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Enabling high-throughput single-animal gene-expression studies 
with molecular and micro-scale technologies 
Jason Wana and Hang Lu a,b,c*

Gene expression and regulation play diverse and important roles across all living systems. By quantifying the expression, 
whether in a sample of single cells, a specific tissue, or in a whole animal, one can gain insights into the underlying biology. 
Many biological questions now require single-animal and tissue-specific resolution, such as why individuals, even within an 
isogenic population, have variations in development and aging across different tissues and organs. The popular techniques 
that quantify the transcriptome (e.g. RNA-sequencing) process populations of animals and cells together and thus, have 
limitations in both individual and spatial resolution. There are single-animal assays available (e.g. fluorescent reporters); 
however, they suffer other technical bottlenecks, such as a lack of robust sample-handling methods. Microfluidic 
technologies have demonstrated various improvements throughout the years, and it is likely they can enhance the impact 
of these single-animal gene-expression assays. In this perspective, we aim to highlight how the engineering/method-
development field have unique opportunities to create new tools that can enable us to robustly answer the next set of 
important questions in biology that require high-density, high-quality gene expression data. 

Introduction
Gene expression and regulation play diverse, critical roles 

ranging from defining phenotypic traits and heredity to the cause of 
stochastic emergent behaviors. It is only recently that technologies 
have advanced to test such hypotheses by directly measuring gene 
expression (i.e. mRNA content). We now know how crucial gene 
expression quantification is to biological investigations across 
multiple fields. From the types of surface proteins expressed during 
stem cell differentiation1 to the changes of expression across the 
complex aging process of multi-cellular organisms2, gene expression 
is a primary mechanism that can define the underlying biological 
processes occurring in the system. Gene expressions are the subject 
of intense research and are now critical to measure in many domains 
of biology. 

As commonly performed assays to quantify gene expression have 
progressed from simple PCRs3 to single-cell RNA-sequencing (scRNA-
seq)4, the types of biological questions we can ask have increased in 
complexity5. The tools and resources available to quantify 
transcriptome-level gene expression have become more accessible6-

8 and are pushing biologists to study gene expression with high 

spatial resolution on an individual level. Studies based on performing 
scRNA-seq on yeast9-11, for example, have highlighted the 
importance of individual-level resolution and found possible 
implications of gene expression variability in the population (i.e. cell-
to-cell or organism-to-organism variability). For instance, one study 
measured the expression variability at different ages11 and showed 
an initial decrease in variability, which was followed by a period of 
increased variability and noise towards the end of the lifespan. This 
implied that gene expressions were maintained until a certain stage 
of life, which was then followed by an ultimate decline in regulation. 
The individual-to-individual variability revealed these overall shifts in 
genomic stability with age. While these examples provide insights, 
there are still questions as to whether this pattern is extended to 
multicellular organisms, and how we can prevent this loss of gene 
expression stability and possibly improve our healthspan (i.e. period 
of healthy living). 

Along with individuality, it has become increasingly important to 
capture gene expression with spatial resolution. For example, studies 
comparing the transcriptomes of young and old mice12 and rats2 
revealed changes in gene expression and highlight genetic pathways 
and networks that may be tied to certain perturbations. It is now 
known how gene expression is influenced by factors such as different 
diet2, age2, 13, or environmental stress14. Further questions ensuing 
might be: which tissues are more heavily influenced with age? Do 
individuals with better health and maintenance of those tissues or 
organs live longer? One might also want to ask, what types of cross-
tissue interactions are present (e.g. how do gene networks interact 
between the gut and brain15, 16)? While it is becoming more critical 
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to address these disease/health-relevant questions, our current 
tools and methodologies may be the bottlenecks. 

Methods to measure gene expression in multi-cellular organisms 
or tissues, such as traditional RNA-seq, have been very powerful in 
addressing developmental biology questions. Yet, there are 
limitations to these techniques – they often fail to capture mRNA 
content on a single-animal level or with tissue specificity. Although it 
may seem that we have the ability to quantify the transcriptome of 
an animal with single-cell resolution (in Caenorhabditis elegans17) or 
within specific tissues (such as in rats2, 13 and mice12, 18, 19), there are 
inherent limitations due to the sample processing. Specifically, these 
pooled-sample techniques, such as RNA-seq, cannot measure two 
key components: gene expression on an individual level and the 
spatial expression information. With more and more investigations 
highlighting the importance of this type of information14, 20-25, there 
is a growing need for single-animal, tissue-specific gene expression-
based studies and tools. 

