

Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products

Journal:	Green Chemistry
Manuscript ID	GC-ART-07-2020-002301.R1
Article Type:	Paper
Date Submitted by the Author:	04-Aug-2020
Complete List of Authors:	Liu, Xinyu; Argonne National Laboratory, Energy Systems Division Elgowainy, Amgad; Argonne National Laboratory, Energy Systems Division Wang, Michael; Argonne National Laboratory, Energy Systems Division

SCHOLARONE[™] Manuscripts Page 1 of 26

Green Chemistry

1	Life cycle energy use and greenhouse gas emissions of ammonia production from
2	renewable resources and industrial by-products
3	Xinyu Liu, ¹ Amgad Elgowainy, ¹ Michael Wang ¹
4	¹ Systems Assessment Center, Energy Systems Division, Argonne National Laboratory
5	Keywords: ammonia production, life cycle analysis, greenhouse gases, energy use

6 Abstract

7 Conventionally, ammonia is produced from natural gas via steam methane reforming (SMR), 8 water-gas shift reaction, and the Haber-Bosch process. The process uses fossil natural gas, which leads to 9 2.6 metric tons of life cycle greenhouse gas (GHG) emissions per metric ton of ammonia produced. With 10 ammonia being the second most produced chemical in the world, its production accounts for approximately 2% of worldwide fossil energy use and generates over 420 million tons of CO₂ annually. 11 12 To reduce its carbon intensity, ammonia synthesis relying on renewable energy or utilizing by-products 13 from industrial processes is of interest. We conduct a life cycle analysis of conventional and alternative 14 ammonia production pathways by tracking energy use and emissions in all conversion stages, from the 15 primary material and energy resources to the ammonia plant gates. Of all the alternative pathways, 16 obtaining N₂ from cryogenic distillation and H₂ from low-temperature electrolysis using renewable 17 electricity has the lowest cradle-to-plant-gate GHG emissions, representing a 91% decrease from the 18 conventional SMR pathway.

19 1. Introduction

Ammonia is the second most produced chemical in the world nowadays.¹ Most of the ammonia produced was used for nitrogen fertilizer manufacture.² However, research suggests ammonia as a promising zero-carbon energy carrier because of its high volumetric energy density, which is approximately twice as high as that of liquid hydrogen (H₂). Moreover, ammonia stays in liquid form at

24	room temperature and low pressure (~10 bar) ³ ; while the liquefaction of H_2 requires cooling to -253°C and
25	approximately 12 kWh of electricity per kilogram (kg) of H ₂ produced. ⁴ The safe handling and
26	transportation infrastructure of ammonia are already in place, which may facilitate the transformation to
27	an expanded ammonia-based energy sector. ⁵
28	Ammonia is also being explored for long-term energy storage to enable greater penetration and
29	utilization of intermittent renewable wind and solar energy sources. ⁵ Ammonia can play an essential role
30	in a future energy landscape with increased penetration of renewables by balancing the temporal
31	discrepancy between the supply of and demand for energy in various regions.
32	With these emerging applications of ammonia, future global production for ammonia could
33	increase by orders of magnitude. ⁵ Conventionally, ammonia is produced from steam methane reforming
34	(SMR) of fossil natural gas or gasification of coal; these account for 72% and 22% of global ammonia
35	production capacity, respectively.1 Other feedstocks for ammonia production include fuel oil (4%) and
36	naphtha (1%).6 Ammonia production accounts for approximately 2% of worldwide fossil energy use and
37	generates over 420 million tons of CO_2 annually, representing 1.2% of the global anthropogenic CO_2
38	emissions. ^{1,5} To decarbonize the ammonia sector, alternative ammonia production pathways from
39	renewable sources are of increasing interest.
40	With current technologies, it is feasible to produce ammonia from carbon-free resources — water
41	and air — using renewable electricity as the main energy source for air separation and water
42	electrolysis. ^{5,7} For example, a commercial plant recently built by Yara, a nitrogen fertilizer manufacturer,
43	demonstrated the use of renewable electricity to split water into H_2 and O_2 and the Haber-Bosch (HB)
44	reaction to combine H_2 and N_2 to produce low-carbon ammonia. ⁸ Morgan et al. conducted two techno-
45	economic analyses of wind-powered ammonia production to demonstrate the process's economic
46	feasibility. ^{3,7}
47	One of the most-used techniques for environmental assessment of any product is life cycle
48	analysis (LCA). LCA holistically evaluates the environmental impacts of a product by compiling an

