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We demonstrate a novel platform for mapping the pressure distribution of complex microfluidics networks with high 

spatial resolution. Our approach utilizes colorimetric interferometers enabled by lossy optical resonant cavities embedded 

in a silicon substrate. Detection of local pressures in real-time within a fluid network occurs by monitoring a reflected color 

emanating from each optical cavity. Pressure distribution measurements spanning a 1 cm2 area with a spatial resolution of 

50 μm have been achieved. We applied a machine learning-assisted sensor calibration method to generate a dynamic 

measurement range from 0 to 5.0 psi, with 0.2 psi accuracy. Adjustments to this dynamic measurement range are possible 

to meet different application needs for monitoring flow conditions in complex microfluidics networks, for the timely 

detection of anomalies such as clogging or leakage at their occurring locations. 

Introduction 

Microfluidics, which emerged in the early 1980s, is now widely 

used in academic research studies and in biotechnology 

industry applications. Lab-on-a-chip technologies have guided 

the development of devices that integrate multiple laboratory 

functions, such as sample treatment and chemical detection, 

on a single wafer to achieve automation, high-throughput, and 

rapid processing.
1,2

 Key applications include DNA sequence 

analysis,
3,4

 biomolecule synthesis,
5
 drug discovery,

6–8
 studies of 

living cell systems
9–15

 and point-of-care disease diagnostics
16,17

. 

With microfluidics manufacturing becoming more mature, 

highly integrated devices can now be produced at low-cost.
18,19

 

When microfluidics networks scale up, especially for systems 

involving pumps
20

 and valves,
21,22

 a critical need emerges for 

monitoring the system to check for working conditions at 

different device locations. For large-scale, continuous-flow 

systems, it becomes especially crucial to monitor flow 

conditions and identify operation anomalies such as 

clogging
23,24

 and leakage
25

 in real time to provide opportunities 

for timely mitigation, thereby ensuring smooth operation. 

Hydraulic pressure is one of the most essential parameters in 

all microfluidics devices since it is the driving force of fluid flow 

in every region of a chip.
22

 Real-time mapping of local 

hydraulic pressure distributions throughout a large area with 

high spatial resolution would facilitate the future design of 

large-scale, complex, and interconnected microfluidics 

networks and also provide an in-situ monitoring function to 

check operating conditions of current chips.  

Traditional external pressure transducers are not easily 

compatible with microfluidics systems due to their bulky 

sizes.
26

 Local pressure measurements are typically through 

external tubing connections, and parallel measurements are 

impractical because of the limited space available on a 

microfluidics chip.
27,28

 Few approaches exist to provide 

distributed pressure measurement functions.
29–35

 Electrical 

methods such as an electro-fluidic circuit
29,31

 or a 

microflotronic film
30

 utilize pressure-induced structure 

deformation and corresponding electrical property changes to 

sense the pressure in  microfluidics channels. These methods, 

however, suffer from low spatial resolution because of the 

need for large footprint-sized sensing units to ensure 

sensitivity. Optical methods that rely on monitoring the 

pressure-induced movement of liquid-air
32

 or liquid-liquid
33

 

interfaces have also been proposed. A major drawback of 

these approaches is the need to modify existing fluidics 

networks to introduce such interfaces, which greatly 

complicates the design, fabrication, and operation of 

microfluidics devices. An optofluidic membrane 

interferometer
34

 can provide high sensitivity measurements of 

on-chip channel pressure through imaging the interference 

fringe patterns formed at an optical cavity. To ensure 

detection sensitivity, high-resolution optical images that 

typically contain tens of thousands of imaging pixels are 

Page 1 of 9 Lab on a Chip



ARTICLE Journal Name 

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

required for a sensing unit, which limits the density of sensing 

units for deployment on a chip.   