Although there are single-animal assays such as fluorescent 
transcriptional reporters and single molecule in situ hybridization 
(smFISH), these techniques are very low throughput (both in terms 
of the number of genes studied and sample size) and thus cannot be 
easily used to study large populations or distinguish subtle 
phenotypes in noisy biological settings. To address the limitations of 
single-animal techniques, engineers have created new tools to 
improve sample handling, reagent delivery, and/or culturing 
conditions for animals. While diverse fields have made meaningful 
contributions and impacts, it is important to highlight that many of 
these achievements are based on microfluidic technologies, 
particularly for long-term, individual-specific studies on small model 
organisms26-28. For example, measuring a large population’s 
behavioral declines with age can be difficult – especially if single-
animal resolution is required. It involves culturing each animal in a 
separate location and manually measuring behavior at different time 
points. In contrast, automated microfluidic-based platforms26 have 

proven to significantly reduce the labor by culturing the animals and 
tracking their individual behaviors across the entire lifespan. Yet, 
despite these advancements, robust transcriptome-level gene 
expression studies based on these engineering/method-based 
improvements have not been demonstrated. In this perspective, we 
aim to highlight where the engineering field will need to focus and 
adapt to help answer these larger, underlying questions in biology 
that are emerging. One of the next major advancements in biology 
will depend on developing robust, efficient methods that allow for 
gene expression quantification with cellular- to tissue-specificity and 
inter-individuality. 

What are significant limitations to the current 
tools that measure gene expression for single-
animal studies?

Gene expression studies on larger model organisms, such as mice 
and rats, have revealed countless biological insights. However, these 
investigations typically have relatively low throughput (i.e. on the 
order of tens of animals) due to practical restraints (e.g. labor, cost, 
time, etc.). To study more subtle details of gene expression or to 
perform experiments that require large populations of animals, such 
as forward genetic screening, it is much more feasible in smaller 
models. For example, to study the entire lifespan of a rat could take 
2-3 years; in contrast, along with being much lower in cost, the 
microscopic nematode, C. elegans, only lives for about 20 days29. 
While we acknowledge that larger organism-based studies may be 
more advantageous for many applications (e.g. mammalian-specific 
diseases), in this perspective, we aim to focus on smaller model 
organisms (e.g. Drosophila melanogaster, Danio rerio (i.e. zebrafish), 
C. elegans, etc.) where gene expressions studies can be conducted in 
much larger populations (i.e. on the order of tens to hundreds to 
thousands of animals), and large-scale tissue specific investigations 
are more accessible. The current popular approaches to quantify 

Figure 1. Conceptual model for gene expression quantification assays. In this example, we want to quantify the gene expression of (a) a 
population of C. elegans with different phenotypes indicated by the shading (white, grey, and black). To perform a pooled-sample assay, (b) the 
mRNA is extracted from the population of animals and (c) quantified. For single-animal assays, (d) gene expression can be measured within each 
animal with high spatial resolution. Each color represents a different mRNA sequence, and the numbers represent units of gene expression (A.U.) 
quantified.
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gene expression within these organisms can be divided into two 
categories: pooled-sample techniques and single-animal techniques 
(Fig. 1, Table 1). 

Pooled-sample techniques that measure gene expression include 
cDNA microarrays, RNA-seq, and scRNA-seq, which have been 
reviewed in depth8, 25, 30, 31 (Table 1). Although each of these tools 
work differently, the overall pipeline and results are similar. Briefly, 
the total mRNA is extracted from the sample (Fig. 1a,b), and through 
different mechanisms, the mRNA is quantified (Fig 1c). cDNA 
microarrays were one of the first methods to study gene expression 
on a transcriptome level. With these first investigations in model 
organisms, such as in flies32, 33 and worms34, we began to understand 
how the gene expression networks and patterns can change due to 
perturbations, such as aging or genetic mutations. The next major 
advancement in assays was RNA-seq. Rather than profiling 
predefined transcripts and genes via hybridization in microarrays, 
RNA-seq can fully sequence and quantify each mRNA species of the 
sample. Although these tools can measure the entire transcriptome, 
the mRNA extraction and processing require the entire population of 
samples to be pooled together30, 31. This loses inter-individuality (i.e. 
we do not know which cell or animal the transcripts are being 
measured); further, while cellular identity could be inferred for cells 
with characteristic expression profiles, calling cell identities are not 
precise and thus, the spatial information of gene expression is not 
precise (Fig. 1c). Together, while these key methods give a rough 
indication of which genes are important to a particular process, 
spatial, temporal, and inter-relational details may be missing. This 
lack of information can prevent deeper insights into the biological 
processes.

