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DeepRMethylSite: A Deep Learning based approach for Prediction 
of Arginine Methylation sites in Proteins 
Meenal Chaudharia+, Niraj Thapaa+, Kaushik Royb, Robert H. Newmanc, Hiroto Saigod, Dukka B. KCe*

Methylation, which is one of the most prominent post-translational modifications on proteins, regulates many important 
cellular functions. Though several model-based methylation site predictors have been reported, all existing methods employ 
machine learning strategies, such as support vector machines and random forest, to predict sites of methylation based on a 
set of “hand-selected” features. As a consequence, the subsequent models may be biased toward one set of features. 
Moreover, due to the large number of features, model development can often be computationally expensive. In this paper, 
we propose an alternative approach based on deep learning to predict arginine methylation sites. Our model, which we 
termed DeepRMethylSite, is computationally less expensive than traditional feature-based methods while eliminating 
potential biases that can arise through features selection. Based on independent testing on our dataset, DeepRMethylSite 
achieved efficiency scores of 68%, 82% and 0.51 with respect to sensitivity (SN), specificity (SP) and Matthew’s correlation 
coefficient (MCC), respectively. Importantly, in side-by-side comparisons with other state-of-the-art methylation site 
predictors, our method performs on par or better in all scoring metrics tested.

1. Introduction
Methylation is a well-studied posttranslational modification 
(PTM) that occurs predominantly on arginine (Arg; R) and lysine 
(Lys; K) residues  and, to a lesser extent, on histidine, 
asparagine, and cysteine residues1,2,3, 4. Though traditional 
methods used to identify methylation sites, such as tandem 
mass-spectrometry5, 6, methylation specific antibodies, and 
ChIP-Chip, have provided important insights into global 
methylation profiles, these methods are expensive, time-
consuming and require a high level of technical expertise. As the 
number of known methylation sites has grown, computational 
methods have emerged as an efficient, cost-effective strategy 
to complement and extend traditional experimental methods of 
methylation site identification.

Various computational models have been built for 
prediction of methylation PTMs. There are two major 
observations through the PTM predictor. First, compared to the 
datasets used to train early methylation site predictors, the 
number of known methylation sites has increased dramatically. 
Secondly, the performance of predictor models has improved 
with the use of machine learning models, such as support vector 

machines (SVM)7-9 , Random Forest10 and group-based 
algorithms11. While it is believed that the prediction would do 
better by including structural features, there is a huge gap 
between the availability of structural information and the 
availability of sequence data. This knowledge gap can have a 
substantial impact model development and performance. As a 
consequence, some models, such as MeMo7, use sequential 
features, while others, such as the model developed by Chou et 
al8, use structural features. Meanwhile, still others, like GPS-
MSP11, use only primary amino acid sequences. Importantly, in 
all cases, feature selection was based on a series of hand-
selected characteristics, such as pseudo amino acid 
composition (PseAAC), Shannon Entropy (SE) and others, that 
could introduce bias into model development.
     Therefore, in order to reduce bias while simultaneously 
decreasing the complexity and time required for model 
development11, we generated a deep learning-based approach 
that is able to replace hand-selected features and still 
contribute improvements in predictor performance. Though 
there have been a few deep learning models used in DNA 
methylation site prediction,12, 13  all existing protein methylation 
site methods are based on feature selection14, 15.

To the best of our knowledge, this work is the first to apply 
deep learning to predict methylation sites in proteins. 
Moreover, in our work, we provide (1) an improved dataset for 
arginine methylation PTMs; (2) an ensemble deep learning 
model, based on Keras16 2D Convolutional layer network, and 
Long Short Term Memory (LSTM) models for prediction of PTM 
sites; (3) parameter selection based on 10-fold cross-validation 
results to test the performance of the model; (4) independent 
test results validating the performance of our model with the 
state-of-the-art models. Overall, our model, which we termed 
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DeepRMethylSite, exhibits improved performance compared to 
previously published Arg methylation site predictors14.

2. Material and methods

2.1. Dataset Preparation

To build our training dataset, we used the Arg methylation 
dataset provided by DBPTMv317, PhosphositePlusv6.5.818 and 
Uniprot19 databases. We queried the Uniprot database to get 
experimentally verified methylation sites from publications 
published after 2017. Overall, our dataset contained 12,976 Arg 
methylation sites from 5,725 unique proteins. 