Here, we present a new distributed pressure-sensing 

platform based on colorimetric interferometry that can extract 

pressure-mapping information from complex microfluidics 

chips with high spatial resolution in a large cross-sectional area 

(Fig. 1A). Our platform integrates with microfluidics networks 

of arbitrary shapes without a need to modify the original 

microfluidics structure design. Channel pressure at different 

locations is detected by monitoring the reflected color 

composition of corresponding mirrors through a common 

optical microscope (Fig. 1B and 1C). Each pressure sensing unit 

consists of a lossy optical resonant cavity formed by a thin air 

gap sandwiched between a transparent silicon dioxide mirror 

suspended on an elastic membrane and a reflective silicon 

substrate. When the local fluid pressure applied on a mirror 

changes, it changes the air gap thickness, the light interference 

condition, and the reflected color composition (Fig. 1D and 

1E).  

Methods 

Device fabrication 

The device is fabricated using a combination of standard silicon-

based microfabrication and PDMS-based heterogeneous integration 

processes.
36

 It can be summarized into three major steps: (1) A thin 

PDMS film is prepared by spin coating (4000rpm, 5min) and baked 

inside an oven at 65 
o
C until cure to achieve a final thickness of 6 

μm. This PDMS film is laterally peeled and attached temporarily 

onto a hybrid glass-PDMS buffer. (2) A 1.5 μm thick thermally 

grown silicon dioxide layer is patterned into a disk array and the 

silicon substrate underneath is isotropically etched to form thin 

needle-shaped anchors under these disks. These silicon dioxide 

disks are then permanently bonded to a thin PDMS film through 

oxygen plasma treatment (80 W, 500 mT, 30 s) and oven baked for 

2 hours at 65
 o

C. Then, the whole sample is immersed in a 

water/acetone (1:1 v/v ratio) ultrasonic bath to break the silicon 

anchors and transfer the disk array. (3) Another silicon substrate 

with the same thickness of thermal oxide goes through another 

step of plasma-enhanced chemical vapor deposition (PECVD) to add 

an extra 550 nm oxide thickness to define the initial air gap spacing. 

An array of wells is etched out to accommodate the oxide disk 

array. Finally, this substrate is align-bonded with the thin PDMS film 

mounted with an array of oxide disks to form the optical cavities, 

and finally, the hybrid buffer is peeled off. The device can go 

through an optional prolonged oxygen plasma treatment (80 W, 

500 mT, 7 mins) to create a thin silica-like layer on top of the PDMS 

surface to help block the penetration of water vapor to extend the 

device operation lifetime under a high hydraulic pressure 

environment.
37,38

 More fabrication details are illustrated in Fig. S1†.  

Imaging setup 

An upright microscope (Zeiss Axio Scope A1) is used to image the 

device with a 10× objective lens (N.A. 0.25). The broadband white 

light illumination source is from a halogen lamp (HAL 100) attached 

to the microscope. A color CMOS camera sensor (Grasshopper GS3-

U3-41C6C-C) is attached to the microscope to capture images for 

analysis. The camera is set to have a fixed exposure time of 0.35 ms. 

All image preprocessing functions on this camera are turned off, 

and exported images are in the raw file format to prevent 

information loss. 

FDTD simulation and numerical calculation 

The numerical simulation is conducted using a commercial FDTD 

software (RSoft) based on a single unit of optical cavity. The model 

is simplified to a 2D cross-sectional study with periodic boundary 

conditions on two sides. Material properties are set accordingly to 

the built-in refractive index library. An emitter sends optical waves 

vertically into the cavity and a receiver behind the emitter 

measures the reflected power. We run parametric sweep on the 

wavelength of light and air gap thickness to generate the 

reflectance spectra in Fig. 2A. To compute the color transition in Fig. 

(A)

(B) (C)

(D) (E)

upstream

downstream

20µm20µm

For reflected light, no phase shift at sio2/air interface, Pi 
phase shift at air/si interface. Consider reflection at 
oxide/air interface:

Condition for destructive interference: 2t=n! , 

! =2t, t, 2/3t, 0.5t, 0.4t,…

a larger portion of the light with those wavelength 

enter the cavity, bounced back and forth inside the 

cavity for multiple times and gradually absorbed by or 
transmitted into si.