Page 3 of 26

Green Chemistry

49 inventory of energy and material inputs to the various stages along the product's life cycle and calculating
50 the associated resource use and resulting emissions. ⁹

51 LCA has been widely applied to evaluate conventional ammonia production pathways.^{10,11} 52 Johnson et al. assessed the life cycle energy use and greenhouse gases (GHG) emissions from SMR of 53 fossil natural gas in the U.S., using industry-aggregated inventory data ¹⁰. Zhang et al. quantified the life 54 cycle GHG emissions resulting from China's nitrogen fertilizer production and consumption supply 55 chain, with a focus on using prevailing technologies to produce ammonia, such as natural gas SMR and 56 coal gasification.¹¹ Bicer et al. assessed the use of fossil resources, such as coal, natural gas, and heavy 57 oil, to produce ammonia and reported the global warming potential (GWP) for a period of 500 years.¹² 58 They concluded that using electricity generated from fossil resources for H_2 production via water 59 electrolysis would incur more life cycle GHG emissions than the natural gas SMR pathway.

60 Only few studies applied LCA to assess alternative low-carbon ammonia production pathways, 61 although alternative low-carbon ammonia production technologies utilizing renewable electricity have been extensively studied ^{3,7,13–16}. Bicer et al. compared the life cycle energy and exergy efficiency, as well 62 63 as the GHG emissions, of various ammonia production pathways employing the HB reaction and H₂ from 64 water electrolysis and using zero- or low-carbon electricity from municipal waste, nuclear, biomass, and 65 hydropower.⁶ In another LCA study, Bicer and Dincer evaluated the impacts of different end-use 66 applications of ammonia produced from an electrochemical pathway, such as city transportation and power generation 17 . In these two LCA studies, H₂ was assumed to be produced from water electrolysis 67 68 and N₂ from cryogenic distillation ^{6,17}. However, other large-scale potential sources of H₂ have not been assessed, for example, H₂ as industrial by-products ^{18,19}. Moreover, other air separation techniques have 69 70 not been analyzed.

In this paper, we extend the work of Bicer et al. and Zhang et al. by using LCA to assess
additional low-carbon technology pathways to produce syngas containing the N₂ and H₂ needed by the

HB loop for ammonia synthesis. We evaluate two technologies for producing N₂: cryogenic distillation (CD) and pressure swing adsorption (PSA), and four technology pathways to produce H₂: lowtemperature electrolysis (LTE), high-temperature electrolysis (HTE), as a by-product from chlor-alkali (CA) processes, and as a by-product in steam cracker (SC) plants. In addition, this work provides a detailed energy and emission inventory for each stage in the ammonia life cycle for each of the technology pathways considered. This work also assesses the sensitivity of energy use and GHG emissions to the source of electricity, key process parameters, and co-product treatment methods.

80 2. Ammonia manufacturing technology description and evaluation of system

81 boundary

82 Our LCA system boundary is cradle-to-plant-gate, and the functional unit is 1 metric ton of 83 ammonia produced. We utilized the Greenhouse gases, Regulated Emissions, and Energy use in 84 Technologies (GREET®) model (2019) to conduct the LCA.^{20,21} We evaluate energy use and GHG 85 emissions associated with ammonia production pathways, here referred to as the "cradle-to-plant-gate life cycle." Those related to equipment manufacturing, e.g., reactors or electrolytic cells, are likely to be small 86 87 considering the ammonia throughput over the life of a production plant, and are thus kept out of scope for 88 this analysis. The goal is to evaluate the life cycle GHG emissions of ammonia produced from alternative 89 low-carbon pathways in comparison with the conventional natural gas SMR pathway.