To construct the positive dataset, we generated a window 
size of 51 with the methylated Arg site in the center, flanked by 
25 amino acids upstream and downstream of the methylation 
site. Meanwhile, the negative dataset was similarly generated 
around Arg sites not known to be methylated. 

Next, we removed any duplicate sequences within the 
positive and negative datasets. Also, if we found a duplicate 
sequence among the positive and negative datasets, we 
removed the duplicate sequence from the negative sequence. 
We termed the new positive and negative dataset the “clean” 
datasets. Since Arg methylation sequences are often conserved 
across species and we are building a general, non-specific 
model, we identified many duplicate sequences that were 
removed during this procedure. After removing duplicates, 
10,429 Arg methylation sites remained in the clean positive set 
and 305,700 unmethylated Arg sites remained in the clean 
negative dataset. Finally, we used 80% of the clean dataset for 
training and validation sets and set aside the remaining 20% of 
the clean dataset as the independent test set (Table 1). 
Statistical analysis using the two logo chart was carried out to 
confirm the methylation dataset followed the trend of 
experimental arginine methylation sites (Figure S1 in 
Supplementary Information).

Table 1. Number of positive and negative sites in the training and test sets before 

(left) and after (right) balancing.

Dataset Positive sites 
(before/after)

Negative sites 
(before/after)

Total 10,429/10,429 305,700/10,429

8,344/8,344 244,600/8,344

Train: 6,676 6,676

Training

Val: 1,668 1,668

Test 2,085/2,085 61,150/2,085

Perhaps not surprisingly, we noticed that there is large 
imbalance between the positive and negative datasets. This 
may be due to the fact that only positive sites are reported 
while the negative set is composed of those Arg residues that 
have not been found to be methylated. Thus, in order to 
balance the positive and negative datasets, we used 
undersampling from the imblearn package20.  Undersampling is 
a technique in which the set having the larger number of 
samples is pruned to create a balance with the other set. There 
are many ways to deal with the unbalanced nature of the 
dataset. The unbalanced nature of PTM datasets is prone to 
artefacts stemming from limited knowledge about the number 
of negatives compared to the number of experimentally verified 
positive samples. Broadly, there are two ways of balancing the 
dataset, either by manipulating the dataset or by using a cost 
function that takes into account the imbalanced nature of the 
dataset21. In the way of manipulating the dataset, the positive 
samples can either be synthetically increased to match the size 
of the negative dataset, known as oversampling, or the negative 
dataset can be reduced to match the size of the positive dataset, 
known as undersampling. In our case, we are using Scikit learn 
package for undersampling. The resulting dataset is 
summarized in Table 1. Compared to Arg methylation dataset 
used in PRmePRed, we have increased the dataset 8-fold. 

2.2. Input encoding 

In most machine learning algorithms, features are extracted 
from the sequence data and, thus, meaningful numerical 
representations of the sequences are fed to the model. In 
contrast, in deep learning, the sequences themselves are 
numerically represented as encodings, as follows:

1. One hot encoding22, where each amino acid is defined 
as a 20 length vector, with only one of the 20 bits as 1, 
thus uniquely representing the twenty amino acids. It 
has also been used as a feature, twenty bit feature by 
Wei et al10. 

Figure 1: Flow Diagram depicting steps carried to create our model. Sequences were 
extracted from public databases and the dataset was divided into training, validation 
and test sets. 10-fold cross-validation was used in optimizing the parameters on each 
model, and then independent testing was used to evaluate the models.CNN: 
Convolutional Neural Network; LSTM: Long-term short-term memory.
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2. Embedding Integer encoding, where each amino acid 
is allocated  random integers of d dimensions long, 
where d is a parameter16. We used this encoding as an 
input to the embedding layer. The embedding layer 
helps in transforming the data into specified 
dimension, d. Since the encoding changes with each 
epoch, this encoding possesses a dynamic nature to its 
representation compared to one hot encoding23, 
where the encoding is fixed. Thus, the encoding 
embeds the representation learned through the deep 
architecture/algorithms.

Deep learning thus bypasses the need for feature extraction. 
For comparison, we extracted methylation relevant features14, 

24 from the same dataset, and fed them to the tree-based 
classifier XGBoost followed by several machine learning 
algorithms. Details are provided in supplementary material.  