Condition for constructive interference:2t=(n+0.5)! , 

! =4t, 1.33t, 0.8t, 4/7t, 4/9t,…

those wavelength gets more reflected and constitute 

the color we see
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Fig 1. (a) schematic of pressure sensing substrate using colorimetric interferometry
gradually decreased along the path of flow from upstream to downstream, corresponding
from green to yellow to orange. (b) cross-sectional schematic of the sensor unit under

pressure at the upstream. the thin PDMS membrane is deformed, resulting in a smaller
Si substrate. Certain wavelengths of light (red) mostly transmit into the cavity due

interface and get partially absorbed by silicon substrate, other wavelengths of light are
sio2/air interface and form a complementary color (green) as shown in the microscopic
downstream , on the contrary, the air gap remains almost the same due to much

wavelengths that enter the cavity and get absorbed by silicon (green) change, and the
that we observe under microscope also changes (e).

Fig. 1 A distributed pressure-sensing platform based on a 
colorimetric interferometer array. (A) Schematic of a pressure-
sensing platform based on a colorimetric interferometer array. 
Local hydrodynamic pressure in a complex fluidics network is 
obtained in real-time by detecting the reflected light color from a 
corresponding optical cavity. (B)(C) Two schematics of the cross-
section of an individual sensor unit.  The unit consists of a thin 
PDMS membrane that deforms under fluid pressure. The SiO2 
mirror suspended below the membrane and the Si substrate forms 
an air cavity that functions as a lossy optical resonator. When the 
fluid pressure above the PDMS membrane changes, the air gap 
spacing also changes to result in a shift of the reflected optical 
spectrum.  Through detecting the color composition of each cavity, 
the local fluid pressure above the mirror is measured. (D)(E) 
Example microscopy images detected from two sensor units along a 
fluid channel, one at the upstream high-pressure region (green 
color) and the other at the downstream low-pressure region (red 
color). 
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2D, we adopted the illumination spectrum of the halogen lamp (Fig. 

S2†) measured by a commercial spectrometer (Ocean Optics HL-

2000-HP), and the camera sensor color sensitivity spectra (Fig. S3†) 

in the specification manual provided by the manufacturer. 

Pressure and flow rate control 

A precision pressure regulator (Marsh Bellofram 510PI0G015P0100 

Digital Pressure Regulator) is used to control the pressure output 

during calibration experiments. The regulator takes a 20 psi 

compressed air as input and regulates the pressure output within 

the range of 0 to 15 psi based on the voltage control signal from 0 

to 10 V using a DC power supply (Gw Instek GPS-3303), and has a 

built-in digital display for pressure readout. It can maintain a stable 

pressure output with < 0.1psi fluctuation using feedback control. 

Pressure levels from 0.2 psi to 5 psi with a step of 0.2 psi are tested. 

At each pressure level calibration is repeated multiple times by 

taking 45 consecutive images with 100 ms interval and fixed 0.35 

ms exposure time. 

A syringe pump (Harvard PHD 2000 Infusion) is used to control 

the flow rate during pressure mapping demonstration. A syringe 

(BD 10 ml, Luer-Lok) filled with DI water is mounted onto the pump 

to supply a continuous flow into the microfluidic network through 

tubing connection. Various flow rates from 0.25 ml/h to 2 ml/h with 

a step of 0.25 ml/h are tested. After each flow rate adjustment, we 

wait for at least 10 mins in order to let the flow stabilize and reach 

steady state.
27

 Then images are captured at several locations inside 

the microfluidic network to map out the pressure distribution. For 

each flow condition, the measurement is repeated multiple times 

by taking 45 consecutive images with 100 ms time interval and fixed 

0.35 ms exposure time. 