In order to localize gene expression to specific tissues, these 
methods have been performed on dissected organs or body parts2, 

32, 45, which require expertise and intensive manual labor. While 
these studies can quantify gene expression in each tissue, they 
cannot preserve any individuality. The samples are still pooled 
together; the information quantified is averaged over the 
population; importantly, they still lack cellular specificity. To retain 
inter-individuality, RNA-seq has been adapted to single worms35; 
however, the tissue- and cellular-specificity are still lost. 

One strategy to overcome this and measure gene expression 
with high spatial resolution is to capture the transcripts in situ and 
then perform sequencing ex situ7. This type of approach was first 
introduced as “spatial transcriptomics” and demonstrated on thin 
tissue slices46. Briefly, fixed tissue samples are annealed onto glass 
slides that have barcoded reverse transcriptase primers in a known 
pattern. The transcripts are sequenced and, since the location of 
each different bar code is known, computational reconstruction can 
reveal the spatial distribution of the transcript46. Recently, there 
have been advances to the technique, such as Slide-seq47. Here, the 
barcodes are attached to 10 µm beads rather than printed on a glass 
slide. While this type of approach can measure genome-wide 
expression at high spatial resolution47, this has only been 
demonstrated on thin tissue slices (~10 µm thick); it may be difficult 
to scale to whole animals, and certainly not at population levels. 

Perhaps the most advanced assay currently available to measure 
gene expression is scRNA-seq17. Briefly, the cells of the sample, such 
as a population of animals, are isolated and individually sequenced. 
While this can reveal very high-detailed information, there are some 
notable caveats. Along with the need for large population sizes 
(~1,000s to ~10,000s of animals)5, 48 and  lack of individual-level 
quantification, scRNA-seq can only infer each cell’s identity based on 

its expression profile37. For example, there may be a panel of known 
neuronally expressed genes for a particular animal; cells that have 

Technique Single animal Spatial resolution Gene 
throughput Ease-of-use Other notes

cDNA Microarray30, 

31, 34 No
Whole animal to 
dissected body 

parts

Transcriptome 
level

Complex manual 
handling

Profiles pre-defined 
transcripts

RNA-seq8, 13, 30 No*
Whole animal to 
dissected body 

parts

Transcriptome 
level

Complex manual 
handling

*RNA-seq has been 
adapted to single 

worms35

Po
ol

ed
-s

am
pl

e 
Te

ch
ni

qu
es

scRNA-seq5, 8, 36, 37 No Inferred/predicted 
cells

Transcriptome 
level

Complex manual 
handling

Requires large 
populations (~1,000 to 

10,000 animals)

Fluorescent 
Transcriptional 

Reporter38-40
Yes Cell to subcellular Typically, 2-3 

genes
Strain engineering 

and manual handling

Gene throughput 
limited by number of 

resolvable 
fluorophores

Si
ng

le
-a

ni
m

al
 T

ec
hn

iq
ue

s

smFISH6, 41, 42 Yes Subcellular Typically, 2-3 
genes

Probe design and 
manual handling

Gene throughput can 
be increased with 

alternative 
strategies43, 44, but 

these have not been 
achieved in whole 

animals

Table 1. Generalized comparison of pooled-sample and single-animal techniques
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higher expression of these genes will thus more likely be from a 
neuron. In order to be accurate, these methods rely on existing 
spatial expression data for an array of panel genes49. While larger 
tissues or cells with well-defined transcriptomes may have accurate 
predictions, smaller tissues or more ambiguous cells may be 
incorrectly labelled. This level of noise is perhaps further amplified as 
scRNA-seq is unable to reliably measure or detect transcripts in low 
abundance48. In addition, the sample processing steps are nontrivial 
and lose many of the cells, or worse, cell types5, 37. These technical 
limitations can complicate data analysis and overlook more subtle 
details of gene expression, such as the natural biological variation in 
the system36, 50. 

While scRNA-seq computational predictions have significantly 
improved49, 51, their inferences for cell identification still require 
validation52. There have been improvements in these various pooled-
sample techniques, but even the most advanced technologies lack 
either the ability to quantify gene expression on an individual level 
or to have true spatial localization. Although this may not be an issue 
for unicellular models, such as performing scRNA-seq in yeast11, it 
cannot be applied to  multi-cellular organisms.