2.3. DeepRMethylSite: Ensemble Model 
An Ensemble model aggregates two or more model predictions to 
improve the prediction power of a classifier. Here, we created an 
ensemble between an LSTM model and CNN model. An LSTM model 
learns through cell states, while the CNN model employs different 
filters to extract various features. The ensemble aggregates the 
predictions learned by the CNN model and the LSTM model, based 
on the trust attained by each classifier. 

Each of the member predictions was weighted with a weight 
factor and the predictions were aggregated to get the ensemble 
results. The weights were found for each classifier using a grid search 
between (0,1) in steps of 0.1. To obtain proper weights to prevent 
overfitting during model development, a validation set was created 
to compare the training and validation accuracy of the models25. This 
was accomplished by taking the remaining 8,344 positive and 
negative sites after the independent test set was removed and 
further dividing them into the training set (composed of 6,676 
distinct positive and negative sites) and the validation set (composed 
of 1,688 distinct positive and negative sites) (Table 1). The weights 
were then normalized using L1 normalization and tensor dot was 
used to efficiently implement the weighted vector of predictions. 
Thus, the predictions are tensor multiplication of weight with the 
predictions (Eq. 1) 

c c                                                                                               (1)𝑃𝑟𝑒𝑑 = 𝑊ₗ × ŷₗ + 𝑊 × ŷ
 
where Wl is weight given to LSTM weights and Wc is weight given to 
CNN weights and ŷl and ŷc are the respective predictions.

2.3.1- CNN Model

The model is based on Keras 16 Convolutional Neural Network 
(CNN). The model consists of 7 layers, including the feature 
processing layer and the output layer. The first layer is the 
embedding layer, which learns the feature representation to 
the input sequences. A lambda layer is then used as a transition 
layer to the Convolutional 2D layer, where an extra dimension 
is added to match the input shape for the convolutional layer. 
Next, two Convolutional 2D layers with ReLu activation are 
employed. Padding is disabled for the first Convolutional layer 

and enabled for the next layer. Initial filter size for the 
Convolutional layer was selected as ((n-1)/2,3), where n is the 
window size. The filter size was selected such that the center 
residue of window is included in every stride as the center 
residue target for our prediction. The dimensions of output 

from the first convolutional layer changes when padding is 
disabled and remains the same when padding is enabled for the 
second layer. For example, if the output from the first 
convolutional layer has dimensions 17x19, it remains the same 
for consecutive layers. Each Convolutional 2D layers was then 
followed by a dropout layer of 0.6 to avoid overfitting. A higher 
dropout rate was used in order to reduce the overfitting and to 
achieve a more generalized model. Dropout mitigates the 
overparameterization of the deep learning model by dropping 
out a few neurons from computation.  Next, a max pooling layer 
calculates the maximum value for each patch of the feature 
map and provides a down-sampled representation of the input. 
Two hidden layers of size 768 and 256 were employed with 
each, followed by dropout of 0.5. Finally, a softmax layer with 
two neurons, representing the true and false prediction, acted 
as an output layer. The architecture is summarized in Figure 2B. 

Once developed, the model was optimized using Adam26. Adam 
is an adaptive moment estimation-based algorithm specifically 
used in training deep networks. The ModelCheckpoint function 
in Keras was used to save the best model with respect to 
validation accuracy. The plot showing change in accuracy across 
epochs using a dropout rate of 0.6 has been provided in Figure 
S2A. In practice, when the training accuracy just improves 

Figure 2: A. parameters used in LSTM model. B. Parameters used in CNN model. C. 
Ensemble model generated by combining through grid search weights on CNN and 
LSTM models.
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slightly in comparison to validation accuracy, the model should 
stop learning, and thus should avoid overfitting due to a greater 
number of epochs. The parameters used in the model are given 
in Table 2.
Table 1: Parameters for CNN.

Parameters Settings

Embedding Output Dimension 21

Learning Rate 0.001

Batch Size 256

Epochs 80

Conv2d_1 number of filters 64

Dropout 0.6

Conv2d_1 number of filters 128

Dropout 0.6

MaxPooling2d 2 x 2

Dense 1 768

Dropout 0.5

Dense_2 256

Dropout 0.5

Checkpointer Best validation accuracy

2.3.2- LSTM Model 

Long Short Term Memory27 models have overcome the 
vanishing and exploding gradient problems in RNN and are 
known to capture long term dependencies. LSTM consists of 
three gates: input, forget, and output gates, which together 
define the flow of data governed by the state of the cell. LSTM 
helps to memorize the states of the cell and has the ability to 
save each of the sequences through layers, with return 
sequences option. Further, as the use of hidden states of a cell 
is increased, the power of learning through LSTM is known.