Image processing 

Each measurement consists of 45 still images with minimal relative 

movement. We take the first frame from each measurement to find 

the center coordinates of pressure sensing spots of interest and 

assume them to remain the same for following frames. Scikit-image, 

an open-source image processing library for the Python 

programming language,
39

 together with customized codes are used 

to extract the Hue and Saturation readings. Each color spot actually 

contains more than 100 pixels in the image. To improve accuracy, 

we don’t include pixels close to object edges, and thus limit our 

calculations to pixels within a ring-shaped area whose inner circle is 

3 pixels away from the spot center and outer circle 3 pixels away 

from the spot edge, leaving us about 40 pixels for each spot with 

plenty of redundancy. The Hue and Saturation readings for these 

pixels are averaged such that each spot ends up having one Hue 

reading and one Saturation reading in a single frame of image. 

Therefore 45 images provide 45 times of measurements for each 

pressure level calibration experiment. Since there are 25 pressure 

levels sampled between 0.2 psi to 5 psi every 0.2 psi, we append 

these measurements together to form a calibration dataset 

consisting of 1125 data points in total and provide the basis for 

regression analysis of one measurement spot. Each calibration data 

point has the Hue and the Saturation readings, and is 

associated/labeled with a pressure level somewhere between 0.2 

psi to 5 psi. 

Regression analysis and pressure prediction 

For each measurement spot we have 1125 calibration data points 

based on which we perform a regression analysis between the color 

attributes and the pressure level as a way of nonlinear sensor 

calibration. Fig. 4A serves as the data visualization and inspires us to 

try out two regression models: parametric polynomial regression 

and non-parametric kNN regression. Scikit-learn, an open-source 

statistical learning library for the Python programming language,
40

 

is used for the regression analysis and establish the relationship 

between color attribute readings and the pressure level. To select 

the optimal parameters, namely the highest degree in polynomial 

regression and the number of neighbors in kNN regression, we used 

leave-one-out cross-validation (LOOCV) to evaluate the model 

performance with mean absolute error as the evaluation metric. 

After establishing the relationship and saving the model, we are 

able to make pressure prediction based on the color of a 

measurement spot by extracting the Hue and Saturation readings as 

inputs and correlating them to a pressure level. 

 
Results and discussion 
Working principle 

The optical wavelength-selective reflection response of an air 

cavity originates from its role as a lossy optical resonator. Light 

rays reflected at the SiO2/air interface interfere with those 

reflected at the air/Si interface. Little reflection is detected at 

the mirror when the wavelength of light satisfies the 

destructive interference criterion in the reflection direction  

                

       
 

 
    

where t is the air gap thickness and λ is the wavelength of 

light. Light of these wavelengths enter the cavity, bounce back 

and forth, and eventually become absorbed by the silicon 

substrate. However, when the wavelength of light satisfies the 

constructive interference criterion, 

   (  
 

 
)             

     
 

 
  

 

 
    

, strong light reflection occurs. These wavelengths of light 

constitute the final color spectrum captured by a camera from 

each corresponding cavity. Numerical simulation using the 

finite-difference time-domain (FDTD) method calculates the 

reflectance spectra from an optical cavity in the visible light 

range (Fig. 2A). In our device, the initial air gap thickness t0 was 

designed to be ~ 600 nm, and the target operation range was 

set to be less than 300nm for optimal operation in the visible 
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light range. We selectively plotted the reflectance spectra for 

gaps at 500nm, 420nm, and 360nm (Fig. 2B). Wavelengths at 

which minimum reflectance occurs are close to 500nm, 420nm 

and 720nm, respectively, which aligns with the above 

analytical analysis based on light interference principles. 