We assume that the H₂ plant, N₂ plant, and HB plant are co-located. Moreover, since our study of the ammonia production pathways ends at the ammonia plant gate, the storage, transportation, and end use of ammonia are not included in the scope of analysis. The cradle-to-plant-gate GHG emissions are presented in CO₂ equivalents (CO_{2e}) of CO₂, CH₄, and N₂O with their 100-year GWP of 1, 30, and 265, respectively, following the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report.²²

96 Conventional ammonia production based on steam methane reforming

97 Conventionally, ammonia is produced from SMR of natural gas. There are two main functional 98 steps in this pathway: The first is to produce H_2 from natural gas via steam methane reforming, and the 99 second is to synthesize ammonia via the HB process, as depicted in Figure 1. In the natural gas supply in 100 North America, which is the focus of this study, the shares of conventional and shale gas are 48% and 101 52%, respectively.²⁰

102

103 Figure 1: Process diagram for conventional ammonia production (adapted from Johnson et al.¹⁰)

Methane (CH₄) is reformed with steam at up to 1000°C in the primary and secondary SMR
 reactors to form H₂ and carbon monoxide (CO) according to Reaction 1:

106

$$CH_4 + H_2 O \rightarrow CO + 3H_2 \tag{1}$$

107 Compressed air is introduced into the secondary SMR reactor to combust a portion of the natural 108 gas to provide heat of reaction.¹⁰ Oxygen (O_2) is depleted during the combustion, while the stoichiometric 109 nitrogen (N_2) is used in the downstream HB synthesis loop, avoiding the need for an air separation unit 110 (ASU) in this pathway. The gas mixture at the SMR reactor outlet contains H₂, CO, CO₂, unreacted 111 steam, and CH₄, and is cooled and sent to a two-stage water-gas shift (WGS) reactor to increase the H₂ 112 yield, according to Reaction 2:

113

$$CO + H_2 O \leftrightarrow CO_2 + H_2 \tag{2}$$

114 Mono-ethanol-amine scrubbing or the Selexol process is employed to remove CO₂, and 115 methanation converts the remaining CO into CH₄ to prevent poisoning of the HB catalyst. After

116	compression, the syngas mixture enters the HB loop, where stoichiometric N_2 and H_2 react at 150–250 bar
117	and 400°C–450°C with the presence of iron-based catalyst to produce ammonia according to Reaction 3:5
118	$N_2 + 3H_2 \rightarrow 2NH_3 \tag{3}$
119	Recycling is needed, since the single-pass conversion rate for ammonia is low (around 15%).
120	Ammonia is condensed and separated at -25°C to -33°C. The unreacted N_2 and H_2 are compressed and
121	recycled to the HB reactor. Heat recovered from the cooling of the gas mixture exiting the secondary
122	SMR reactor is used to raise the temperature of the steam, which is expanded in the steam turbine to drive
123	the compression of air fed into the secondary SMR reactor and feed gas introduced to the HB synthesis
124	loop. Therefore, the modern ammonia manufacturing process is highly integrated.
125	The inventory of this integrated pathway was incorporated into the GREET model, as
126	summarized in Table 1, and used for this analysis without modification. ²⁰ The cradle-to-plant-gate GHG
127	emissions for this pathway are 2.6 metric ton CO_{2e} /metric ton ammonia, ^{20,23} which agrees well with the
128	range reported in Zhang et al. (2.1–3.6 metric tons CO _{2e} per metric ton NH ₃). ¹¹ For comparison, the
129	cradle-to-plant-gate GHG emission of the coal gasification pathway to produce ammonia is 6.1-7.8
130	metric tons CO _{2e} per metric ton NH ₃ , which is much higher than the natural gas SMR pathway. ¹¹ Our
131	results are less comparable with those in Bicer et al., ¹² since they reported the GWP for a period of 500
132	years while we calculated the 100-year GWP.

133 Alternative ammonia production

134 In addition to the natural gas SMR pathway, there are alternative technologies for ammonia 135 manufacturing. The basic structure of these alternative pathways is depicted in Figure 2. High purity N_2 is 136 obtained by separating air, and high purity H_2 can be produced from various technologies, as explained 137 below.