Table 3: Parameters used in LSTM Model
Parameters Settings

Embedding Output Dimension 39

Learning Rate 0.01

Batch Size 256

Epochs 100

LSTM_layer1_neurons 128

LSTM_layer2 64

Dropout 0.5

Recurrent Dropout 0.5

Dense_layer_neurons 32

Here we used a stacked LSTM model in comparison with the 
CNN approach to model classification for Arg methylation. The 
model consists of four layers: 1) the input layer, which consists 
of an embedding layer that learns the best representation of the 
integer encoded sequences through subsequent epochs. The 
embedding layer transforms the sequence information at a 

dimension. Thus, the output of the layer has shape (window 
size, embedding dimension) in compatibility with input 
dimensions of the LSTM layer; 2) an LSTM layer, which consists 
of 128 neurons with return sequences kept as true; 3) a dropout 
LSTM layer with 64 neurons, with dropout and recurrent 
dropout sets at 0.5 each with hyperbolic tangent activation 
where recurrent dropouts results in dropping the horizontal 
connections within the cell28 and 4) an output layer, with 2 
neurons and soft-max activation, where the two neurons 
summarize the classification as true or false (Figure 2A).  The 
model was compiled with the Adadelta optimizer29 and binary 
cross-entropy as loss function. Similar to the CNN model, the 
ModelCheckpoint function in Keras was used to obtain the best 
model with respect to validation accuracy. The plot showing 
change in accuracy across epochs has been provided in Figure 
S2B.

2.4. Performance and Evaluation

To evaluate the performance of each model, we used a 
confusion matrix to determine Sensitivity (SN), Specificity (SP), 
Accuracy (ACC) and Receiver Operating Characteristic (ROC) 
curve as the performance metrics. We used 10-fold cross-
validation on the benchmark training dataset and an 
independent test set to evaluate the models.

ACC defines the correctly predicted residues out of the total 
residues (Eq. 2). SN defines the model’s ability to distinguish 
positive residues (Eq. 3) whereas the SP measures the model’s 
ability to correctly identify the negative residues (Eq. 4). 
Matthews Correlation Coefficient (MCC) is the calculated score 
that takes into account the model’s predictive capability with 
respect to both positive and negative residues (Eq. 5). Likewise, 
the ROC curve provides a graphical representation of the 
diagnostic ability of the classifier. The area under the ROC curve 
(AUC) is used to compare various models, with the models 
having the highest AUC scores performing better in 
classification than those with lower AUC scores.

  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 ± 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

                                    × 100                                            (2)

                                               𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 × 100                                                       (3)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 × 100                                                 (4)

 𝑀𝐶𝐶 =  
(𝑇𝑃)(𝑇𝑁) ― (𝐹𝑃)(𝐹𝑁)

(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
  (5)

3. Results and Discussion.
3.1 Selection of window size
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An initial 10-fold cross-validation was carried on each of our 
models (i.e., LSTM and CNN) to determine the parameters. A 
window size of 51 was extracted from the dataset and other 
window sizes were generated by flanging the windows from 
both ends. This kept the dataset size constant and hence the 
comparison fair when determining the window size. 

Furthermore, the window size determines the number of 
residues exposed to the problem. Methylation sites have been 
found buried in the protein core while others have been found 
on the protein surface. The potential site is centered in a 
window with an equal number of residues on both sides. The 
results are tabulated in Table 4. While the model follows the 
same trend in different window sizes, different window sizes 
were optimized for different models, owing to differences in 
their architectures. For instance, a window size of 39 was 
optimized for CNN, while a window size of 21 was optimized for 
LSTM. Following the strategy outlined in our Succinylation site 
prediction work30 , the embedding dimension was fixed at 21.

Table 4: 10-fold cross-validation performance metrics for different window sizes 
with an embedding dimension of 21. The highest values in each category are 
highlighted in boldface. MCC: Matthew’s Correlation Coefficient; SN: sensitivity, 
SP: Specificity; ACC: Accuracy.

