 biosets 
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representing human cell lines exposed to 2582 chemicals. 
Excluding the biosets used to create the biomarker, the 
analysis identified 1547 biosets representing 700 chemicals 
that were positively correlated and 122 biosets representing 
90 chemicals that were negatively correlated with the MTF-1 
biomarker. The remaining 10,066 biosets were not significantly 
correlated with the biomarker in either direction. The 
statistically filtered fold-change values of the biomarker genes 
for all 11,725 biosets ranked by -log(p-value) are shown in 
Figure 3, top, and the -log(p-value)s for individual biosets are 
shown in Figure 3, bottom. The top most correlated chemical 
treatments are shown. For those biosets that were 
significantly positively correlated with the biomarker, the 
expression of the biomarker genes was remarkably similar to 
the fold-change values of the biomarker genes. For those 
biosets that were significantly negatively correlated, the 
expression of the biomarker genes exhibited opposite 
expression compared to the biomarker genes.

Characterization of putative MTF-1 activators. In addition 
to the chemicals used in the prediction analysis, there were 
additional metal treatments in the database. We compared 
those to the biomarker to examine which metal treatment 
conditions were correlated with the MTF-1 biomarker. There 
were a total of 89 metal treatment biosets identified (including 
the 58 true positives) discussed above, representing ten 
different metals. For this analysis, all metal-containing 
compounds of the same metal were grouped together. The 
metals with the greatest number of database biosets were 
zinc, silver, and arsenic. The MTF-1 biomarker predicted that 
the majority of zinc treatments (87.1%), silver treatments 
(95.7%), and arsenic treatments (100%) activated MTF-1 (Table 
2). All other metals in the database either have very few 
representative biosets in the database, or they are most often 
not predicted to activate MTF-1. Most surprisingly, cadmium, 
which is represented by seven biosets and known to activate 
MTF-1, was only predicted to activate MTF-1 in two of seven 
biosets. However, the majority of the cadmium biosets not 
predicted to activate MTF-1 were derived from one study 
using one cell line. The lack of MTF-1 activation in these 
experiments may be particular to this cell line or due to other 
experimental conditions used in this study. Comparison of the 
biomarker to a larger and more diverse sample of metal 
treatment experiments would be necessary to confidently 
assess the differences in MTF-1 activation by different metals 
as predicted by the biomarker.

Identification of structural features associated with MTF-1 
activation. We next asked whether there were any structural 
features in the organic compounds associated with MTF-1 
activation. (Metals were not considered in this analysis.) To 
facilitate the analysis, we focused on a set of 616 unique CMAP 
chemicals that had been examined in three cell lines (HL60, 
MCF-7, PC3), had an overall activity call for MTF-1 consistent 
across the cell lines, and for which chemical structures could 
be readily identified. There was activation of MTF-1 by 105 

unique chemicals in two or more cell lines, and of these there 
were 81 in which chemical structures could be identified. Two 
approaches were undertaken to address whether there were 
structural features associated with MTF-1 activation: 1) 
clustering based upon structural similarity, enabling 
assessment of how similar the chemicals were to one another 
and 2) association rule mining to specifically examine which 
sets of structural features discriminated for MTF-1 activation.

ChemmineR’s agglomerative clustering using a Tanimoto 
threshold of 80% was found to result in reasonable clusters of 
all 616 active and inactive chemicals in terms of total number 
of clusters, their membership size, and chemistry makeup. At 
this similarity threshold, 21 clusters were extracted that had at 
least 3 or more members. Six clusters contained at least 1 
active chemical whereas five of these six clusters contained 
multiple active chemicals. The 5 clusters with multiple active 
chemicals covered 32 unique chemicals, of which 18 chemicals 
were active. The remaining active chemicals were captured in 
“clusters” of either 1 or 2 chemicals. Figure 4A represents a 
dendrogram of the clustering highlighting two specific clusters 
(cluster ID 25 and 125) for illustrative purposes. The full set of 
clusters and their membership are provided in Supplemental 
File 1. Figure 4B shows the consistency in the structures 
identified in clusters 25 and 125.

