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The objective of this paper is to demonstrate a novel, data-centric framework to accelerate the 
development of next-generation nanostructured polymers with unprecedented and predictable 
combinations of properties. This study is an application of NanoMine (a nanocomposite data resource) on 
understanding structure-property relationship for polymer nanocomposites. Materials science is founded 
on a processing-structure-properties (p-s-p) paradigm. Our approach, focusing on understanding structure-
property relationship, represents a significant advance to state-of-the-art materials design and is targeted 
and demonstrated across a broad class of materials: nano-reinforced polymeric composites. 

This work demonstrates an applicable path on developing data driven and machine learning methods 
for material mechanism understanding and design: starting from analyzing archived data, then moving to 
application of computational methods for data augmentation, followed by exploring qualitative relationship 
by restricting confounding parameters, and finally building quantitative relationship using machine learning 
models. This strategy can be applied to understand other material mechanisms such as the processing-
structure relationship and guide the design of material with targeted performance. 
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Abstract

Data-driven methods have attracted increasingly more attention in materials research since the 

advent of the material genome initiative. The combination of material science with computer 

science, statistics, and data-driven methods aims to expediate materials research and applications 

and can utilize both new and archived research data. In this paper, we present a data driven and 

deep learning approach that builds a portion of the structure-property relationship for polymer 

nanocomposites. Analysis of archived experimental data motivates development of a 

computational model which allows demonstration of the approach and gives flexibility to 

sufficiently explore a wide range of structures. Taking advantages of microstructure reconstruction 

methods and finite element simulations, we first explore qualitative relationships between 

microstructure descriptors and mechanical properties, resulting in new findings regarding the 

interplay of interphase, volume fraction and dispersion. Then we present a novel deep learning 

approach that combines convolutional neural networks with multi-task learning for building 

quantitative correlations between microstructures and property values. The performance of the 

model is compared with other state-of-the-art strategies including two-point statistics and structure 
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descriptor-based approaches. Lastly, the interpretation of the deep learning model is investigated 

to show that the model is able to capture physical understandings while learning.  

1.Introduction 

Polymer nanocomposites are defined as organic matrix materials containing nanoparticles with at 

least one dimension below 100nm [1]. By including a small amount of fillers to the matrix, 

experiments have shown that polymer nanocomposites can achieve a significant improvement in 

dielectrical, mechanical and optical properties compared with their parent matrix system [2-6]. 

The enhancement in properties comes from the large interphase region resulting from the strong 

chemical and geometrical interactions between the particle surface and polymer area nearby [7, 8]. 

To predict the properties of a nanocomposite given its microstructure, people have developed 

different types of numerical methods including continuum mechanics methods and multi-scale 

simulations [9-11]. A variety of micromechanical models such as Mori-Tanaka, Halpin-Tsai and 

the self-consistent scheme have been developed to predict the thermomechanical behavior of 

nanocomposites [12]. However, those analytical models are not sufficient to fully capture the 

dispersion state or the morphology information of the fillers although some of the models include 

structural parameters. Therefore, multi-scale simulations are often necessary. Finite element (FE) 

simulations are able to fully capture the structural information and accommodate non-homogenous 

material systems with explicit configurations of all material phases, which makes FE simulation a 

good candidate to analyze the behavior of nanocomposites. FE models have been developed to 

simulate the thermal and mechanical properties of polymer nanocomposites and investigate the 

impact of interphase, the altered polymer region closest to the nanoparticles [13, 14]. It has also 

been shown that the interphase properties in the FE models can be represented by shifting factors 

based on the pure matrix properties for some of the material systems [14, 15]. The necessary shift 

for a given experimental sample can be determined automatically through Bayesian optimization 

[16]. 

In order to better understand the behavior of these materials and further design materials with 

target properties, researchers have proposed the paradigm of process-structure-property (PSP) 
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linkage [17]. Data-driven approaches founded on the PSP linkage have attracted significant 

attention recently and become an important emerging area in material research [15, 18, 19]. Data-

driven approaches combine material science, computer science and statistics with the goal to 

expediate material discovery by utilizing research data from experiments or computational 

simulations. To facilitate the development of data archiving, sharing and development of data-

driven approaches, efforts have been made to create online databases for fast queries and reference. 

In the nanocomposite domain, an open source, data-driven web-based platform, NanoMine, has 

been developed which archives experimental and computational data on nanocomposites, 

including composition, processing methods, microstructural images and measured properties [20, 

21]. NanoMine allows fast data queries, visualization, and sharing as well as a number of tools for 

analysis including microstructure descriptor identification and reconstruction tools. [20, 21]. 

Utilizing data in NanoMine, a data-driven approach was developed to model the processing-

structure relationship for a class of nanocomposites, connecting the nanocomposite processing 

parameters and the structural descriptors[15]. In that work, quantitative processing-structure 

relationship is built applying linear regression models on a relatively small set of data (about 20 

samples) coming from three well-controlled material systems with different matrixes and surface 

treatments. Although that work provides insights on building quantitative relationship on a small 

set of data to understand material mechanisms in polymer nanocomposites, the continuous 

development of NanoMine enables more comprehensive quantitative studies using a larger 

datasets with more sophisticated machine learning algorithms.  In addition, in another work a 

simulation based data-driven framework was proposed for designing and modeling of new material 

systems and structures, which includes design of experiments, computational models and machine 

learning methods [19]. A common characteristic involved in almost all the data-driven approaches 

is that a sufficient pool of data is required so to apply machine learning and statistic methods can 

be applied to extract features from the data and build correlations. 