139

138

Figure 2: Process diagram for alternative ammonia production pathways.

140 The gas mixture containing stoichiometric N_2 and H_2 is compressed to the operating pressure of 141 the HB reactor (assumed to be 200 bar in this analysis) and enters the electricity-driven HB synthesis 142 loop. As with the conventional pathway, the single-pass conversion rate for ammonia is only 15%, so 143 recycling of unreacted syngas is needed. There is a pressure drop around the HB synthesis loop, which is 144 assumed to be 6% of the operating pressure of HB reactor.^{3,24} Thus, for a HB reactor pressure of 200 bar, 145 the single-pass pressure drop is approximately 12 bar. To overcome this pressure drop, the recycled gas 146 mixture needs to be recompressed to the operating pressure of the HB reactor. In the HB synthesis loop, the electricity is required almost exclusively for syngas/recycle gas compression.^{3,7} The synthesis loop 147 148 does not need an external heat source, since the HB reaction is exothermic, and the utilization of reaction 149 heat through heat integration is sufficient to satisfy the process heat demand.^{14,25} Pumping energy is also 150 required to circulate cooling water. According to Morgan et al.,⁷ the pumping power only accounts for 151 \sim 1% of the total power required in the synthesis loop, so it is considered negligible and not included in 152 this analysis.

153 It is worth mentioning that the HB loop, including the syngas compression, needs to be supplied 154 with constant power. Therefore, in this analysis, we assume that the HB loop utilizes grid electricity to 155 power the electric motors that drive gas compressors. For a large pressure increase, a multi-stage 156 compressor should be used with an intercooler between stages to reduce the compression power and keep 157 the compression discharge temperature below a practical limit. Equation 4 is applied to calculate the 158 compression energy:

159
$$E_{\rm comp} = \frac{1}{3600} \times \frac{1}{\eta_{\rm EM}} \times n \times Z \times R \times T \times \frac{1}{\eta_{\rm C}} \times \frac{k}{k-1} \times \left[\left(\frac{P_{\rm outlet}}{P_{\rm inlet}} \right)^{\left(\frac{k-1}{nk} \right)} - 1 \right]$$
(4)

160 where E_{comp} is the energy required for gas compression in the unit of kWh/kg gas, η_{EM} is the electric 161 motor efficiency, assumed to be 95% in this analysis, and n is the number of compression stages, determined by the outlet pressure (Poutlet in units of bar or psi), the inlet pressure (Pinlet in the unit of bar 162 163 or psi), and the compression pressure ratio per stage. In this analysis, we assume the per-stage 164 compression ratio is 2 for both N_2 and H_2 . Z is the compressibility factor, assumed to be 1 in this analysis, 165 *R* is the gas constant (0.297 kJ/kg-K for N₂, 4.125 kJ/kg-K for H₂, and 0.978 kJ/kg-K for syngas), *T* is the 166 inlet gas temperature in degrees Kelvin, η_C is the isentropic efficiency of compression, assumed to be 167 80% in this analysis, and k is the specific heat ratio (1.4 for N_2 and H_2). 168 Applying Equation 4, the electric energy required by the HB loop is 0.324 kWh/kg NH₃. This 169 value is comparable to those reported in literature. Frattini et al. reported a compression power demand of 170 0.44 kWh/kg NH₃ using an Aspen Plus simulation,¹⁴ while Morgan et al. reported the energy required by 171 the HB synthesis loop to be approximately 0.64 kWh/kg NH₃ based on literature values.^{7,24} These differences may stem from the variations in process specifications: pressures at which syngas N₂ and H₂ 172 are produced, assumed compression efficiency, assumed electric motor efficiency, pressure of the HB 173 174 reactor, and pressure drop in the HB loop.

175 Various technologies for N₂ production from air separation

There are three main methods of separating N_2 from air: cryogenic distillation, pressure swing adsorption (PSA), and membrane separation. Membrane separation cannot achieve a purity level high enough for ammonia production, especially at a high flowrate¹⁴ and without a deoxygenator.⁷ Moreover, O_2 cannot be recovered as a co-product with membrane separation.²⁶ Therefore, we focus on the other two technologies in this analysis.