Utilizing the ToxPrint fingerprints for the 616 unique 
chemicals and their corresponding activity calls (i.e., positive 
or negative), the apriori algorithm identified 235 rules 
associated with a chemical being given an overall activity call 
of “positive”. The majority of these rules identified the same or 
similar sets of chemicals. These rules can be grouped into 4 
larger bins. The reason behind this grouping is the hierarchical 
nature of the ToxPrints features themselves. For example, if a 
chemical contains one of the more specific ToxPrint features, 
then its molecular fingerprint will contain an “on” bit for both 
this more specific ToxPrint feature and the corresponding 
more general ToxPrint feature. Thus, both the more specific 
and more general ToxPrint features may be used in the 
generation of association rules, provided they meet the 
inclusion criteria (i.e., a minimum support of 4 and minimum 
confidence of 75%). All of the association rules generated by 
the apriori algorithm are available in Supplemental File 1. 
Figure 5 illustrates one of the association rules generated in 
this study. A description of the support and confidence of this 
and other rules are found in Supplemental File 1. The 
association rules predicted 70 unique chemicals out of the 284 
chemicals from the CMAP set with no activity designation 
(either positive or negative) as MTF-1 actives.  

The structural diversity of the chemicals tested within this 
study were compared to those chemicals tested in the 
ATG_MRE_CIS_up assay. Figure S4 shows the chemicals in this 
study contain a larger proportion of chemicals with aromatic 
and hetero ring systems. Additionally, the chemicals in this 
study contain a larger proportion of chemicals with amine, 
alcohol, ether, and amide bonds. However, the 
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ATG_MRE_CIS_up data set contained more metal containing 
chemicals; although, it is likely that the majority of these 
metal-containing chemicals are salts rather than 
organometallics. 

The initial clustering approach used in this study could 
identify the closest chemical neighbors; thereby, facilitating 
predictive inferences between chemicals within a given 
cluster. This approach could also be expanded to categorizing 
novel chemicals and making inferences as to the likely 
(in)activity towards MTF-1 using a data gap filling approach. 
Additionally, we employed ARM to identify substructural 
features associated with chemicals being assigned a positive 
designation: a total of 253 rules were identified. These rules 
were applied prospectively to a set of 284 chemicals from the 
CMAP data set for which incomplete activity data was 
available. Confirmatory testing would help evaluate the 
performance of the rules inferred. To facilitate the 
generalization of the rules derived, the ToxPrint feature set 
was utilized which are a fixed set of defined features that are 
not specific to the dataset being analyzed. To explore the 
general ability of the rules, the set of chemicals of interest 
were compared to a larger inventory. The enrichments across 
the feature set was very similar between the CMAP chemicals 
and the chemicals tested in the ATG_MRE_CIS_up assay 
suggesting that the rules should be broadly applicable. 

Confirmation of the MTF-1 activating chemicals. Nine 
organic chemicals were selected for testing of MTF-1 
activation in vitro (Table 3). Most of these came from the 
CMAP 2.0 dataset (GSE5258) in which ~1300 mostly 
pharmaceutical chemicals were examined in three cell lines 44; 
they had some of the highest activation scores of the putative 
positive chemicals. Figure S5A shows the average -log(p-
value)s for significantly correlated biosets for each of these 
positive chemicals. The chemical structures of the chemicals 
are shown in Figure S5B. Of these nine chemicals, two are 
known to interact with cellular metals. Clioquinol is an 
antibiotic that is known to act as a zinc and copper ionophore 
and has been shown to have metal-dependent activity against 
cancer and Alzheimer’s disease 45-47, and disulfiram is an 
alcohol aversion therapeutic that has also been shown to act 
as a copper and zinc ionophore with anticancer activity48, 
4948, 4948-50. The other seven chemicals, however, have no 
known direct relationships to metal homeostasis. Some of 
these chemicals, such as mefloquine 51, thiostrepton 52, and 
deoxycholic acid 53, are known to induce oxidative stress, 
which may explain why they activate MTF-1.

The ability of the nine chemicals to regulate MTF-1-
dependent genes in MCF-7 cells was tested by treating MCF7 
wild-type and MTF-1-null cells with each chemical and 
measuring gene expression by RT-qPCR. We chose four genes 
from the MTF-1 biomarker to measure (MT1M, MT2A, 
HMOX1, ATF3). Zinc activated three of the genes in a MTF-1-
dependent manner. Exposure to all of the chemicals led to 
increases in expression of one or more of the four genes 