Deep learning, one of the sub-field of machine learning, has dramatically improved the state-of-

art in computer vision, natural language processing and many other fields including material 

science [22]. Deep learning approaches provide an end-to-end framework addressing automated 

feature extraction for a large set of potential features. Using these approaches, it is not necessary 

to design explicit features, which is usually required in traditional machine learning approaches. 

Deep learning has been applied in material science specifically for the case where structural images 
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are involved. Yang et al. applied deep convolutional network to model structure-property linkages 

for high-contrast elastic 3-D composite microstructures [18]. In [23-25], deep neural networks are 

applied to reconstruct microstructure images and implemented to design material microstructure 

with desired properties.  

In this paper, we investigate the structure-property linkage for polymer nanocomposites using a 

database of simulated data. Simulations provide the flexibility to explore a wide range of structures 

and the ability to create and analyze a large amount of data. Although previous studies have 

demonstrated data-driven approaches to build structure-property linkages, a systematic study 

showing the impact of different factors (composition, dispersion, reconstruction method etc.) to 

different properties is still lacking. Additionally, most of the previous studies relied on traditional 

machine learning method using hand-crafted features, in which the quality of the prediction model 

depends on the quality of designed features based on material expertise. Finally, it is nontrivial to 

conduct feature selection from a large pool of microstructural features.  In this study, by leveraging 

artificial generated microstructures and FE simulations, a sufficiently large database with different 

microstructures and associated properties can be obtained. The property of interest for this research 

is three mechanical properties of the bulk composites:  peak, glassy modulus and rubbery tan 𝛿

modulus. We aim to investigate the effect of microstructure to these target properties in a 

systematic and comprehensive way.  The first part of the paper focuses on investigating the effect 

of microstructure reconstruction method, filler composition and dispersion, and interphase on the 

bulk properties. After that, we design and explore the application of a deep multi-task 

convolutional network to quantitatively predict multiple property values given a microstructure 

image. This is the first time a deep multi-task learning model is applied to build structure-property 

linkage for prediction of mechanical properties of polymer nanocomposite. The results from 

proposed method is further compared with other methods including traditional approaches using 

physical descriptors and two-point statistics. 

2.FE Simulation and Analysis 

FE simulations are built using a library of microstructures created from several different 

reconstruction algorithms, which result in different degrees of dispersion. The properties of 

interests chosen for this study are the viscoelastic properties of  peak magnitude, glassy tan 𝛿
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modulus and rubbery modulus. In this section the results of direct simulation are presented for 

these different microstructures and the impact of an interphase of altered properties is also 

demonstrated. Machine learning methods to discover structure property relationships in the data 

sets are presented in the following section. 

2.1 Experimental data limitations 

We first begin with qualitative understanding of structure-property relationship by plotting 

structure parameters with the property values. Based on simple physical understanding, the glassy 

and rubbery moduli should increase as more stiff fillers are added to the polymer system. On the 

other hand, the  peak should decrease with higher loading due to replacing a damping material tan 𝛿

(polymer matrix) with perfectly elastic particles with no damping. At first blush, one would expect 

to see these simple trends in any data set for nanocomposite properties with sufficient amount of 

data. Figure 1 illustrates the experimentally measured  peak as a function of volume fraction tan 𝛿

for all the samples currently stored in NanoMine with volume fraction less than 10%. The plot 

shows no statistically significant trend, which contradicts our initial hypothesis. While NanoMine 

contains thousands of samples, the data encompasses a wide range of matrix and filler materials, 

different processing conditions, environmental conditions and even measurement methods. 

Therefore, even with a relatively large amount of data, no consistent trend can be observed as there 

are too many confounding variable parameters. Additionally, the overall data volume in NanoMine 

is still too small to be able to narrow the search sufficiently to conduct a systematic study. While 

the curation process of data into resources such as NanoMine will provide sufficient data in the 

long term, to be able to explore structure-property relationships with machine learning methods 

now, a computational approach is needed to give the flexibility to explore a small, consistent set 

of structural parameter combinations to build a comprehensive linkage to their effect on the target 

property response. 
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Figure 1. Plot shows  peak as a function of volume fraction using the data from NanoMine.𝑡𝑎𝑛 𝛿

2.2 Computation method

In order to demonstrate the application of data driven approach in correlating the structure-property 

relationship in polymer nanocomposites, we generated a set of simulated data using a combination 

of microstructure reconstruction methods and finite element (FE) analysis. The FE work-flow is 

shown in Figure 2. Polycarbonate (PC) is considered as the material property for the FEA and the 

frequency domain response of that material is measured by dynamic mechanical analysis (DMA) 

[26]. Previous study has shown that neither the magnitude nor the anisotropy of nanoparticle 

modulus has a measurable impact on the viscoelastic properties of nanocomposites [14], therefore, 

in this paper, for simplification, the silica nanoparticle in the model is assigned to be linear, elastic 

with young’s modulus of 73GPa and Poisson’s ratio of 0.3. In the FE model, we can incorporate 

an interphase of altered properties near the filler [14] and will present results both with and without 

an interphase. It has been shown that the mobility of polymer chains can be restricted due to 

attractive interactions between nanoparticles and matrix [27-30]. In addition, both simulation and 

experiment results have shown that the glass transition temperature of nanocomposites can be tens 
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of degrees higher than the pure matrix [29, 31, 32].  Based on the above observations and one of 

the previous study [14], we hypothesize that interphase properties are obtained by shifting the 

matrix polymer master curve two decades lower in the frequency domain, which correlates to a 

strong interaction between the nanoparticle and the polymer matrix and locally stiffer response of 

the polymer near the particles. For this study, we choose  peak, glassy modulus and rubbery tan 𝛿

modulus as the properties of interest and correlate those with the structural inputs. The output from 

FEA is the frequency domain response of the nanocomposite, based on which  peak, glassy tan 𝛿

modulus and rubbery modulus can be extracted. 