CNN LSTMSize
MCC SN SP AC

C

MCC SN SP AC

C

51 0.52 0.71 0.81 0.76 0.44 0.66 0.77 0.72
45 0.52 0.72 0.80 0.76 0.44 0.66 0.77 0.72
39 0.53 0.73 0.80 0.76 0.45 0.66 0.78 0.72
33 0.52 0.71 0.81 0.76 0.46 0.66 0.79 0.73
27 0.52 0.70 0.81 0.76 0.46 0.67 0.78 0.73
21 0.50 0.71 0.79 0.75 0.46 0.65 0.80 0.73
15 0.49 0.70 0.79 0.74 0.44 0.66 0.77 0.72
9 0.46 0.69 0.77 0.73 0.42 0.65 0.76 0.71

3.2 Selection of embedding dimension

The embedding dimension can be summarized as the feature 
space that is able to best define the representation of the input 
sequences. Therefore, we used various dimensions during 10-
fold cross validation of the models at their optimized window 
sizes, as summarized in Table 5. The embedding dimension of 
33 was optimized for CNN, while LSTM was optimized at 
window size of 39. Nonetheless, despite the fact that we 
optimized the embedding dimension, there did not seem to be 
a substantial improvement among the dimensions for either 
model.

Table 5: 10-fold cross-validation results for different embedding dimensions for 
their optimized window size. MCC: Matthew’s Correlation Coefficient; SN: 
sensitivity; SP: Specificity; ACC: Accuracy.

CNN LSTMDim

MCC SN SP ACC MCC SN SP ACC

9 0.52 0.70 0.82 0.76 0.43 0.67 0.76 0.71

15 0.52 0.70 0.81 0.76 0.45 0.68 0.76 0.72

21 0.52 0.73 0.79 0.76 0.46 0.66 0.79 0.73

27 0.53 0.71 0.80 0.76 0.46 0.67 0.77 0.73

33 0.53 0.72 0.80 0.76 0.46 0.66 0.79 0.73

39 0.52 0.70 0.81 0.76 0.47 0.65 0.80 0.73

45 0.52 0.70 0.81 0.76 0.46 0.68 0.78 0.73

3.3 Comparison with one hot encoding 

Since embedding has be shown to increase the dynamic nature 
of the sequences, embedding tends to enhance model 
performance over one hot encoding. Thus, we conducted 10-
fold cross-validation with the optimum parameters for the One 
hot encoding to confirm whether it is still true in our case. 
Owing to the dynamic nature of embedding, the training time 
was less for embedding. This approach also saved 
computational time, as training time is less for embedding 
compared to One hot encoding. For these reasons, we 
compared One hot encoding at the optimized parameters for 
the embedding model (Table 6). 

Table 6: Comparison of one hot encoding model to embedding models based on 
10-fold cross-validation MCC: Matthew’s Correlation Coefficient; SN: sensitivity; 
SP: Specificity; OHE: One hot encoding; Emb: Embedding; ACC: Accuracy.

CNN LSTM

Model MCC SN SP ACC MCC SN SP ACC

OHE 0.47 0.69 0.78 0.73 0.45 0.69 0.76 0.73

Emb 0.53 0.72 0.80 0.76 0.47 0.65 0.80 0.73

3.4 Evaluating Ensemble Model

We used independent testing to evaluate the ensemble model. Both 
LSTM and CNN were trained on the training set and evaluated on the 
test set, as defined in Table 1. The ensemble uses a grid search 
method to optimize the weights for each model. Thus, the optimized 
weights are [0.16,0.83] for LSTM and CNN models, respectively. 
Figure 3 shows the receiver operator curve (ROC) for the CNN, LSTM 
and ensemble models. The final ensemble model, which we termed 
DeepRMethylSite, performed well with respect to SP, SN and MCC 
(Table 7). We also evaluated the ensemble model against CNN and 
LSTM models using Student’s t-test (Table S3).

Table 7: Independent Test Results using the CNN, LSTM and Ensemble models. MCC: 
Matthew’s Correlation Coefficient; SN: sensitivity; SP: Specificity’ ACC: Accuracy; AUC: 
Area under the receiver operator curve.