For example, we may need to quantify gene expression in a 
population of C. elegans, a well-studied model organism. To quantify 
the expression, we may start with a group of animals from the same 
population with naturally different phenotypes, such as activity level 
(Fig. 1a). After processing and extracting the mRNA of the sample 
(Fig. 1b), we can quantify the amount of each mRNA in the system 
(Fig. 1c); however, we lose where in the animal the expression 
occurred, whether there was animal-to-animal variability, and if 
there were any correlations between the measured gene expressions 
and the phenotypes observed. These are major limitations to the 
types of biological questions we can address.

In contrast, to measure finer details, there are high resolution 
single-animal techniques such as fluorescent transcriptional 
reporters40 and smFISH41 (Table 1). These methods allow researchers 
to use fluorescent microscopy to visualize and quantify gene 
expression with tissue specificity (Fig. 1d). In this case, we might find 
that the genes are expressed in different locations/tissues (i.e. head, 
gut, and tail) (Fig. 1d). In addition, single-animal resolution enables 
us to find if there are any correlations between the phenotypes of 
the animals and their unique gene expression profiles. This would 
enable us to ask questions, such as how the phenotypic variability is 
influenced by the gene expression variability. It may be that, among 
the population of animals, differences in local environments 
contribute to variability in gene expression and behavior. For 
example, daf-7 is a gene that is typically only expressed in one pair 
of neurons in C. elegans; however, when the animals are exposed to 
pathogenic bacteria, daf-7 expression occurs in different neurons, 
and the animals display an avoidance behavior53. There are other 
assays to measure expression on a single-animal or single-cell level 
such as the cell-based MS2-MCP system54-56, immunohistochemistry 
to quantify protein expression, and newer, emerging technologies 
such as CRISPR-dCas13a57 to measure mRNA in vivo. In this 
perspective, we chose to focus on these two more popular and 
commonly used methods in model organisms: fluorescent 

transcriptional reporters and smFISH. These approaches can be 
complimentary, and their quantification is based on fluorescent 
microscopy. 

Fluorescent transcriptional reporters allow us to measure gene 
expression activity in live animals with tissue specificity. Here, a 
fluorophore, such as GFP, is driven by the promoter fragment of the 
gene of interest. The genetically modified animal will express the 
fluorophore; by measuring the fluorescence intensity, we can  
determine the promoter’s activity as well as where it drives 
expression in the animal39, 40, 58. There are variations to this approach 
such as translational reporters where the fluorophore is directly 
fused to the protein of interest; this can provide a better 
measurement on protein expression rather than the transcriptional 
activity40. Further, for transparent transcriptional reporter systems, 
such as cells59, yeast38, and C. elegans40, imaging can be done in vivo 
without much perturbation to the samples, allowing for researchers 
to track the expression levels in individual samples over time. 
However, it is important to note that the long half-life of 
fluorophores (~24 hours)39, 60, 61 can limit studies dependent on 
measuring dynamic phenotypes and require higher temporal 
resolution. To reflect meaningful promoter activity and detect the 
subtleties of gene expression, fluorescent transcriptional reporters 
also need to be single copy integrants62. Having a single copy ensures 
that the amount of fluorescence intensity accurately represents the 
promoter activity. Integrating the exogenous transgene into the 
genome prevents any mosaicism (i.e. integration ensures all cells in 
the sample have copies of the promoter-driven fluorophore 
transgene). The major drawback for this method is that it can be 
difficult and time-consuming to create new strains, which is often the 
bottleneck for large-scale studies on many genes. 
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Another single-animal technique to measure in situ gene 
expression is smFISH. In this approach, gene-specific, fluorescently 
labelled probes are delivered into a fixed and permeabilized sample. 
In contrast to fluorescent transcriptional reporters, this method does 
not require any genetic manipulations. This makes smFISH 
particularly attractive for many genomic-based studies that require 
non-transgenic animals (e.g. studying wildtype animals, genome-
wide association studies, etc.). In smFISH, a gene-specific probe set 
consists of 20-40 fluorescently labelled short nucleic acids (each ~25 
nts); each individual probe within the set has a different sequence 
that binds specifically to the target mRNA. To ensure specificity and 
prevent false-positive signals from non-specific binding, a 
fluorescent punctum only becomes resolvable when 20-30 probes 
hybridize onto the same mRNA molecule due to the high local 
concentration of the probes41. This approach allows us to visualize 
and measure individual mRNA molecules within the fixed sample 
with sub-cellular spatial resolution. Along with quantifying the 
amount of gene expression, its use in model organisms is often to 
localize gene expression and evaluate spatial organization63, 64. 
Despite its advantages, there are also several drawbacks to this 
method. Along with long incubation times (i.e. many hours to days) 
for different reagents, durations, and temperatures, it requires 
sample fixation and permeabilization, thus limiting its use as an 
endpoint assay. 