To calculate the reflection spectrum detected by the imaging 

system, we consider three main factors, the light source spectrum, 

the reflection spectrum from an air cavity, and the reception of the 

image sensor. To compute the colors perceived by the image 

sensor, we first adopt the RGB color model by calculating the value 

of each component with the following set of equations 

  ∫  ( ) ( ) ( )  
 

 

 

  ∫  ( ) ( ) ( )  
 

 

 

  ∫  ( ) ( ) ( )  
 

 

 

where  ( ) is the illumination spectrum of the light source 

measured by a spectrometer (Fig. S2†),  ( ) is the reflectance 

spectrum of our device obtained from the FDTD numerical 

simulation, and  ( )  ( )  ( ) are the spectral sensitivities of red, 

green, and blue pixels of the image sensor provided by the 

manufacturer (Fig. S2†). We sampled the spectral data points every 

20 nm and calculated the RGB intensities perceived by the image 

sensor at different air gap thicknesses. The results, however, 

indicated that the change of red (R) and green (G) channels closely 

follow each other, and the blue (B) channel signal is weak. 

Furthermore, the readings of RGB channels are subject to scale 

simultaneously when the light intensity and exposure time 

fluctuates. These factors strongly suggest that the RGB color index 

is not ideal for quantifying the relationship between the reflection 

spectra and air gap spacing. Therefore, we turned to an alternative 

HSV (Hue, Saturation, Value) color index that decouples brightness 

(Value) from color (Hue and Saturation) attributes (Fig. 2C). In the 

HSV color index, Hue is the attribute of human perceived color, 

such as red, yellow, green, and blue. The Hue parameter is typically 

represented by the angle degree of a rainbow wheel. For example, 

red is at zero degrees, green at 120 degrees, and blue at 240 

degrees. Saturation is the attribute representing pureness of a 

color, and Value is the attribute representing the brightness of a 

color.
41

 The Hue and Saturation attributes provide the spectrum 

components of a color, and therefore are ideal parameters for 

characterizing the relationship between the spectrum change and 

the air gap spacing. The indices of the RGB model can be converted 

to the HSV model based on the following formula:  

   

{
  
 

  
 (

   

                     
  )             

(
   

                     
  )           

(
   

                     
  )           

 

                                       

 

          

  
                     

          
 

V =            

After converting to the HSV color model, we observed that the 

change of the Value channel is much smaller than the Hue or 

Saturation channels when the air gap thickness varies. In addition, 

the Hue and Saturation channels are more resistant to potential 

light intensity fluctuations. Both of these desirable features 

corroborate our choice to use the HSV model and examine the Hue 

and Saturation channels for quantifying the relationship between 

color composition and air gap thickness. In Fig. 2D is a simulation 

result showing the relationship between air gap thickness and 

Saturation and Hue values. There is a trend of clockwise progression 

on the Hue-Saturation plot when the air gap thickness decreases 

from 560nm to 380nm.  

Machine learning-assisted multivariant nonlinear sensor 

calibration 
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Fig 2. (a) numerical simulation of reflectance spectra within visible light wavelength
different air gap thickness. (b) numerical calculation of reflectance spectra at several
For each air gap we can clearly see an absorption peak at wavelength equal to or

spectrum line is plotted in the color we expect to see from reflection, which is complementary
color. (c) Cone plot of HSV (Hue, Saturation and Value) color model. Different perceived

etc.) are represented by different degrees of hue. Different levels of colorfulness is represented
scale from 0 to 1. Value describes the brightness of a color relative to the brightness
white. (d) plot of reflected colors in terms of their saturation and hue at different air

calculated by integrating the product of light source intensity, device reflectance and camera
the range of visible light wavelength.

h

s h=0° (360°)
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v
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Fig. 2 Working principle. (A) Numerical simulation of the 

reflectance spectra in the visible light range as a function of air gap 

thickness.  (B) The reflectance spectra at three selected air gap 

thicknesses extracted from (A) to show that the wavelengths at 

which minimum reflection occurs matches the analytical analysis 

results. (C) Cone plot of the HSV (Hue, Saturation, Value) color 

model. Different perceived colors (red, blue, green, etc.) are 

represented by different degrees of Hue. Different levels of 

colorfulness are represented by Saturation on a scale from 0 to 1. 

