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The utilization of machine learning techniques has become commonplace in the analysis of optical
emission spectra. These methods are often limited to variants of principal components analysis
(PCA), partial-least squares (PLS), and artificial neural networks (ANNs). A plethora of other
techniques exist and are well established in the world of data science, yet are seldom investigated
for their use in spectroscopic problems. In this study, machine learning techniques were used to
analyze optical emission spectra of laser-induced plasma from ceria pellets doped with silicon in
order to predict silicon content. A boosted regression ensemble model was created, and its predictive
accuracy was compared to that of traditional PCA, PLS, and ANN regression models. Boosted
regression tree ensembles yielded fits with R-squared (R2) values as high as 0.964 and mean-squared
errors of prediction (MSEPs) as low as 0.074, providing the most accurate predictive model. Neural
networks performed with slightly lower R2 values and higher MSEPs compared to the ensemble
methods, thus indicating susceptibility to overfitting.

1 Introduction
Laser-induced breakdown spectroscopy (LIBS) is a versatile tech-
nique for spectroscopic analysis.1–3 Modern LIBS experiments
are often coupled with advanced mathematical and statistical
methods to provide chemical analysis of LIBS spectra, known as
chemometrics.4–7 Due to the complex nature of the spectra of
heavier elements, LIBS data sets for classification and regression
problems can contain tens of thousands of emission variables to
process. The complexity of these data sets has garnered interest in
applying machine learning algorithms to these spectroscopic anal-
ysis problems. Techniques such as principal components analy-
sis (PCA) and partial-least squares (PLS) are often used in LIBS
analysis to reduce dimensionality of the data and provide accu-
rate classification or regression models.8 Recently, these methods
have demonstrated their use in a variety of fields, such as food
science,9 pharmaceutical chemistry,10 nuclear forensics,11 met-
allurgy,12 and analysis of Martian geological samples.13,14 Ad-
vanced machine learning algorithms based on neural network
architectures are commonly used to handle large spectral data
sets and provide improved classification or regression solutions.15

Artificial neural networks (ANNs) have demonstrated significant
use in geological and metallurgical applications, creating predic-
tive chemical analysis models from complex spectra of rock,16,17
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a Air Force Institute of Technology, 2950 Hobson Way, WPAFB, OH 45424, USA. E-mail:
michael.shattan@afit.edu
b Actinide Analytical Chemistry, Chemistry Division, Los Alamos National Laboratory,
Los Alamos, NM 87545

soil,18,19 and ore20 samples.
Portable LIBS (pLIBS) systems have garnered great interest for

rapid, in-situ chemical analysis.21 Devices such as the SciAps Z se-
ries were originally built for identifying industrial metals in man-
ufacturing and scrapping industries.22 However, these devices
have been used experimentally for geochemical analysis,23,24 in-
dustrial hygiene,25 landmine detection,26 and detection of rare
earth metals.27 Recently, the Z series devices have demonstrated
use in nuclear applications, including detection of uranyl flouride
contamination28 and quantitative chemical analysis of plutonium
and plutonium surrogates.29–31 While these devices enable rapid
spectral acquisition with little-to-no sample preparation, their
fixed signal integration periods, limited spectral resolutions, and
non-linear spectral response yield complicated sets of emission
data. This highlights the need to couple these devices with ma-
chine learning techniques, especially when analyzing the complex
optical emission spectra of lanthanides and actinides used in nu-
clear applications.

One particular nuclear application where these devices are of
interest is the analysis of cerium, a common chemical surrogate
for plutonium.32–34 Cerium and plutonium have similar chemical
and physical properties due to their electronic structures,35 and
cerium is often used to gain insight into the behavior of pluto-
nium. In order to be used in nuclear applications, pure pluto-
nium must be alloyed by adding a stabilizing metal to yield its
face-centered cubic (FCC) δ phase, rendering it malleable and
machineable.36–38 Gallium is the most common stabilizer used,
but other elements such as aluminium, cerium, silicon, indium
and zinc can form a stable or metastable δ state.39 Being able
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to rapidly identify and quantify the presence of these dopants at
various production stages is critical to ensuring the metal meets
chemical and metallurgical specifications.40 pLIBS systems as-
sisted by machine learning algorithms could provide a fast, in-
expensive, in-situ analysis capability to solve this problem.