Figure 2. FEA work-flow. Given a microstructure, an interphase layer is assigned assuming a fixed thickness and uniform stronger 
interaction between the nanoparticle and the polymer matrix, leading to enhanced interphase properties. Then the FE simulations 
for viscoelastic properties as function of frequency are run for samples with and without interphase. 

In this study, the structural inputs (referred to as a representative volume element or RVE) for the 

FEA are generated using different microstructure characterization and reconstruction (MCR) 

methods, which are commonly applied in predictive material modeling [19, 25, 33]. Three different 

types of MCR methods are applied to generate RVEs for the FE model: uniform dispersion, 

descriptor-based method, and spectral density function (SDF)). The impact of these different types 

of microstructures on the structure-property relationship is investigated in the later section. Other 

studies also show more organized supramolecular structures, such as strings or sheets, which can 

be obtained by controlling grafting density and molecular weight of grafting chains [34, 35]. In 

this paper, we do not focus on these super-structures cases, but rather on the simpler dispersion 

differences in overall isotropic systems, which forms the vast majority of the nanocomposite 

literature to date. Microstructures with uniform dispersion are generated using the random 
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sequential adsorption (RSA) algorithm such that the centroid of all existing particles have to 

exceed a minimum value and therefore particles do not overlap/merge with one another. Similar 

methods [14] have been applied to generate the centers of spherical particles with same radius in 

the unit cell. Descriptor-based reconstruction generates statistically equivalent random digital 

microstructures by matching the prespecified structural descriptors (i.e. nearest neighbor distance, 

volume fraction etc.) through optimization [15]. Using a predefined set of four descriptors, volume 

fraction ( , number of clusters ( , average nearest cluster distance ( , aspect ratio ( , 𝑉𝐹) 𝑛) 𝑟𝑑) 𝑒𝑙)

microstructures with different volume fraction and dispersion states can be obtained. The obtained 

microstructures have elliptical clusters in which particles can overlap with each other and therefore 

merge to form more complex filler shapes, in contrast to the uniform dispersion microstructures.  

Spectral density function (SDF) has been demonstrated to be able to characterize complex 

heterogeneous microstructures and reconstruction can be done through phase recovery techniques 

[36]. For the nanocomposite system, the SDF of all microstructures approximately follows an 

exponential distribution with two parameters – shape variable  and scale variable . For these 𝛼 𝜃

systems, previous work has also shown that the shape parameter  varies in a small range and has 𝛼

very little influence on SDF profile and the consequent microstructure [37, 38]. However, the scale 

parameter  has a wide range and can greatly impact the decay of SDF and the dispersion state of 

microstructure [36]. Therefore, for this study, a set of microstructures are generated by controlling 

the volume fraction (  and scale parameter  while the shape parameter  is fixed. 𝑉𝐹) 𝜃 𝛼

2.3 Impact of microstructure reconstruction method

The three representative microstructure reconstruction/generation methods are evaluated in terms 

of their impact on the properties. For each reconstruction method, 100 microstructures with 

different volume fraction (1% - 20%) and dispersion states are generated using Optimal Latin 

Hypercube sampling (OLHC) [39].  Sample microstructures obtained from different methods are 

shown in Figure 3 . Here, we merely compare the impact of the reconstruction methods and there 

is no interphase layer added for the computation. Microstructures with uniform dispersion have 

spherical particles, which are uniformly distributed in the matrix and with no overlap. Physical 

descriptor reconstructed microstructures have elliptical clusters with different aspect ratio and the 

particles and clusters can overlap and form even larger clusters. Microstructures reconstructed 
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using SDF have irregular shape clusters. All three microstructure types are realistic for different 

types of nanocomposite materials as shown in Figure 4. The simulated properties versus volume 

fraction are shown in Figure 5. The results show that for all the microstructures, the peak tan 𝛿 

decreases monotonically as a function of volume fraction while the glassy and rubbery modulus 

increases monotonically. This observation matches the physical understanding and result in 

previous work [40]. peak is a measure of material damping and the reduction of the Tan 𝛿 

magnitude arises from the replacement of polymeric (damping) material with perfectly elastic 

participle (no damping).  It is also noted that as the microstructure becomes more complex (from 

uniform dispersion to SDF), the r-squared values decreases, indicating a less monotonical trend 

for all three property values with increasing geometric complexity. 

Figure 3. Sample microstructures generated using different methods: first row, uniform dispersion; second row, physical descriptor; 
third row, spectral density function; 
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(a)               (b)  

Figure 4．Experimental images showing different types of microstructures. (a) SEM images of octyl-modified silica in PMMA, 
which could be well represented by SDF approach. (b) TEM images of Ag/C core/shell hybrid particles  in the epoxy [41], which 
could be well represented by descriptor approach. .