(Figure 6). For all but two of the chemicals (chloroquine, 
phenoxybenzamine), the increases were abolished or 
decreased in MTF-1-null cells compared to wild-type cells 
demonstrating dependence of the increases on MTF-1. While 
ATF3 appeared to be regulated by the majority of metals in the 
microarray studies, there may be cell line differences in 
responses between those used to create the biomarker and 
MCF-7 cells used for validation.
Assessment of changes in intracellular zinc and oxidative stress 
by the nine chemicals. Having confirmed that most of the 
chemicals do activate MTF-1, we sought to determine the 
mechanism by which MTF-1 is being activated. Possible 
mechanisms of activation include induction of zinc influx, 
generation of reactive oxygen species that induce release of 
zinc from MTs, or direct binding to MTF-1 or another protein 
necessary for MTF-1 transcriptional activation. We used 
fluorescent probes Zinpyr-1 and 2’,7’-dichlorofluorescin 
diacetate (DCFDA) to detect intracellular amounts of labile zinc 
and reactive oxygen species (ROS), respectively. Our results 
indicate that in addition to Zn itself six of the nine chemicals 
cause an increase in cellular labile zinc (Figure 7A). The positive 
control tert-butyl hydroperoxide (TBHP) caused increases in 
ROS production (Figure 7B). Two the nine chemicals caused 
increases in ROS while one chemical decreased ROS. Overall, 
the results suggest that increased labile zinc may play an 
important role in the mechanism of activation of MTF-1 by 
many of the predicted MTF-1-activating chemicals.

Transcript profiling of chemicals in wild-type and MTF-1-
null cells. In future HTTr studies, we propose that the use of 
cell lines nullizygous for important targets of environmental 
chemicals will greatly facilitate the interpretation of regulated 
genes. To provide proof of this concept, we generated 
transcript profiles of Zn and 6 putative activators of MTF-1 in 
wild-type and MTF-1-null cells generated by TempO-Seq 
targeted sequencing of ~3000 human genes. In the absence of 
chemical exposure, knockout of MTF-1 resulted in effects on 
44 genes (Figure S6) indicating that MTF-1 has some effect on 
gene expression in the absence of overt activation.
Figure 8A shows the heat maps of the filtered changes altered 
by each chemical in the two cell lines. Figure 8B shows the 
number of genes altered by each chemical in wild-type cells 
and the number of those genes that are altered in the MTF-1-
null cells. Almost all of the genes regulated by Zn and 
phenoxybenzamine were no longer regulated in the MTF-1-
null cells. For the rest of the chemicals, more than half of the 
genes regulated in the wild-type cells were no longer regulated 
in the MTF-1-null cells. 

The profiles derived from the wild-type cells were each 
compared to those found in the CMAP 2.0 collection to 
determine if the same chemical would exhibit high correlation 
despite differences in transcriptomic platform and number of 
genes evaluated. Each profile was compared to 3442 biosets in 
the CMAP collection. The chemicals ranked highest to lowest 
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to the same chemical examined in MCF-7 cells were astemizole 
and disulfiram (both 1st), suloctidil (29th), alexidine (41st) and 
phenoxybenzamine (816th). Zn and deoxycholic acid were not 
examined in the CMAP collection. The top hit for Zn was the 
comparison “Lung epithelial BEAS-2B cells + 3uM zinc sulfate 
heptahydrate for 4hr _vs_ 24hr untreated” from GSE80733 (p-
value = 3.3E-12). The top hit for deoxycholic acid was the 
comparison “Hepatic progenitor HepaRG cells differentiated 
96hr - 200037.13nM chenodeoxycholic acid _vs_ DMSO” (p-
value = 8.9E-42) examined on the 1500+ platform 54. Except 
for phenoxybenzamine, these rankings indicate that the 1500+ 
gene set allows for a high correlation to the same chemical 
within an independent dataset. 

These studies demonstrate that many of the changes in 
gene expression after exposure to the putative MTF-1 
activators were MTF-1-dependent. We also found that the 
chemical-induced profiles generated in wild-type cells 
exhibited correlation to the same chemicals profiled in various 
cell lines in our compendium. These studies demonstrate that 
wild-type vs. null cell line comparisons can unequivocally 
identify targets of environmental chemicals. To our 
knowledge, this is the first study to compare profiles of 
chemicals between wild-type and nullizygous cell lines. 
Although the study was limited in scope, it provides support 
for the use of nullizygous cell lines in HTTr screening, especially 
in targeted screening to confirm predicted targets from 
primary HTTr screens.