This study investigates the application of several machine
learning techniques to ascertain the superlative approach for
spectral analysis of pLIBS data from cerium oxide pellets doped
with silicon. We implement an ensemble regression approach, a
less common machine learning paradigm in the analytical spec-
troscopy community, to build predictive models which determine
Si content from spectral input. Whereas ensemble methods have
been used in LIBS analysis of industrial metals,41,42 they have
seldom been investigated for radiochemical analysis. These en-
semble models are compared to commonly used regression mod-
els built using PCA, PLS and ANN methods to evaluate model
performance and determine which algorithm provides the most
accurate determination of Si content. We organize this paper as
follows: sample creation and spectral acquisition methodologies
are discussed. Next, simple chemometric regressions using PCA
and PLS are presented and evaluated. Two different ensemble
regression methods are discussed and their predictive models are
analyzed for prediction accuracy. Finally, the ensemble models
are compared to an ANN to evaluate their performance against a
more common machine learning approach.

2 Experimental

2.1 Sample preparation

Fig. 1 Pellet sample creation equipment used in this study, with inset
example of final pellet form. Photo was taken from Wood 2020.43

The ceria pellet samples were prepared from Sigma Aldrich
cerium oxide (99.995% CeO2) mixed with varying weight per-
cent concentrations of silicon dioxide (99% SiO2). Silicon is a
commonly found trace metal impurity in plutonium alloys. Meth-
ods developed to discriminate the Si spectral emissions from the
bulk Ce emissions could also be applied to other trace metals of
interest such as gallium, iron or nickel. The powders were milled
using an agate mortar and pestle, weighed to achieve the de-
sired weight percent concentrations and then homogenized using
a Fluxana MUK mixer. The mixed powder was then pressed using
a 1 cm stainless steel die at 5 metric tons for 120 seconds. 4 dif-
ferent types of ceria samples, doped with 0, 1, 5, and 10 weight
percent (wt%) silicon, were created for the experiment. Each
sample weighed approximately 1 gram; the mixing and pressing

equipment is shown in Fig. 1.

2.2 Spectral acquisition

Fig. 2 SciAps Z300 LIBS analyzer.22

A SciAps Z300 hand-held LIBS analyzer (Fig. 2) was used in
this study. This device uses a 5-mJ per pulse 1064 nm Nd:YAG
laser at a repetition rate of 50 Hz to ablate the surface of a sam-
ple, forming a microplasma. Optical emissions from this plasma
are collected by the on-board spectrometer system and recorded
on a CCD camera, providing a spectral recording from 190-950
nm. The device was used in the gated collection mode, with a
delay of 250 ns and fixed integration period of 1 ms. The argon
purge feature was used to flush out air from the vicinity of the
sample before the data collection shots; an 8x8 raster pattern was
used for data collection averaging the spectra of every 16 shots.
A total of 176 sample spectra across the four dopant levels, each
containing 23431 wavelength variables, were taken for training
and testing the developed machine learning algorithms. The raw
spectra were normalized using the standard normal variate (SNV)
method in Eq. 1; each spectrum (Ik) is centered on its mean value
(µI) and then divided by the original spectrum standard devia-
tion to yield the SNV normalized spectrum (Isnv

k ). Normalization
is commonly implemented in spectroscopic analysis to reduce sig-
nal fluctuation in the raw spectra and yield enhanced analytical
performance;44 SNV normalization is often implemented in pre-
processing LIBS, near-infrared and Raman spectra for this pur-
pose.45–48

Isnv
k =

Ik−µI

σI
, ∀k (1)

Normalization was important for this application as the entire
spectrum rather than a particular wavelength range was used
to train and test the different regression methods. More specif-
ically, SNV was implemented to allow the machine learning mod-
els to more easily discriminate the small differences in spectral
response among the different sample concentrations. It should be
noted that cutting the spectra down and using less wavelength
variables could be advantageous, especially since a lot of lighter
metals emit at lower wavelengths (200-400 nm), while the higher
wavelengths (700+ nm) in the recorded spectra contain mostly
emissions from the argon purge gas. However, this intial study
sought to test the efficiency of different regression methods with
a very complex data set, so all wavelength variables were kept for
training and testing.
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3 Results

3.1 PCR and PLSR

PCA and PLS represent two different dimensional reduction tech-
niques, often used to simplify analysis of large data sets. Both
methods transform raw input data into a smaller set of variables
called components, which describe most of the variance of the
original data. These components can then be used to analyze
the data via visual clustering, or by creating regression models.13

PCA is an unsupervised learning method which generates com-
ponents accounting only for variance in the input data variables,
whereas PLS is a supervised learning method that accounts for
covariance between the input and output variables in its decom-
position. Since PLS attempts to explain covariance structures be-
tween input and output variables, it often yields higher accuracy
regression models for larger data sets.49

Fig. 3 3D plot of the PC score value of the first three components of
each sample. The percent variance of the total data explained in each
component is listed on the axis of each PC. The scores plotting reveals
overlapping groups of the samples by their Si wt%.