Figure 5. Comparison of simulations using different type of microstructures for composites with polymer matrix, silica filler and 
no interphase. For each type of microstructure, three individual property value ( peak, glassy modulus and rubbery modulus) 𝑡𝑎𝑛 𝛿 
is plot against volume fraction. 
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2.4 Impact of interphase 

Previous studies have shown that the interphase region plays an import role in the bulk composite 

properties [10, 13, 14, 16]. The interphase properties can be represented by shift factors related to 

that of the matrix. In this study, we assume a fixed thickness of interphase whose properties are 

determined by shifting the master curve of the matrix two decades lower in the frequency domain 

as shown in Figure 6. Although in this study, for simplicity the interphase properties are assumed 

to be uniform, gradient interphase properties can be considered in the future as well based on a  

new gradient interphase representation method in the FE model coming from observations from 

the local measurement of interphase [13]. 

Figure 6. Relationship between matrix and interphase properties. The interphase properties are determined by shifting the master 
curve of the matrix two decades lower in the frequency domain. 

FE simulations are run using the same set of microstructures using SDF approach as in 2.2 with 

interphase region. The results are shown in Figure 7. The property enhancement from the 

interphase layer exhibits an unbalanced reinforcement for the rubbery and glassy modulus, where 

the reinforcement of the rubbery modulus is more significant than that of the glassy modulus. 

While the variance remains similar, the glassy modulus exhibits almost the same range of increase 
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with volume fraction as the no-interphase results while the rubbery modulus exhibits a much larger 

increase in magnitude compared to the no-interphase case. More significantly, the results for the 

 peak magnitude are dramatically different:  is nearly random with no discernable tan 𝛿 tan 𝛿 

decrease with volume fraction, in contrast to the monotonic decrease for the simulations with no 

interphase. The results for the simulations with interphase for  are quite similar to the dataset tan 𝛿 

from NanoMine for a wide range of experimental data (Figure 1). This result can help explain the 

findings in Figure 1 from NanoMine: since the data from experimental samples are wide ranging 

and in many cases the samples will contain an interphase of altered properties near the filler, the 

lack of trend in   can be expected over that broad data set.tan 𝛿 

To better understand the results for the  trends, the volume fraction and dispersion parameter are restricted individually in tan 𝛿 
different trials. The dispersion state of microstructures is controlled by the factor theta, which varies from [0.1,1]. 

Figure 8 shows the  peak as a function of volume fraction for data under similar dispersion, tan 𝛿

where the SDF parameter theta is restricted to different ranges ([0.1,0.3],[0.2,0.4],[0.6,0.8]) 

respectively. With constraint on the dispersion, the  peak exhibits a decreasing trend as a tan 𝛿

function of volume fraction at lower  ranges ([0.1,0.3] and [0.2,0.4]), similar to the trend in the θ

no-interphase calculations in 2.2. On the other hand, at a higher  ranges,  peak shows an θ tan 𝛿

opposite trend: increasing as a function of volume fraction. This can be explained by the fact that 

the behavior of the nanocomposite is gradually changing from being dominated by the matrix to 

dominated by the interphase.  Interphase volume fraction can increase both with dispersion of the 
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fillers in the matrix and a larger filler loading. However, in the case of poor dispersions, interphase 

layers will overlap, leading to minimal change in interphase fraction with increasing filler loading.  

Therefore, at lower dispersion levels, the  peak value decreases with filler loading because tan 𝛿

the bulk property of the composite is controlled by matrix and filler and the replacement of 

polymeric (damping) material with perfectly elastic participle (no damping) decreases overall 

dissipation. At higher dispersion levels, the  peak value increases because the property of the tan 𝛿

composite is dominated by the interphase as the interphase volume fraction exceeds a percolation 

threshold [14]. This result implies that for composites with interphase, both the loading and 

dispersion play a critical role in the determination of  peak values.tan 𝛿

We are also able to investigate the converse situation where the volume fraction is restricted to different small ranges 
([1%,5%],[5%,10%],[10%,15%]) respectively  and the effect of dispersion is varied. 
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Figure 9 shows the  peak as a function of dispersion for data under similar volume fraction. The blue data points in tan 𝛿

Figure 9 shows that at a lower volume fraction range ([0.01,0.05]), the  peak decreases as the dispersion increases. This tan 𝛿
suggests that at this lower loading, despite microstructures with different dispersions, the volume fraction of interphase does not 
exceed the interphase percolation threshold and the relaxation behavior of the composite is still being dominated by the matrix, 
with the peak located at the PC matrix frequency location (see Fig 6). As a result, as the dispersion improves, larger interphase 

volume reduces the tan d magnitude at the matrix peak frequency location (broadening the peak by shifting some magnitude 
toward the interphase peak frequency location) and results in lower  peak values. On the other hand, at higher volume tan 𝛿

fraction range (in green, [0.10,0.15]), the  peak increases as the dispersion improves. This result can be explained by that tan 𝛿
fact that the property of the composite is dominated by the interphase as the interphase volume fraction exceeds the percolation 

thresholds at this higher loading and therefore more interphase leads to increasing the composite tan d peak which for the 
percolated cases is located near the interphase  peak frequency location. The red data points in tan 𝛿
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Figure 9 shows the  peak first decreases and then increases as a function of dispersion, which tan 𝛿

provides evidence of the transition of composite property from being dominated by the matrix to 

being dominate by the interphase.  