The brightness of a color is represented by the parameter Value. 

(D) Plot of reflected colors in terms of their Saturation and Hue 

values at different air gap thickness. We calculate colors by 

integrating the product of light source intensity, device 

reflectance, and camera pixel sensitivity over the range of the 

visible light wavelength spectrum. 
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To validate the results predicted from the above theoretical analysis 

and numerical simulation, we performed calibration experiments 

with a fabricated device under a microscope (Fig. 3A). A 

microfluidics channel was bonded on top of the device and filled 

with water as the pressure-transmitting medium. Pressure was 

supplied by a pressure regulator with built-in digital calibration. The 

regulator provides a stable pressure output with fluctuations less 

than 0.1 psi. We sampled the pressure level from 0 to 5 psi with 0.2 

psi intervals. Each pressure level measurement was repeated 45 

times. Images were captured using a color CMOS sensor at different 

pressure levels to demonstrate the color transition effect (Fig. 3B – 

3D). The Hue and Saturation values from the pixels of a 

corresponding cavity were extracted and averaged. The results 

measured at different pressure levels were compiled into one plot 

(Fig. 3E). The trend of clockwise progression on the Hue-Saturation 

plot when the pressure level increases, which causes the air gap to 

decrease, matches well with our simulation results shown in Fig. 2D.  

In order to establish the correlation between Hue and 

Saturation readings and the actual pressure level in the 

microfluidics channel, we formulate the problem as a multivariate 

nonlinear sensor calibration using the experimental calibration data 

(Fig. 4A). Statistical learning methods have been previously applied 

to such nonlinear sensor calibration problems.
42–45

 Here, we explore 

the applications of two models, (1) polynomial regression and (2) k-

nearest neighbors (kNN) regression, to fit the experimental data 

and build a model that can reliably predict the pressure level based 

on Hue and Saturation readings. Polynomial regression, as a 

commonly used parametric curve fitting method, fits a nonlinear 

relationship between independent variable X and dependent 

variable Y by statistically estimating Y to be a linear combination of 

X and its higher-degree terms. The goodness of fitting largely 

depends on the wise choice of X and proper order of the highest 

degree. Seeing the clear clockwise progression from visualizing data 

points in a 2D plot with respect to the Hue and Saturation readings 

(Fig. 3E), we first calculated the mean for all Hue and Saturation 

readings and used that center point as a new origin. Then, the 

vector of a data point is defined as the one connecting the new 

origin and the data point itself. The vector of the very first 

calibration data with the lowest pressure level was taken as a 

reference vector, and we chose X to be the clockwise directional 

angle between any data vector and the reference vector. With the 

proper choice of the highest degree, we can fit relatively well on the 

whole set of calibration data (Fig. 4B). 

The K-nearest neighbors regression, which is a non-parametric 

technique,
46

 predicts the value of Y based on a similarity measure 

between a new measurement and all the existing calibration data. 