While both single-animal techniques offer much more detailed 
information and allow us to study more subtle details of gene 
expression, they lack gene- and sample-throughput. These 
techniques are based on fluorescent microscopy; this limits the 
number of genes studied per animal to the number of spectrally 
resolvable fluorophores on an imaging setup  (typically 2-3). Another 
shortcoming is that these methods require slow, manual handling 

and imaging of each sample. Increasingly, transcriptome-level 
studies using pooled-sample techniques are inspiring questions in 
biology that depend on single-animal resolution. These shortcomings 
to these methods have not yet been completely addressed, and thus 
present engineering opportunities.

How can we improve single-animal techniques? 
To improve upon the single-animal techniques introduced above, 

there are two separate approaches: reagent-based improvements 
and sample-handling improvements. Reagent-based improvements 
refer to advances in reagents for currently available techniques and 
assays, including new fluorophores or strategies for assaying larger 
numbers of genes. Sample-handing improvements include methods 
for robust high-throughput imaging, reagent delivery, and long-term 
culturing. Advancements in both fields can improve the feasibility 
and accessibility for single-animal based gene-expression studies, as 
well as the types of questions we can answer. 

In the past few years, there have been notable advancements in 
reagents that increase the sensitivity of expression measurements, 
improve temporal resolution, and increase gene throughput (i.e. 
number of genes studied per sample). For fluorescent transcriptional 
reporters, a large number of new, brighter fluorophores have been 
reported (e.g. mScarlet65 and mNeonGreen66), which can be 
especially useful for genes with naturally low levels of expression or 
experiments that require higher precision. Another method to 
improve a fluorophore’s expression is species-specific codon 
optimization67, which enables more stable expression and stronger 
fluorescent signalling. There are also a number of sequences that can 
be tagged onto the fluorophore to improve different types of 
resolutions. For better spatial resolution, there are sequences to 

Figure 2. Examples of single-animal microfluidic devices. Typically, devices fall under two categories: (a-c) serial (Adapted from Ref. 94 with 
permission from Springer Nature) and (d-g) array devices. (a-c) Serial devices can have a much higher sample throughput as they are not 
constrained by the geometry of the device (i.e. number of traps). By controlling a set of on-chip valves, (a) one can prepare the device and imaging 
location, (b) load a fluorescent transcriptional reporter worm and prevent a second worm from entering, and (c) sort the imaged worm and 
automatically load the second worm into the detection zone. Scale bar, 100 µm. (d) Microfluidic array devices can geometrically isolate samples 
for single-animal analysis. (e) This device enables multiple reagent exchanges; this allowed for the measurement of a live fluorescent 
transcriptional reporter and smFISH to quantify multiple genes within the same animal. (f) Array strategies have also been used for long-term 
culture. (g) In this demonstration, animals are loaded into the device and automated imaging allows one to measure behavior and healthspan 
metrics across the lifespan of multiple animals. Adapted from Ref. 99 (d,e) and Ref. 26 (f,g) with permission from the Royal Society of Chemistry 
and Springer Nature, respectively.
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promote nuclear68, 69, cytosolic70, and/or membrane-tagged 
localization71, 72. Each has their own advantages depending on the 
situation. For example, studies examining neuronal connections may 
require membrane-tagged fluorophores to enhance the fluorescence 
intensity in the axons and dendrites73. For tighter temporal 
resolution, destabilizing the fluorophore can reduce its half-life by an 
order of magnitude39, 73, making them particularly useful for 
measuring dynamic processes such as transitions in the cell cycle74.