PCA was used to perform an initial analysis of the data to visu-
alize similarities and differences between the samples. Examining
a plot of the first three principal component scores which col-
lectively explain greater than 90% of the total spectral variance,
displayed in Fig. 3, shows some initial separation between the
different sample concentrations. Although a clustering pattern
is noticeable, the first three wt% groups show significant over-
lap. To understand how this could affect a regression model cre-
ated from the transformed variables, we examine the explained
variance of each PC. Typically, PCA is used to reduce the origi-
nal variable set down to a few principal components represent-
ing most of the variance of the original data. The first PC of
this deconstruction explains 73% of the total spectral variance.
However, examining the first PC loading values of each emission
wavelength yields some insight into why the cluster separation is
imperfect. The majority of the wavelengths in the first PC with
the highest loading values correspond to emissions from the bulk
cerium oxide, as seen in Fig. 4. Silicon emissions, often strongest
below 400 nm,50 load relatively low on this PC despite it explain-
ing the overwhelming majority of the total variance of the entire
spectral data set. This indicates that the intensity of the silicon
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Fig. 4 Wavelength loadings in PC 1. A higher loading value indicates
that emission wavelength contributes more to variance of the spectral
data set.

emission lines varies significantly less between the different sam-
ple concentrations when compared to the cerium emissions. Data
corresponding to smaller emissions from the dopants is typically
pushed to lower PCs, while higher PCs explain variance of the
bulk emissions. As a result of this, a good visual separation be-
tween sample types cannot be achieved by simply plotting the
scores.
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Fig. 5 10-component regression models built with PCA and PLS, com-
paring the Si content of a sample predicted by the model to the actual
value.

This result has significant implications for regressions built
from the transformed PC variables. In order to ensure that a re-
gression model can properly distinguish the variations in spectral
features between different dopant concentrations, a higher num-
ber of components needs to be used in the model. PCs explaining
very little of the total variance can often contain important infor-
mation corresponding to variation in emissions from dopant or
impurity elements, and need to be included for accurate deter-
mination of elemental concentrations. Ten-component PC regres-
sion (PCR) and PLS regression (PLSR) models were built with
this data set; the models are compared graphically in Fig. 5,
and their R-squared (R2) and mean-squared error of prediction
(MSEP) values are listed in Table 1. The higher R2 value of the
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PLSR model indicates a superior regression fit to the transformed
data, whereas the lower MSEP indicates a higher predictive accu-
racy of silicon concentration. As expected, these results indicate
that PLSR provides the better regression model.

Table 1 Comparison of R2 and MSEP values for regression models

Model R2 MSEP
PCR 0.887 1.926
PLSR 0.967 0.561

3.2 Decision Trees

Fig. 6 Example of a lone regression tree for Si content prediction. Each
rectangle represents a node, or decision based on the intensity value
of a particular emission in the spectra, where A,B,C, and D are values
determined by the fit model. Each circle represents a leaf, or outcome,
determining the Si content from the flow of the nodes and branches.

Decision trees are a commonly used supervised machine learn-
ing technique with applications to a variety of other fields, in-
cluding data mining, stellar imaging, astrophysics, and molecular
modeling.49,51–54 Decision trees take input variables and relate
them to a target output by following branches across different
decision nodes based on the input attribute values, until a termi-
nating node is reached which provides an output result. These
algorithms are used in classification and regression, and provide
a promising solution to the spectroscopic problem outlined in this
study. A graphical depiction of a lone decision tree built from the
ceria spectra is shown in Fig. 6, diagramming how the model de-
termines Si content based on the value of different emissions in
a spectrum. Whereas a single decision tree model often suffers
from overfitting and lower performance with large data sets, an
ensemble of trees can improve performance by reducing variance
and increasing bias. These types of ensemble methods aim to par-
tition the decision space rather than provide a general separation,
making them ideal for use in nonlinear problem spaces. Two en-
semble methods, boostrap-aggregate (also known as bagged) re-
gression trees and boosted ensemble regression trees, were tested

on the LIBS spectra for their ability to predict silicon concentra-
tion.