Accuracy is usually affected by the choice of distance function as a 

measure of similarity, and the choice of how many neighbors 

examined. We chose the Euclidean distance between data points as 

the similarity measurement and achieved a fitting even better than 

the polynomial regression method for the whole calibration data 

(Fig. 4C). To further evaluate the generalized model performance 

when encountering new measurements in the future and prevent 

overfitting, we performed leave-one-out cross-validation (LOOCV) 
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Fig. 3 Pressure calibration. (A) Schematic of the experimental setup 
for calibrating the relationship between pressure and air-gap 
sensor color response. A microfluidics channel was bonded on top 
of our colorimetric pressure- sensing platform for this calibration 
test. The assembled platform was placed under a standard upright 
microscope with a 10× objective lens for imaging. For pressure 
calibration the exhaust outlet was sealed to form a closed 
chamber. (B, C, D) Microscopic images showing different colors 
captured at different pressure levels. (E) Experimentally measured 
colors at different pressure levels are plotted in terms of their 
Saturation and Hue values. Each data point on the plot is the 
average result of 27 sensing units. Each one is measured 45 times 
at each pressure level with error bars representing the standard 
deviation. 
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Fig. 4 Nonlinear sensor calibration with experimental data. (A) Plot 
of Saturation and Hue readings corresponding to pressure levels 
from 0 to 5 psi. (B) The goodness of fitting by applying the 
polynomial regression to the dataset. The fitted value is given by 
the model based on Saturation and Hue readings as input and 
plotted against the actual value as reference. (C) The goodness of 
fitting by applying the kNN regression to the dataset. (D) 
Generalized model performance evaluated by using the leave-one-
out cross-validation method. Each point represents the difference 
between the actual pressure of one test and the predicted 
pressure. 
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using the calibration dataset (Fig. 4D). The kNN regression showed 

superior performance with lower median error and narrower error 

variation. The absolute error was less than 0.2 psi as shown by the 

outlier with the largest error. With a denser pressure calibration 

interval used, the error from the kNN regression model can 

ultimately reduce down to the precision of the pressure regulator 

used for calibration. 

Pressure mapping inside a complex microfluidics network 

Using the prediction model built by the kNN regression method, we 

mapped the Hue and Saturation values to the pressure applied on 

top of an air cavity. As a potential application, we apply this 

distributed pressure-sensing platform to map the pressure 

distribution inside a complex microfluidics network (Fig. 5A). We 

fabricated the microfluidic channels using a soft lithography 

method and bonded it to our platform. The microfluidics network 

spans an area of 8 mm × 5 mm and is covered by more than 10,000 

pressure-sensing units evenly distributed with a 50 μm pitch. A 

flow-rate-controlled syringe pump was used to drive water through 

the network at different flow rates. After flow stabilization, color 

images were captured at the inlet, middle and outlet areas of the 

network in order to map pressures in these zones. Since pressure 

drops from the upstream inlet to the downstream outlet in a 

continuous flow, different regions exhibit different colors (Fig. 5A). 

At each location, we repeated the measurements by taking multiple 

image frames under steady state flow conditions. Each image 

contained more than one hundred pressure-sensing spots. As a 
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demonstration, we cropped the images and evaluated the same 

spot in each area under different flow rates. The Hue and 

Saturation readings from these spots were extracted and plotted 

(Fig. 5B – 5D). With the previous calibration data and kNN 

regression modeling, we measured the pressure at different 

locations under different flow rates (Fig. 5E). Pressure drops 

between any two spots can be simply calculated and used to 

monitor flow conditions. When the change is from an overall flow 

rate adjustment, we expect the pressure drop at different regions 

to change simultaneously and proportionally.  However, when the 

change is from anomalies, such as clogging or leakage at some 

locations, our distributed multispot pressure-sensing platform 

should detect regions showing an abnormality by plotting the 

pressure distribution map.  Fig. 5F shows an example of a pressure 

distribution map for an entire complex microfluidics network used 

in our study. The experimental result agrees well with the pressure 

distribution obtained from numerical studies as shown in Fig. S4†. 