181 Cryogenic distillation

182 Cryogenic distillation accounts for more than 90% of the global production of N₂.²⁶ It is suitable 183 for large system production with impurity concentrations down to the parts-per-billion range.²⁶ Compared 184 to other air separation methods, cryogenic distillation produces the purest N₂ and requires the smallest 185 input power.²⁶ Cryogenic distillation works by utilizing the differences in boiling point of major air 186 components: Air is cooled down to its dew point while the contaminants are removed, and then distilled 187 into its individual components with a distillation column. The energy requirement for separating one 188 standard cubic meter of pure N₂ at 8 bar ranges from 0.15 to 0.25 kWh, which is bound by two 189 modifications to the double-column system. In this analysis, we use a mid-value of 0.2 kWh/m³ at 190 standard temperature (0 °C) and pressure (1 bar) (STP). With the density of N₂ at STP equal to 1.23 191 kg/m³, 162 kWh of electricity is consumed per metric ton N₂ produced.²⁶ Since the liquefaction of air 192 occurs at low temperatures and requires a steady energy supply, we assume for the base design case that 193 the cryogenic distillation of air to produce N₂ utilizes grid electricity.

194 Pressure swing adsorption

195 PSA is suitable for small system production, with N₂ purity up to 99.99%.²⁶ A N₂-PSA plant 196 utilizes carbon molecular sieves, which in the adsorption mode preferably adsorb H_2O , CO_2 and O_2 while 197 letting N_2 pass through into a buffer tank. In the adsorbent regeneration mode, the pressurized gas in the 198 adsorber is released to the atmosphere. The N_2 collected in the buffer tank serves as the final product. 199 The PSA unit is more flexible in the context of renewable energy utilization, since it only needs a 200 few minutes to reach its full production capacity. This feature is particularly useful when the energy 201 supply for producing N_2 fluctuates significantly, as is the case with intermittent renewable energy. In 202 contrast, the cryogenic ASU needs two hours before it starts to steadily produce N2 and O2. It is estimated 203 that 365 kWh of electricity is required to produce a metric ton of nitrogen at 8 bar, which is a typical operating pressure for N2-PSA unit.26 204

205 Various technologies for H₂ production

Four alternative H_2 production technologies are evaluated in this study, all of which satisfy the H_2 purity requirement for the HB process and supply H_2 at 20 bar.²⁰

208 By-product H₂ from chlor-alkali processes

H₂ may be available as a by-product from the chlor-alkali (CA) process, which coproduces

210 sodium hydroxide and chlorine as main products via electrolysis of a sodium chloride solution. Reactions

- 5 and 6 occur at cathode, while 7 and 8 occur at anode. Reaction 9 represents the overall reaction.²⁷
- 212 $2H_20 + 2e^- \rightarrow H_2 + 20H^-$ (5)

$$213 \qquad 2Na^+ + 2OH^- \rightarrow 2NaOH \tag{6}$$

$$214 \qquad \qquad 2NaCl \rightarrow 2Na^+ + 2Cl^- \tag{7}$$

$$2Cl^{-} \rightarrow Cl_{2} + 2e^{-} \tag{8}$$

 $216 \qquad \qquad 2NaCl + 2H_2O \rightarrow Cl_2 + 2NaOH + H_2 \tag{9}$

217 Hydrogen as a by-product from CA plants is vented if not sold for industrial use.^{19,20} The CA process is a mature industrial technology capable of co-producing high-purity H_2 on a large scale (up to ~ 218 0.4 million tons per year) and at a relatively low price (\sim \$1/kg H₂).¹⁹ H₂ produced from the CA process is 219 220 of high purity (>99.9%), obviating the need for an additional purification process. Therefore, the post-221 processing of H_2 only requires cooling/drying and compression. From a H_2 production standpoint, 222 electricity is needed for electrolysis of the sodium chloride solution and compression of H_2 , while heat is 223 required to process the sodium chloride solution. Electricity can be sourced from the grid or an onsite 224 combined heat and power (CHP) system. If the CA process has a CHP system, then the process heat 225 demand can be met solely by the recovered heat from the CHP. Otherwise, the process heat is provided by 226 natural gas boilers. A detailed process inventory is available in Lee et al., where four H_2 co-product 227 treatment methods are assessed: venting, combustion/substitution, mass allocation, and market value allocation.^{19,27} In this study, we assume that there is no on-site CHP and consider three treatments of by-228

product H_2 — venting (as the base design case), combustion/substitution and mass allocation (as