Similarly, there have been many reagent-based or 
biochemistry/biotechnology-based improvements to smFISH. Many 
of these methods have been recently reviewed in depth6, 7. Briefly, 
to amplify the fluorescent puncta’s signal and resolution, there are 
ways to increase the number of fluorophores bound to the target 
mRNA. Amplified signals are important for many applications; for 
instance, tissue samples have a significantly higher autofluorescence 
compared to cell culture, and thus require higher signals to 
differentiate from the background75. In traditional smFISH, each 
primary probe has one bound fluorophore. While this may be 
sufficient, some applications require stronger signals. By simply 
increasing each probe to have two fluorophores, the fluorescent 
signal is roughly doubled76. There are also methods to increase the 
signal by at least an order of magnitude. These techniques typically 
use fluorescently labelled secondary probes; these bind to sequence-
specific primary probes and amplifiers, which directly bind to the 
target mRNA76-78. Other strategies79, including hybridization chain 
reaction (HCR)75 and padlock probes80, can exponentially amplify the 
signals 10- to 100-fold6. Each of these methods can improve the 
fluorescent signals, but importantly, they also increase the 
complexity of the experiments with additional steps and/or reagents. 
Some applications may have different requirements, and this trade-
off is important to consider. A potential concern with having these 
amplified signals is spatial resolution. Since each fluorescent 
punctum corresponds to an individual mRNA, it can be difficult to 
distinguish each punctum from one another if the target mRNA is in 
high abundance or has a high signal that create overlaps (i.e. the 
puncta are too close to visually separate). To address this, smFISH 
has been used in conjunction with expansion microscopy to achieve 
nanoscale imaging81, 82. 

Another major improvement in smFISH-based technologies is the 
use of stripping reagents that enable multiple cycles or rounds of 
smFISH within the same sample24, 42. When used in combination with 
multiplexing and coding strategies, the number of genes measured 
exponentially increases with each round of smFISH and can even 
span the transcriptome43, 44. To implement multiplexing strategies, 
one needs to track the same transcript across multiple rounds of 
smFISH. This is accomplished by mounting the fixed sample onto a 
glass slide to prevent any movement. However, this has only been 
achieved in samples of cells and tissue slices. Due to the larger 
number of reagent exchanges, high transport requirements, and the 
need for continuous cell and transcript identification across multiple 
rounds of smFISH, this has not yet been achieved in whole organisms 
and these current methods are perhaps not scalable to large 
populations. Microfluidic-based devices, however, have been 
demonstrated to enhance molecular transport and enable multi-

cycle smFISH (i.e. 2 rounds of hybridization)83 in C. elegans. This could 
potentially be further developed for multi-gene level studies (i.e. 
~10s of genes). Each round of hybridization can measure 2-3 genes 
(i.e. number of spectrally resolvable fluorophores). By stripping these 
probes and re-hybridizing the same sample, it would be possible to 
study another set of 2-3 genes; this strategy requires continuous 
animal identification to relate the genes per animal from different 
hybridization rounds. While multiplexing and coding strategies can 
exponentially increase the number of genes studied per round, these 
techniques require continuously tracking the identity of each cell and 
transcript. While microfluidics or even image-processing techniques 
may be able to maintain this type of information, it has still not been 
robustly demonstrated. Flowing different reagents into a 
microfluidic device can often move a sample, and even slight shifts in 
location or orientation can result in a loss of cell or transcript identity.  

Microfluidic technologies have made notable sample handling 
improvements, particularly for smaller model organisms such as 
Drosophila84-86, Danio renio87, 88, C. elegans26, 27, 89-91, and more92, 93. 
Due to each organism’s unique properties, there are differences in 
the types of devices and their respective capabilities. For example, C. 
elegans can be cultured in liquid; this perhaps makes long-term 
culture in microfluidic devices easier to adapt compared to adult 
Drosophila. Collectively, when considering microfluidics’ impact on 
model organism-based studies, there are improvements for high-
throughput imaging, more efficient reagent delivery, and well-
controlled long-term culturing. For these single-animal techniques, 
imaging is typically a bottleneck for sample throughput. Traditionally, 
for both fluorescent transcriptional reporters and smFISH, animals 
are collected and placed onto a glass slide and imaged; the whole 
process for imaging a single sample can take ~5-10 minutes. 
Although simply imaging a population at a single time point can be 
relatively easy, this task becomes much more burdensome if the 
investigation requires more precise details, such as the identity of 
each animal across multiple assays, or large population studies. For 
example, one may want to ask why a certain behavior differs in either 
response or prevalence among an isogenic population21. A possible 
explanation is that the natural stochasticity of gene expression plays 
a role in the variability of behavior between the individuals. In order 
to test this, one could measure the behavior of a fluorescent 
transcriptional reporter and then image it to quantify the gene 
expression on a per animal basis. While this can be done manually 
with significant time and labor (i.e. on the order of tens of hours for 
100 animals), microfluidic technologies can offer much more 
efficient, high-throughput imaging. This is typically achieved through 
two different strategies: serial and array devices (Fig. 2). 