Based on two controlled experiments, overall, adding interphase to the system greatly impacts the 

peak value and the value is dependent on both the loading condition (volume fraction) and tan δ 

the dispersion state (theta). These results also further clarify the no-trend result in the experimental 

data from NanoMine: these data sets contain microstructures with very different dispersions 

conditions, which must be accounted for to understand the damping response of the composite. 

Figure 7. Results for simulation with interphase region.  Three individual property value ( peak, glassy modulus and rubbery 𝑡𝑎𝑛 𝛿 
modulus) is plot against volume fraction using the microstructures from SDF approach as in 2.2. 
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Figure 8. peak as a function of volume fraction under different dispersion ranges. For each dispersion range: [0.1,0.3] 𝑇𝑎𝑛 𝛿 
(blue), [0.2,0.4] (red), and [0.6,0.8] (green), peak is plotted against volume fraction based on simulation results with 𝑇𝑎𝑛 𝛿 
interphase region. 

Figure 9. peak as a function of dispersion under different volume fraction ranges. For each volume fraction range:  𝑇𝑎𝑛 𝛿 
[0.01,0.05] (blue), [0.05,0.01] (red), and [0.10,0.15] (green), peak is plotted against dispersion based on simulation results 𝑇𝑎𝑛 𝛿 
with interphase region. 

3. Deep learning model and result

In the prior section, we have qualitatively shown that the mechanical properties of the composites 

vary according to microstructures with different filler loading and dispersion. The next task is to 

quantitatively predict the properties of interests (  peak, glassy modulus and rubbery modulus) tan 𝛿

given a microstructure. The remainder of this paper focuses on building quantitative structure-

property relationship using the interphase FE model with RVEs generated using SDF via a 

machine learning approach.  

3.1 Deep learning model development

The objective is to predict three continuous property values given a 2D image, which can be 

considered as a regression problem using features from a 2D matrix. There are two common 

strategies that can be applied to build this regression model: one is to use hand-crafted features 
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(usually geometrical descriptors) that could sufficiently capture the characteristics of a given 

microstructure; the other is to use feature-engineering free method such as deep learning. The 

quality of the prediction using hand-crafted features is heavily dependent on the quality of 

designed feature from material experts and these features are usually not transferable from one 

material system to the other. On the other hand, compared with traditional machine learning 

approach using hand-crafted features, deep learning method is considered as a feature engineering 

free method that is able to automatically learn critical features during the training process, and 

have shown significant improvement in learning ability, generalization and transferability. 

Convolutional neural network (CNN) is a deep learning approach and has been widely applied for 

computer vision related task, such as image classification and object recognition. In those tasks, 

CNN outperforms conventional methods to a large extent due to its capability of extracting high-

level abstractions of inputs through a series combination of non-linear transformations. A common 

CNN may include three different type of layers: convolution layer, pooling layer and fully 

connected layer. The objective of the convolution layer is to extract critical feature maps from the 

input images through applying filters with different number and size. The values in those filters 

are learned from available data. The pooling layer is often applied after convolution layers with 

the aim to reduce the dimension of the feature maps. Different down sampling strategies can be 

taken including max-pooling, average pooling and L2-norm pooling. By combining a series of 

convolution and pooling layers, a series of feature maps can be obtained and then fed to the fully 

connected layers for prediction of a class or a single value depending on the purpose of the task. 

The convolution and pooling layers are regarded as the feature extractor while the fully connected 

layers act as a non-linear regression model using the features from the first part. The nonlinearity 

in the network is introduced through applying activation functions, such as ReLU, sigmoid, tanh. 

Our target problem involves multiple outputs:  peak, glassy modulus and rubbery modulus. tan 𝛿

In order to predict multiple values given a microstructure image, two strategies can be taken: one 

is to train separate machine learning models for specific tasks (i.e. for our purpose, three separate 

machine learning models would be required to predict three different property values); the other 

strategy is to develop a single machine learning model that solves multiple learning tasks at the 

same time, which is also called multi-task learning (MTL). Figure 10 shows two common ways to 

perform multi-task learning in deep neural networks: hard or soft parameter sharing [42]. The most 

common strategy in MTL is hard parameter sharing, where several hidden layers are shared across 
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all tasks while task-specific layers are applied after to predict the value for different objectives. It 

has been shown that hard parameter sharing can reduce overfitting by including shared parameters. 

This advantage arises because the model must find hidden representations or features that captures 

all the tasks, which improves model generalization and reduces the chances of overfitting. For soft 

parameter sharing, each task has its own parameters. But the parameters for the different tasks are 

constrained to encourage the parameters to be similar. Different constrains are usually applied such 

as L2 distance for regularization and the trace form. MTL has also been demonstrated to be 

extremely helpful if tasks share some similarities and the data volume is relatively small. MTL 

appears to be a good candidate for our purpose as the three learning tasks share significant 

commonalities, which are to predict mechanical responses given a set of microstructure images. 

Additionally, because of the expensive cost of FE simulations, it is time-consuming to generate a 

very large volume of data. By utilizing MTL, it is aimed to implicitly augment the data, reduce the 

chances of overfitting and improve the model generalization. 