Fig. 7 Comparison of bagging and boosting ensemble methods. Squares
denoted by ’S’ and ’M’ represent data subsets and individual learner
models trained on those subsets, respectively.

The methodologies of these ensemble methods are dia-
grammed in Fig. 7. Bagging uses random replacement sampling
to create subsets (S) of the data and independently trains the in-
dividual regression models (M), whereas boosting introduces an
adaptive algorithm which focuses on areas in the dataset gen-
erating higher misclassifications and trains each model sequen-
tially.49,51 Whereas bagged models run in parallel and the final
prediction is made from an aggregate of each trained model,
boosting changes the input weights for each model depending
on the error of the previous iteration to improve the accuracy of
subsequent learners. Using this sequential adaptive process to
mitigate misclassification errors generates improved learners that
are combined into a final regression model to make the predic-
tion. The adaptive nature of the boosting algorithm reduces er-
rors in prediction due to variance and bias in the data set, yielding
models with significantly lower MSEPs and better regression fits.
Although both ensemble methods improve model generalization
and reduce prediction error, the sequential training process of the
boosted ensemble method renders it a "slow learner" compared
to the bagged ensemble method, introducing a trade-off between
training time and prediction accuracy.55

The TreeBagger function in MATLAB R© R2020a was used to con-
struct a bootstrap-aggregated (bagged) regression tree model, us-
ing 100 bagged regression trees. The LIBS data was split into a
training and testing set using 30% holdout partition. The test data
was run through the model using the predict function, and a re-
gression, shown in Fig. 8, was calculated between the known test
data Si content and the Si content predicted by the model. This
bagged regression model gave an R2 value of 0.974 and an MSEP
of 0.455, outperforming the PCR and PLSR models discussed in
Sect. 2.1 in Si wt% determination. These results clearly indicate
that the bagging methodology successfully reduced regression er-
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Fig. 8 Bagged ensemble regression model predictions.

ror and improved performance.
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Fig. 9 Boosted ensemble regression model predictions.

The fitrtree function in MATLAB R© R2020a was used to con-
struct a boosted ensemble regression tree model, using 100
boosted trees via a least-squares boosting algorithm. The data
was again partitioned using 30% holdout validation. Fig. 9 shows
the results of the regression of the predicted Si contents from
the boosted ensemble model. The boosted tree regression model
yielded a comparable R2 value (0.964) to the bagged and PLS re-
gression models. However, the MSEP for the boosted prediction
regression of the test data was driven down to 0.074, an order of
magnitude less than the errors of the bagged and PLS regressions.
This significant increase in performance indicates that adaptively
weighting parts of the input data yielding higher error to train

each learner sequentially resulted in a more accurate final regres-
sion model. Bagging falls short in this aspect due to its parallel
training method.

It should be noted that while boosting renders a higher accu-
racy regression, it takes substantially more time to train than the
bagged model since it generates and runs all learners in series.
The bagged ensemble was trained in 21.67 seconds, whereas the
boosted ensemble took 79.01 seconds, nearly four times longer.
This highlights the need to consider this trade-off between com-
putational time and accuracy when evaluating which ensemble
method to use for a regression solution. In certain cases, espe-
cially with limited computational power, it could be advantageous
to use a bagged ensemble with less predictive accuracy to enable
rapid chemical analysis and quantitative results.

3.3 ANNs

ANNs are a machine learning paradigm inspired by the structure
of biological nervous systems. Similar to how a neuron receives
input and turns it into a signal to pass to another neuron, a neural
network takes a series of input variables and multiplies them by
weights. More specifically, data enter an ANN through an input
layer and are fed-forward to subsequent layers. Each hidden layer
contains neurons (nodes), wherein each neuron sums weighted
inputs from the previous layer and generates an output by apply-
ing an activation function. The output layer sums weighted inputs
from the last hidden layer and generates a numerical output via
an activation function.49,56 This process is modeled as a math-
ematical analog of synaptic communication in biological neural
pathways; Fig. 10 illustrates a single hidden layer ANN architec-
ture. ANNs have the capability to capture highly complex data

Fig. 10 ANN architecture diagram; each circular node represents a single
neuron, and each arrow represents the connection of the output of one
neuron to the input of another.

relationships and produce accurate classification or regression so-
lutions for very large data sets, and are often used for image or
pattern recognition.57,58 Their ability to tie a large number of in-
put variables into a concise output makes them ideal for use in
spectroscopy.