In the serial strategy, animals are loaded into the microfluidic 
device and imaged one at a time (Fig. 2 a-c). In this example94 
fluorescent transcriptional reporters are first loaded into the device 
and positioned by operating a series of on-chip valves (Fig. 2a,b). 
Animals, such as C. elegans, typically have natural locomotion which 
can making imaging difficult. There are different techniques for 
different animals to reduce movement, and this device implements 
a cooling channel to immobilize the worm during imaging. By 
activating different valves, the animal is flushed out of the device 
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(Fig. 2c) and the next one is automatically loaded. While device 
design and fabrication for these serial devices may be challenging, 
they are capable of the highest sample throughput. With a high level 
of control through a combination of on-chip valves, this has been 
demonstrated to be an effective method for high-throughput 
imaging (i.e. hundreds of animals per hour94)91, 95, 96 and could be 
adapted for animal retrieval post-imaging. By improving sample-
throughput, these serial devices may also be able to address gene-
throughput. Although each image or animal sample may only be used 
to measure the number of genes equal to the number of spectrally 
resolvable fluorophores, a microfluidic pipeline could easily measure 
multiple samples. For example, one may be interested in studying a 
gene network comprised of ten genes. Following traditional 
techniques, one may measure the expression of ten fluorescent 
reporter strains, each a reporter for a different gene. It could take up 
to hundreds of hours to image 100 animals per strain. In contrast, a 
serial microfluidic device can image all ten strains within ten hours 
based on the reported sample-throughput. 

For array devices (Fig. 2d-g), animals are loaded into separate 
traps or chambers26, 85, 97, 98; typically, each chamber holds an 
individual animal. While array strategies’ sample sizes may be limited 
by the number of slots in the device, array devices can easily 
maintain the identity of each sample through their geometric 
constraints. This can be particularly advantageous if multiple assays 
on the same animal are needed for a study. For example, one may be 
interested in a live phenotype and its associated gene expression. 
This array-based microfluidic device (Fig. 2d) demonstrated this by 
first imaging a live fluorescent transcriptional reporter and then 
performing smFISH to measure two different genes within the same 
animal (Fig. 2e)99. There are numerous variations of each strategy, 
and all have shown substantial improvements to imaging throughput 
when compared to the off-chip methods. Another key advantage to 
array devices is that, depending on the size of the chambers, it may 
be possible to monitor behavior on-chip as well (Fig. 2f,g). In this 
example26, researchers designed a microfluidic device for long-term 
culture of C. elegans (Fig. 2f). By implementing an automated 
imaging set-up, they demonstrated the ability to measure behavioral 
phenotypes and healthspan metrics within individuals throughout 
the lifespan of the animal (Fig. 2g). Along with imaging, microfluidic 
devices have also demonstrated improved reagent delivery99, 100, 
which is essential for many bioassays including smFISH (Fig. 2e). 
There are also opportunities to incorporate other phenomena or 
mechanisms, such as electrokinetics, to increase transport 
efficiency83. While there have been numerous improvements that 
can make single-animal assays more feasible and accessible, there is 
still no demonstration of robust, transcriptome-level or even multi-
gene (i.e. tens to hundreds) method demonstrated on whole single 
organisms. 

Looking forward
Pooled-sample assays have enabled biologists to study new 

transcriptome-level explorations. As we are learning more and more 
about the broad impact of gene expression dynamics and patterns 

on living systems, we are beginning to focus our biological questions 
that ultimately depend on single-organism resolution. In this 
perspective, we highlighted two major categories of advancements 
to single-animal assays: (1) the robustness of the reagents and (2) the 
tools to improve sample handling and throughput. Although reagent-
based improvements have substantially increased the broad use and 
impact of these single-animal techniques, the other major bottleneck 
is still present – sample handling. In contrast to pooled-sample 
techniques, the total number manually assayed in traditional single-
animal techniques is typically much lower, due to the need to 
physically manipulate and image each individual, reducing the power 
of the assay to detect differences between groups. Even with the 
unique advantages of these single-animal techniques, the feasibility 
and uses of single-animal assays are still limited, especially when 
compared to pooled-sample assays. There is an increasing need to 
improve our single-animal based assays, and thus, this presents new, 
demanding opportunities where engineering new methods can make 
meaningful impacts.