Model MCC SN SP ACC AUC

LSTM 0.46 0.80 0.65 0.73 0.796

CNN 0.50 0.68 0.81 0.75 0.816
DeepRMethylSite 0.51 0.68 0.82 0.75 0.821

3.5 Comparison with existing models. 

Next, we wanted to compare the performance of DeepRMethylSite 
to existing Arg methylation site predictors. The SVM-based predictor, 
PrmePred14, is currently the best performing method in the field 
based on MCC, which is often used as an indicator of overall method 
performance. Therefore, to evaluate our model, we used the training 
set and validation test set used by Kumar et al during the 
development of PRmePred14 to retrain our model and then used 
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their independent test set to evaluate model performance. The 
independent test results of DeepRMethylSite, along with those from 
other predictors using the PRmePred independent set, is tabulated 
in Table 8. Likewise, the performance of either the CNN model or the 

LSTM model alone using the independent test set from PRmePred is 
provided in Table S1.

Because we were using the same datasets used by PRmePred, 
direct comparisons between the models can be made. 
However, results are confined to the window size of 19. 
Nonetheless, the results were informative. For instance, in side-
by-side comparisons with PRmePred, DeepRMethylSite 
achieved SP, ACC, and MCC scores that were ~13.8%, ~5.8% and 
~6.8% higher, respectively, than those exhibited by PRmePred14  
(Table 8). On the other hand, DeepRMethylSite exhibited SN 
scores that were ~19.4% lower than those observed for 
PRmePred. Likewise, DeepRMethylSite achieved the highest 
MCC and ACC scores across all existing methods (Table 8). 
Likewise, DeepRMethylSite exhibited SP  and SN scores that 
were on par with or better than those of the existing models7-

10, 14, 31-33 (Table 8). Taken together, these data suggest that 
DeepRMethylSite is a robust predictor of Arg methylation sites 
in proteins.  

Table 8: Comparison of DeepRMethylSite with other prediction methods. 

Method Algo MCC SN SP ACC

MeMo 7 SVM 0.46 0.38 0.99 0.68

MASA32 SVM 0.41 0.31 0.99 0.65

BPB-PPMS33 SVM 0.25 0.12 1.00 0.56

PMeS 9 SVM 0.16 0.43 0.73 0.58

iMethyl-
PseAAC 8

SVM 0.30 0.18 1.00 0.59

PSSMe 31 SVM 0.44 0.60 0.83 0.72

MePred-RF10 RF 0.46 0.41 0.97 0.69

PRmePred 14 SVM 0.74 0.87 0.87 0.87 

DeepRMethylSite CNN 0.79 0.71 0.99 0.92

5 Conclusion
Here, we describe the development and analysis of an Arg 
methylation site prediction tool, DeepRMethylSite, based on a 
deep learning strategy. An ensemble model was used to 
combine the better sensitivity of our LSTM-based model with 
the specificity of our CNN-based model. Interestingly, while the 
ensemble model exhibited significant improvements in MCC 
and SN compared to the LSTM model and generally 
outperformed the CNN model with respect to MCC and SP, it 
did not achieve significant performance improvements 
compared to CNN (Table S3).

Unlike other machine learning algorithms, deep learning 
does not require feature extraction. Not only does this reduce 
the potential for intrinsic bias in feature selection, but it also 
substantially reduces the computational cost required for 
model development. Importantly, in side-by-side comparisons, 
our model outperforms PRmePred—the current gold standard 
in Arg methylation site prediction—with respect to SP, ACC and 
MCC using their independent test set. Therefore, the use of a 
deep learning-based model has not only avoided the need for 
feature extraction, but it has also improved the prediction 
performance for arginine site prediction. These predictions, 
which will complement the list of experimentally identified Arg 
methylation sites, will be useful for understanding how Arg 
methylation affects cellular processes such as transcriptional 
regulation, RNA metabolism, apoptosis and DNA repair34. 
Currently, our model does not distinguish between mono-
methylated, symmetrically-dimethylated and asymmetrically-
dimethylated residues, which can have important implications 
for the cellular consequences of a given Arg methylated site35. 
In the future, it will be interesting to explore whether our model 
can be enhanced to distinguish between these methylation 
states, as well. Also, it is important to note that, in this study, 
we increased the size of the dataset used for training and 
evaluation by ~8-fold compared to the dataset used during the 
development of PRmePred. We hope that these datasets, which 
we have made freely available to the community at 
https://github.com/dukkakc/DeepRMethylSite, will facilitate 
the development of improved methylation site prediction 
methods28. Likewise, to facilitate the use of our predictor by the 
cell signaling and bioinformatics communities, the method and 
all code used for its development are freely available at  
https://github.com/dukkakc/DeepRMethylSite.
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