Summary

Gene expression biomarkers have been shown to be useful 
for identifying chemical modulators of transcription factors in 
previous work by our group 19, 20. In the present study, we 
used a similar approach to identify activators of MTF-1 in a 
compendium of gene expression profiles derived from 
chemically-treated human cell lines. The biomarker was built 
by identifying genes with consistent expression behavior 
across comparisons from metal-treated cells under conditions 
known to activate MTF-1. The resulting biomarker consisted of 
48 up-regulated and 33 down-regulated genes. The genes in 
the biomarker with the highest fold-change values included 
seven MT family members and SLC30A1 encoding the zinc 
transporter ZnT1 that are well-established targets of MTF-1-
mediated gene regulation 11. A subset of the biomarker genes 
was shown to be MTF-1-dependent based on a previously 
published MTF-1 siRNA knockdown experiment and transcript 
profile comparisons between wild-type and MTF-1-null cell 
lines. We tested the biomarker for predictive accuracy using a 
set of biosets with known MTF-1 responses including a number 
of metal activators of MTF-1 and found that the biomarker was 
very accurate (balanced accuracy = 93%). The biomarker was 
used to identify chemical activators of MTF-1 in our human 

microarray compendium. We identified 700 chemicals in 1547 
biosets that were putative activators, and they included a large 
number of metals, metal complexes, and chemicals known to 
modulate metal homeostasis. Nine of the positive chemicals 
were examined further and we found that in RT-qPCR and 
transcript profile experiments most of the nine of the 
chemicals were confirmed to be MTF-1 activators. We 
performed a chemoinformatic analysis to identify structural 
features associated with MTF-1 activity and used these 
features to reprofile chemicals with an equivocal result to 
demonstrate their utility in chemical prioritization. The results 
indicate that our methods can readily identify MTF-1 
activators. Our approach will not only be useful in analyzing 
HTTr data of environmental chemicals in ToxCast screens to 
identify those that disrupt metal homeostasis but will allow 
identification of environmental samples with contamination by 
metals.

We envision that batteries of validated biomarkers 
(including the the MTF-1 biomarker described here) with 
known accuracies and context of use55 could be systematically 
applied to HTTr data to identify the modulation of tens if not 
hundreds of factors important in chemical toxicity. There are a 
number of examples in which characterized biomarkers have 
been used to screen large sets of chemicals for those that 
modulate the factor similar to the screening strategy used in 
this study. A set of 1152 chemicals were screened for 
androgen receptor (AR) agonism/antagonism in AR+ human 
prostate cancer cell lines 19. A set of ~1950 chemicals were 
screened for those that potentially cause DNA damage using 
the TGx-DDI biomarker identifying ~10 novel compounds not 
previously known to cause DNA damage 56. The same set of 
chemicals were screened using a biomarker for Nrf2 and 
identified both known and novel activators 24. Finally, an 
estrogen receptor (ER) biomarker was characterized that could 
be used to screen chemicals in ER+ human breast cancer cell 
lines 20. Prioritization of identified chemicals for further 
analysis could then be carried out using the network of 
adverse outcome pathways (AOP)s as a starting point 57, 58, 
especially if strategies are in place that stratify the AOPs in 
terms of human relevance, number of KEs perturbed, and 
overlap with AOPs of special concern including developmental 
or reproductive toxicity. This approach would then allow 
targeted follow-up studies for confirmation of phenotypic 
perturbation in lower throughput organotypic-based assays, 
zebrafish, or short-term rodent studies. Benchmark dose 
analysis will be used to identify transcriptional points of 
departure for the genes in the biomarkers to estimate minimal 
concentrations of chemical that lead to activation or 
suppression of the factor similar to methods carried out to 
determine transcriptional points of departure for pathways 59. 
These concentration values could then be used for in vitro to 
in vivo extrapolation (IVIVE) to predict tissue concentrations of 
the chemical in humans followed by use of exposure models to 
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determine the margin between estimated human exposures 
and those that induce responses in cell-based assays 60. These 
efforts would allow a preliminary assessment of “safe” levels 
of exposure 60. Our efforts to characterize a biomarker that 
predicts MTF-1 modulation contributes to a broader effort 
within EPA to comprehensively and systematically identify 
targets of chemicals 17 and to move towards reduction of the 
use of animals in toxicity testing 61.
The main text of the article should appear here with headings 
as appropriate.
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