Discussion 

A dynamic, real-time map of pressure distribution inside a 

microfluidics network can provide vital information about network 

operating conditions. Although there has been effort to develop 

microfluidics pressure sensors, a platform providing high spatial 

resolution pressure mapping for large-scale microfluidics networks 

is not yet available. Here, we demonstrate a distributed color 

interferometry-based pressure-sensing platform with more than 

10,000 pressure sensing spots spanning a 1 cm
2
 cross-sectional area 

with 50 μm spatial resolution. We used a 10 objective lens for 

imaging. Each silicon dioxide mirror provides ~ 40 imaging pixels in 

a total image. Silicon dioxide has a Young’s Modulus of 70 GPa, 

which is nearly 5 orders of magnitude larger than the surrounding 

PDMS structure. On one hand, the supporting silicone dioxide from 

the substrate firmly anchors PDMS film and effectively decouples 

the mechanical responses of neighboring sensing spots when 

separated 50 μm apart (Fig. S5†). On the other hand, each silicone 

dioxide mirror remains rigid and flat during the pressure-sensing 

process. All optical pixels corresponding to an individual silicon 

dioxide mirror show nearly identical color compositions and change 

simultaneously when the PDMS membrane deforms and an air 

cavity changes thickness. In principle, a single optical pixel is 

sufficient for measurement at each spot in a microfluidics network. 

This suggests that concurrent monitoring of dynamic pressure 

changes over a large area microfluidics network is feasible with a 

lens for a larger field of view, as long as there is at least one optical 

pixel to cover each mirror. 

In our platform, each mirror sensing unit functions 

independently as a local pressure sensor. It can provide the local 

pressure measurement even when neighbouring sensing units fail. 

Defect sensing mirrors represent dead pixels on a pressure map. If 

the dead pixels are sparsely distributed and if the local pressure 

spatial variation rate is smaller than the pixel resolution, pressure 

measured by neighbouring sensing units can be used to linearly fit 

and estimate the pressure at the missing pixels. If the defect pixels 

are clustered together, such fitting approaches may not work if the 

cluster sizes are large. 

The majority defects on our platform belongs to the second 

type in which dead mirrors typically cluster in certain regions. 

Majority areas have good mirror array without dead pixels. The 

pressure map shown in Fig. 5(F) shows a pressure map with this 

type of defects. The regions with white colors are where these 

defect mirrors located. The overall manufacturing yield currently 

achieved is ~ 80%. The causes of these fabrication defects mainly 

come from the bonding equipment. Since the bonding process 

involves transferring a thin PDMS film onto any array of SiO2 

microwells, the tilting, the bonding pressure uniformity, and the 

alignment of these surfaces across a large area is critical. Further 

improvements of device fabrication yield can be achieved with 

better alignment-bonding apparatus. 

We designed an operational air gap spacing to be within a range 

of 300-600 nm for highest color performance and transition 

contrast. This range of deformation should have minimal impact on 

flow conditions for typical microfluidic channel height spanning 

across tens to hundreds of microns. For the specific mechanical 

design in our demonstration, the measurable pressure range was 

between 0 ~ 5 psi. This dynamic sensing range can be tuned by 

changing the thickness of the PDMS membrane or adjusting its 

chemical composition to tune its Young’s Modulus.  

The demonstrated distributed pressure sensing platform can 

have broader applications than pressure sensing in a fluidic 

network. The key feature of our platform is the high-density 

distributed pressure sensing units. Such units do not necessarily 

need to integrate with a fluid channel, and can be modified for 

different applications. For example, if a group of single cells are 

properly arrayed and aligned on these pressure sensing units, by 

integrating a rigid and transparent mechanical stamp, it is possible 

to measure in parallel single cell mechanics properties through 

monitoring the displacement of the stamp and the corresponding 

displacement of each sensing unit to know the applied force and 

the deformation of each single cell. In another example, if a slice of 

tissue layer is placed on top of this distributed sensor platform and 

gently squeezed, the pressure sensor array can map out stress 

distribution to provide clues of stiffness distribution of a sheet of 

tissue sample.  

 

Conclusion 

We designed and demonstrated a high spatial resolution, high 

sensitivity, large area pressure-sensor platform. With an optimized 

computation framework, monitoring flow conditions inside a 

complex microfluidics network in real-time is possible, with fully 

mapped pressure distribution to detect anomalies such as clogging 

or leakage at any network location. As a massively parallel pressure-

sensing substrate by itself, this platform may also have broad 

potential utility in fields outside of microfluidics, such as 

mechanobiology that studies the relationship between mechanical 

properties and biological phenomena, such as cell proliferation, 

growth, and differentiation.
47–50
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