The feedforward neural network (FFNN) is a simple, widely
used ANN architecture in LIBS analysis.18,19,59,60 An FFNN model
was created using 15 neurons in the hidden layer; a 70/15/15
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percent training/validation/testing partition was applied to the
input data, and a scaled conjugate gradient training function was
implemented for optimization. The network was run over 42 full
learning cycles, or epochs, and its performance is grapically eval-
uated in Fig. 11. The FFNN produced a model with the lowest
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Fig. 11 Feedforward neural network MSEP curves over 42 learning cycles.

validation MSEP of 0.412, initially indicating high predictive ac-
curacy. Upon closer inspection, however, it appears that this ANN
structure suffers from overfitting of the data. In Fig. 11, the
training (blue) and validation (green) curves are driven to low
MSEPs, but the test performance curve (red) has a minimum er-
ror almost an order of magnitude higher (1.123) than that of the
lowest MSEP of the validation curve. This indicates that while
the model was able to accurately fit the training data and lower
prediction error by updating weights during validation, it failed
to generalize these results to the test set. As a result, the FFNN
could not provide accurate predictions of Si content for new data.
The model can be further analyzed by evaluating the fits of the
regressions between the targets and outputs in Fig. 12.

Overall, the FFNN provided good regression fits to the training
(Fig. 12a) and validation (Fig. 12b) data, but yielded a poorer
fit to the test set (R2=0.936) in Fig. 12c. This yet again indicates
overfitting and a failure to properly generalize the model to new
data. The model yielded a total R2 value of 0.975 (Fig. 12d),
comparable to the PLSR and ensemble regressions. However, it
was outperformed by the boosted ensemble whose MSEP remains
an order of magnitude lower. Additionally, the boosted regres-
sion model was able to properly generalize its training model to
the test data, as its R2 and MSEP values from Fig. 9 show high
predictive accuracy of new data. Even though both methods pro-
vided accurate solutions to this regression problem, the boosted
ensemble was able to better generalize the relationship between
the spectral inputs and Si content without overfitting the train-
ing data during the learning process. Even though ANNs pro-
vide a useful tool for relating complex, non-linear input data to
a target output, the iterative adaptation of input weights used in
the boosted ensemble greatly reduces overall predictive error and
yielded a far more robust model in this case.

Although ANNs have traditionally provided accurate regres-
sion and classification models for spectroscopic problems, this
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Fig. 12 Feedforward network (a) training, (b) validation, (c) test and
(d) total regression fits, with respective R2 values.

study presents evidence that boosted regression ensembles can
be used in-lieu of traditional neural network architectures for
rapid and accurate quantification of dopant elements in a bulk
cerium matrix. These results are summarized in Table 2, with the
best regression performance parameters in boldface. While the
bagged ensemble provided the best regression fit (R2 = 0.974),
the boosted ensemble yielded an order-of-magnitude improve-
ment in reducing regression error (MSEP = 0.074). These re-
sults indicate that ensemble methods can provide advantages in
accuracy while avoiding overfitting when compared to more com-
mon analytical approaches, and present themselves as a promis-
ing new tool for use in analytical spectroscopy.

Table 2 Summary of regression model performance parameters

Model R2 MSEP
PCR 0.8871 1.926
PLSR 0.967 0.561

Bagged Trees 0.974 0.455
Boosted Trees 0.964 0.074

ANN 0.936 1.123

4 Conclusions
We have reported the evaluation of five machine learning meth-
ods to solve a complex chemometric regression problem. LIBS
spectra of ceria pellets doped with silicon were used to create
predictive models to determine the Si content of a sample from
spectral emission information. This study concludes that boosted
regression tree ensembles provide better solutions than tradition-
ally used techniques, such as PCR, PLSR and ANN. Boosted en-
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semble regressions provided the model with the best fit to the
data and highest prediction accuracy based on R2 and MSEP val-
ues. While the ANN model performed well, it displayed evidence
of overfitting and could not fully generalize the trained model to
make accurate predictions of new input data. This demonstrates
the superiority of the boosted ensemble approach in this case. Our
results suggest that the boosted ensemble technique may outper-
form PCAR, PLSR, and ANN approaches for other, similar prob-
lems – complex LIBS spectra taken with portable devices. Addi-
tional work by the authors will seek to validate this generalization
by considering additional sample matrices and additional LIBS
instrument variants. Lastly, performance metrics for all tested re-
gression models are tabulated in Table 2.
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