Microfluidic technologies are perhaps one of the most well-
suited candidates capable of improving single-animal gene 
expression studies. There are many devices that increase the imaging 
throughput for different animals, and it has been demonstrated that 
hundreds of animals can be imaged within a few hours94. This 
sample-throughput achieved is on-par with pooled-sample 
techniques, such as RNA-seq, while maintaining the spatial 
expression information on an individual level. With slight 
modifications to the protocols, other serial-imaging devices may 
incorporate fluorescent transcriptional reporters of different animals 
to measure the gene expression profiles with spatial- and individual-
level resolution. With the capacity for high-throughput studies, one 
can quickly image multiple different transcriptional reporters to 
examine multiple genes. Further, there are a number of micro-scale, 
long-term culturing devices that are primarily used to measure 
behavioral phenotypes26, 101-105. While there are findings that 
demonstrate behavior is tied to gene expression, such as in studies 
that compare behaviors between mutant and wildtype animals, it 
may be more difficult to find more subtle correlations within a single 
population. To measure this relationship, one might incorporate 
fluorescent imaging to a microfluidic culturing system in order to 
measure the gene expression of a fluorescent transcriptional 
reporter while recording its behavior. Gathering this information 
simultaneously within a single population may reveal insights into 
how natural variability of gene expression may arise and its 
influences on behavior106.

Perhaps the largest disadvantage to these single-animal assays is 
the number of genes feasible to characterize in each experiment. The 
need for fluorescent imaging limits the number of genes studied per 
sample to the number of spectrally resolvable fluorophores. It has 
been demonstrated that smFISH multiplexing strategies can study 
the transcriptome of cells and tissues samples43, 44 – but how can we 
adapt this for whole animals? Microfluidic arrays offer a potential 
solution. By having geometric constraints, one can confidently 
measure expressions of an individual sample. Incorporating 
multicycle smFISH83 (i.e. hybridizing a probe set, stripping the probe 

Page 7 of 11 Lab on a Chip



Perspective Lab on a Chip

8 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

set, hybridizing a different probe set, etc.) or multiplexing techniques 
(which microfluidics is suitable to do), we may be able to study 
multiple genes with sub-cellular spatial resolution in single animals. 
While these advancements require many technical considerations, 
this may be a method to overcome the gene throughput limitations 
of smFISH. 

Adapting and advancing microfluidic-based technologies can 
have many technical hurdles and addressing them can improve a 
platform’s ease-of-use, accessibility, and overall impact. One 
potential downside for many existing devices is the need for off-chip 
components, such as a syringe pump or pressure regulator to drive 
fluid into the microfluidic device or operate on-chip valves. This 
requirement may limit the accessibility and broad use of microfluidic 
devices. In addition, interfacing macro- and micro-scaled parts can 
have many challenges. For example, many macro-scaled parts, such 
as syringes or tubing, handle large volumes relative to the 
microfluidic device. This can be detrimental for studies that require 
expensive reagents or precise exchange of small volumes (nano- to 
microliter-scale). Additionally, while microfluidics can perform 
robust reagent delivery, the samples within the device might 
experience high shear forces due to the fluid flow, which may affect 
the mechanical integrity of the samples. It is also important to note 
that many animal-based microfluidic devices are designed for 
embryos, larvae, and C. elegans. While microfluidics can offer a 
unique level of control, they can be limited by the size or complexity 
of the animal, such as the types of natural behaviors. However, it may 
be possible to adapt overall strategies of microfluidics to larger 
mesofluidic devices107 or droplet/multi-well formats108 for animal 
culture. By overcoming these issues and delivering robust handling, 
we envision that microfluidic technologies can play a major role in 
advancing biology. 

In this perspective, we aimed to outline promising opportunities 
for engineers to create new methods and approaches that address 
the sample-handling limitations of our current techniques. At 
present, we rely on pooled-sample assays to understand how gene 
expression may change or react to a perturbation (e.g. 
developmental stage, age, temperature, food availability, etc.). 
Armed with better, cheaper, more robust, more parallel, high-
resolution techniques for single-cell or single-animal gene-
expression analyses, we envision an expanding frontier of biological 
inquiries, addressing questions such as how phenotypic variation 
contributes to the developmental process or to the declines of aging, 
how tissues respond differently to stimuli, whether certain tissues 
are more susceptible to stress-induced decline, and beyond.
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