Figure 10 Architectures of two types of MTL models. (a) hard parameter sharing by applying hidden layers that shared across 
different tasks; (b) soft parameter sharing by having constrained individual parameters for different tasks to encourage similar 
parameters. 

Taking advantages of the MTL and CNN, in order to properly capture and extract high-level 

microstructure features and build the linkage of structure to multiple property values 

simultaneously, a multitask CNN model is proposed. The overall architecture of the model is 

shown in Figure 11 and the detailed configurations and parameters of each layer is shown in Table 

1. The input for this model is a 256*256 two phase binary image with zeros and ones, where zero 
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represents the matrix and one represents the filler. Even though the FE model includes interphase 

layers in the calculation, the input for the deep learning model only consists two phases, filler and 

matrix. The image is pre-processed by replacing zero with -0.5 and 1 with 0.5, which is a useful 

method to improve the performance of convolution layers [18, 43].   The model consists a number 

of shared convolution and pooling layers and three sets of tasks specific layers including 

convolution and fully connected layers. The shared layers, including convolution and pooling 

layers with different sizes, aim to extract the critical features from the images for determination of 

mechanical properties. Taking the features from shared layers, the task specific layers are designed 

to further extract task specific features and train different regressors for different outputs. The 

underlying reason for designing this architecture is that the extracted high-level features from 

convolutional layers should be shared across three highly related tasks while the weights for the 

later task specific layers are updated separately such that three different regressors are trained to 

predict different property values. The loss function for the model is formulated as the sum of mean 

absolute percentage error (MAPE) across three tasks:

loss =  ∑
𝑗 ∈ {𝑇,𝐺,𝑅}

1
𝑁

𝑁

∑
𝑖 = 1

|𝑦𝑖
𝑗 ― 𝑦𝑖

𝑗

𝑦𝑖
𝑗

| × 100%

where j represents the type of task, for our case it only has three values: peak (T), glassy tan 𝛿 

modulus (G) and rubbery modulus (R).  represents the i-th predicted value for task j and  𝑦𝑖
𝑗 𝑦𝑖

𝑗

represents the true value and  is the total size of training data. The training of this model is 𝑁

achieved by minimizing the loss function through back propagation and optimization. Additionally, 

in order to prevent over-fitting, common methods in deep learning including batch normalization 

and dropout is applied.

Page 20 of 32Molecular Systems Design & Engineering



Figure 11 Architecture of the proposed multi-task deep CNN model. The MTL is achieved through hard parameter sharing. The 
input image is first feed to a series of shared convolution and pooling layers to extract the high level shared structural features for 
different tasks.  Following that, three sets of task specific layers, including one more convolution and pooling layers and two fully 
connected (FC) layers are applied to predict different output. 

Table 1. Model configuration of the proposed multi-task deep CNN model. For each conv block,  convolution and ReLU 3 × 3
activation with back normalization (l2 norm rate = 0.0005) is applied. The pooling size is . After all the convolution and 2 × 2
pooling process, the weights are flattened and feed to two fully connected (FC) layers. 

Layer Type Dimension

Input Shared  256 × 256 × 1

Conv and Pooling 1 Shared 128 × 128 × 16

Conv and Pooling 2 Shared 64 × 64 × 32

Conv and Pooling 3 Shared 32 × 32 × 64

Conv and Pooling 4 Shared 16 × 16 × 128

Conv and Pooling 5/6/7 Task Specific 8 × 8 × 128
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FC 1/3/5 Task Specific 1 × 1 × 512

FC 2/4/6 Task Specific 1 × 1 × 256

Output 1/2/3 Task Specific 1 × 1 × 1

3.2 Datasets 

In order to demonstrate the performance of proposed method, a data set with total size of 11000 is 

created using generated microstructures and FEA model. Use of data from FEA simulations gives 

flexibility to explore a wide range of structures and the data can be accumulated in a relatively 

short period. 

Each microstructure, with dimension 256*256 pixels, is generated from SDF and considered as an 

RVE for the FEA. As illustrated in previous section, the volume fraction and the dispersion are 

controlled by the volume fraction (  and scale variable  respectively. By sampling 11000 𝑉𝐹) 𝜃

combinations of  and , 11000 RVEs with different volume fraction and dispersion are obtained. 𝑉𝐹 𝜃

FEA is run for each RVE using Abaqus. Polycarbonate is chosen as the matrix material, whose 

master curve is measured through DMA [26]. The filler is silica nanoparticle with a linear elastic 

young’s modulus of 73GPa and Poisson’s ratio of 0.3. The interphase layer has a thickness of 10 

pixels, whose properties are determined by shifting the master curve of the matrix two decades 

lower in the frequency domain. The FEA outputs the frequency response of mechanical properties 

of the nanocomposite, from which three properties of interest  peak, glassy modulus and tan 𝛿

rubbery modulus can be extracted. To create this data set, 4 simulation jobs are run in parallel with 

each one having 16 CPUs on 2 work stations. The total computation time is about two weeks with 

each simulation taking about 20 minutes.

The 11000 simulated data is further divided into a training, validation and testing set with a ratio 

of 7:1.5:1.5: 7700 data are used to fit the deep learning model and 1650 is used to tune the 

hyperparameters in the model and the rest of data is reserved as testing data to evaluate the 

accuracy of the model.  The accuracy of the model is evaluated using mean absolute percentage 

error (MAPE) which is given by:
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𝑒 =  
1
𝑁

𝑁

∑
𝑖 = 1

|𝑦𝑖 ― 𝑦𝑖

𝑦𝑖 | × 100%

where  is the predicted value from the deep learning model and  is the true value from the FE 𝑦𝑖 𝑦𝑖

model.  

The FE model is run using Abaqus, a widely applied commercial software for FE simulations. The 

simulations are run on a work station with 192GB RAM and 16 core Intel(R) Xeon(R) CPU E5-

2630 v3 @ 2.40GHz. To build the deep learning model, Python 2.7 and Keras with Tensorflow 

backend is adopted. The model is trained on a work station with a NVIDIA Quadro P5000 GPU 

with 16GB GPU RAM and 20 core Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz with 192GB 

RAM. 

3.3 Model performance

The performance of the model is benchmarked against two other common strategies for predicting 

structure-property linkage.  Figure 12 shows different strategies to predict the properties given a 

microstructure image. One of the traditional methods is to build correlations using hand crafted 

features such as volume fraction, nearest neighbor distance, aspect ratio etc. [19, 44]. Those 

features are usually designed by domain experts with the aim to capture the composition, 

dispersion as well as the geometric information of the microstructure. The structural features are 

then ready to be applied to fit a machine learning model to predict the property values. Another 

strategy to build the structure-property linkage is to compute two-point correlation functions from 

a microstructure and applied as features for the regression-based models [45-47]. Additionally, 

dimension reduction technique such as PCA is often employed on the two-point statistics because 

of the extremely high dimensionality. In order to evaluate the robustness and stability of the model, 

for every method, the model is trained and evaluated for ten times on different training testing 

splits. Additionally, to compare the performance of different methods, different models are given 

the same set of training, validation and testing set.  The result is shown in Table 2.
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Figure 12. Different types of methods to predict structure-property relationship. (a) Geometric descriptor-based approach (i.e. 
application of hand-crafted geometric features such as volume fraction, aspect ratio etc. to a regression model)); (b) Two-point 
statistic methods (using two-point statistics as features for the regression model); (c) Deep learning-based approach (feature 
engineering free).

Table 2 Result comparison for different methods. The value shows the mean of MAPE together with the standard deviation across 
ten trials.

Method Glass modulus Rubbery 

modulus

peak 𝑡𝑎𝑛 𝛿 

Two-point

Statistics + 

PCA 

1.23% ± 0.03% 5.40% ± 0.14% 8.99% ± 0.16%

Geometrical 

Descriptors 

 1.16% ± 0.02% 4.54% ± 0.08% 4.55% ± 0.10%

MTL-CNN 0.68% ± 0.06% 3.12% ± 0.06% 3.58% ± 0.14%

The result shows that across all the tasks, the MTL-CNN model outperforms other methods. 

Additionally, the value of the standard deviation on all trials is also small indicating the robustness 

of the model. The method using geometrical descriptors even outperforms the two-point statistics 

especially for the predicting of rubbery modulus and  peak, which suggests that those hand-tan 𝛿 

crafted descriptors designed by material express are really good at capture the characteristics of 

the microstructure and informative to the bulk properties of the composites. Compared with 
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method using geometrical descriptors, deep learning model improves the accuracy for prediction 

of glass modulus by as much as 41.3%, rubbery modulus by 31.2%, and peak by 21.3%. tan 𝛿 

3.4 Model interpretation 

As given in Table 2, deep learning model outperforms other traditional machine learning model 

for all the three target tasks. However, deep learning model is relatively hard to interpret compared 

with traditional method using hand crafted features. In another word, for traditional machine 

learning method, it is easy to extract the impact of every feature to the target while deep learning 

model works as a black box with complex architectures and millions of hidden parameters. 

Although it is not possible to interpret every parameter in a deep learning model, it is worth the 

effort to understand what the model learns and whether it captures some physical knowledge. 

Therefore, in this section, by modifying the inputs to the deep learning model, we try to interpret 

what the model learns from physical point of view. 

 In section 2, it has been shown that the glassy modulus increases monotonically as a function of 

volume fraction. This result suggests that the filler phase has larger impact on the glassy modulus 

of the composite than the matrix. To validate whether the proposed model captures this physical 

knowledge, the original microstructure input is modified by randomly removing a number of pixels 

from filler or matrix respectively and the prediction from the DL model on this partially incomplete 

microstructure is obtained. The removal process is achieved by setting the value of the chosen 

pixel to 0, which eliminates the activation of the model from that pixel and therefore its 

contribution to the target value. Figure 13 shows an original image and the modified images after 

removal different number of pixels from filler or matrix. The modified responses from those two 

sets are compared with the known FEA response on the original, unmodified microstructure. The 

change of modified response is evaluated according to the residual equation below:

𝑟 =  
|𝑦 ― 𝑦|

𝑦  ×  100%

where  is the predicted value from the deep learning model and  is the true value from FE model. 𝑦 𝑦
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Figure 13. Visualization of the original microstructure and the modified microstructure with different number of pixels removed 
from the original image. Yellow represents the matrix region while green represents the filler region. The pixels with red color are 
removed by setting value to zero. 

Figure 14 shows the contribution of matrix and filler in the trained deep learning model by plotting 

the residual against the number of removed pixels. The plot is based on a single testing sample and 

the experiments are conducted ten times for accuracy and stability. The plot shows that as the 

number of removed pixels from either from matrix or filler phases increases, the residual value 

increases monotonically, indicating that the deep learning model has lower accuracy as more pixels 

are eliminated. More importantly, the residual value from removal of filler pixels is much higher 

than the residual value from removal of matrix pixels, which suggests that the contribution from 

the filler is higher than matrix in determination of glassy modulus. This finding, corresponding to 

the knowledge illustrated earlier, were not explicitly introduced to the deep learning model during 

the training process. The proposed deep learning model is able to learn and capture this physical 

knowledge during the training process. Additionally, in order to show that this finding holds for 

other samples, the same experiments are done for ten random chosen testing samples and the 

average residual is calculated across those samples. Figure 15 shows the residual for ten different 

samples. The plot shows that on average, the effect from the filler is higher than the matrix in 

determination of glassy modulus. Therefore, the trained deep learning model is able to implicitly 

learn and capture knowledge about the physical distinction between filler and matrix and use that 

information for more accurate predictions. 
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In addition, the deep learning model is able to capture the implicit role of interphase in 

determination of different  trends as described earlier in section 2.4. This finding is tan 𝛿 

demonstrated by generating a new data set of 100 microstructures where the  values are tan 𝛿

predicted based on the trained deep learning model without running FEA. Analysis is performed 

to investigate the trend of as a function of volume fraction by controlling dispersion at tan 𝛿 

different levels (similar to Fig. 8, data not shown here). Without running any direct simulations, 

the predicted values exhibit a similar trend as in section 2.4, capturing the interphase dominance 

at higher volume fractions. This test suggests that the deep learning model is able to implicitly 

learn the critical role of interphase and its percolation in determination of different  trends. tan 𝛿 

Figure 14. The plot shows the residual as a function of removed pixels for different material phases on a single testing sample. The 
experiments are conducted ten times for robustness and accuracy. The colored area shows the distribution of values for ten trials 
and the solid line shows the average. 
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Figure 15. Average residual plots for ten different testing samples. The colored area shows the distribution of average residual for 
different samples while the solid line shows the mean value. 

Conclusion

In this paper, we demonstrated a data driven and deep learning approach for modeling structure-

property relationship for polymer nanocomposites. The analysis starts from analyzing archived 

experimental data from NanoMine, which motivates further analysis using computation models 

including microstructure reconstruction methods and finite element simulations. The first part of 

this paper focuses on qualitative relationship between microstructure descriptors and mechanical 

properties, resulting into new findings about the interplay of interphase, volume fraction and 

dispersion. By conducting an array of controlled simulations, it was demonstrated that the bulk 

property of nanocomposites is determined by confluent impacts of microstructure type, interphase, 

loading condition and dispersion. Specifically, adding interphase to the system was found to 

greatly impact the peak value and cause the behavior of the bulk property to gradually shift tan δ 

from matrix dominant to interphase dominant as the interphase exceeds the percolation threshold. 

In this analysis, for simplicity, the interphase was assumed to be uniform with fixed thickness, 

while future work could include more comprehensive representations using gradient interphase 
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and compound effect [13]. In addition, in this paper, peak is chosen as the target property tan δ 

because of its capability of representation damping effect of composite. It is also acknowledged 

that the area under the  curve is another good representation of the damping and energy tan δ

absorption and it might be usefully to conduct similar analysis using this or other measures. 

The second part of this paper focuses on building quantitative structure-property relationship using 

deep learning approach. A multi-task convolutional network is proposed to predict mechanical 

properties of polymer nanocomposites using microstructure images. A computational data set with 

size 11000 is generated using finite element simulations. The performance of the model is 

benchmarked against two other state-of-the-art approaches using two-point statistics and structural 

geometrical descriptors. The result shows that the proposed deep learning model improves the 

accuracy for prediction of glass modulus by as much as 45.2%, rubbery modulus by 34.2%, and 

peak by 19.7%. Additionally, by modifying the inputs to the deep learning model, we have tan 𝛿 

shown that the deep learning model is able to capture physical understandings through learning, 

which are not explicitly introduced to the model before-hand. The proposed deep learning 

approach is a feature engineering free, high accuracy and generalization and interpretable model 

to study the structure-property linkage in polymer nanocomposites. Future study can also work on 

training the deep learning model using multi-phase images including interphase layers with 

gradient properties. Such a trained model could be applied to extract other material insights 

including the impact of gradient interphase layers to help better understand the role of interphase 

in polymer nanocomposites.

In general, this paper demonstrated an application of NanoMine on understanding structure-

property relationship for polymer nanocomposites. Motivated by analyzing the archived 

Nanomine data and further application of data driven FEA and deep convolutional neural network, 

both qualitative and quantitative structure-property relationships are explored. This work also 

demonstrates an applicable path on developing data driven and machine learning methods for 

material mechanism understanding: starting from analyzing archived data, then moving to 

application of computational methods for data augmentation, followed by exploring qualitative 

relationship by restricting confounding parameters, and finally building quantitative relationship 

using machine learning models. In this paper, three representative viscoelastic properties are 

chosen as a starting point based on our research interest and availability of computation models 

for this case study. And given polymer nanocomposites exhibit a wide range of outstanding 
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properties worthy investigation, this strategy can be generalized to understand other material 

mechanisms and properties as well as guide the design of material with targeted performance. 
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