230 sensitivity cases) — which cover the two extremes in terms of cradle-to-plant-gate GHG emissions. If the

231 CA plant is designed to vent by-product H₂, it is treated as waste. However, if the CA plant is designed to

232 use byproduct H₂ for process heat, then the thermal energy in the H₂ exported for ammonia production

must be replaced by an equivalent thermal energy, which we assume to be sourced from natural gas.

234 By-product H₂ from steam cracking of natural gas liquids (NGLs)

By-product H_2 from the steam cracking (SC) of NGLs has been of interest recently due to increased shale gas production. It is estimated that 3.5 million tons of by-product H_2 can be available annually from steam cracker plants.¹⁸ Steam cracker plants use thermal cracking of hydrocarbon feedstock, such as NGLs, to produce light olefins and other co-products. As shown in Reaction 10, H_2 is available as a by-product of the cracking process.

240
$$C_n H_{2n+2} + steam \longrightarrow aH_2 + bCH_4 + cC_2 H_4 + dC_3 H_6 + eC_4 H_8 + fC_{5+}$$
(10)

241 The heat required for cracking is usually provided by combusting a mixture of by-product H_{2} , 242 natural gas, and/or surplus CH_4 from the cracking process. Alternatively, by-product H_2 may be separated 243 for export to other markets (e.g., ammonia production), and its heating value can be replaced with 244 combusting additional natural gas. The cracked gas is usually post-processed through quenching, 245 compression, and fractionation to separate the mixture into individual products. PSA can be employed to 246 separate and purify by-product H_2 to meet the requirements of the HB process. The energy intensity of the PSA unit is estimated at 0.5 kWh/kg H₂. A detailed process inventory is available in Lee et al.¹⁸ 247 248 Two co-product treatment methods are considered: substitution (as the base case) and mass 249 allocation (as a sensitivity case). The substitution method is similar to what has been described above for 250 the CA process, since most steam cracker plants combust by-product H₂ on site for process heat. For mass 251 allocation, the mass balance between products is used to allocate environmental burdens.

252 Low-temperature electrolysis (LTE) from renewable electricity

253 There are two common water electrolyzer technologies used in low-temperature applications: 254 alkaline and proton exchange membrane (PEM). Both are mature technologies and have the potential to 255 produce H_2 at a large scale, but the latter is more suitable for use with intermittent renewables due to its fast response rate.5,16 256 257 As its name suggests, alkaline electrolysis employs a 25%–30% aqueous KOH solution as the electrolyte in which the electrodes are immersed, separated by a diaphragm.²⁸ Reactions 11 and 12 258 259 represent the reactions occurring at the cathode and anode, respectively, with a direct current application: $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$ 260 (11) $20H^{-} \rightarrow \frac{1}{2}O_2 + H_2O + 2e^{-}$ 261 (12)262 H₂ is produced at the cathode with a high purity, typically ranging from 99.5%–99.9% after drying. The 263 system energy efficiency of the alkaline electrolyzer is in the range of 51%–60% based on the lower 264 heating value of H₂. 265 PEM electrolysis utilizes a solid proton-conducting membrane stack on which the electrodes are usually directly mounted. Reactions 13 and 14 represent the reactions taking place at the cathode and 266 267 anode, respectively. Both reactions happen in the acidic regime, in contrast to those of alkaline 268 electrolysis. $2H^+ + 2e^- \rightarrow H_2$ 269 (13) $H_2 O \rightarrow \frac{1}{2} O_2 + 2H^+ + 2e^-$ 270 (14)271 PEM electrolysis produces H₂ at the cathode with a purity over 99.99%, due to the very low 272 permeation across the PEM. A PEM electrolyzer cell can operate under higher current density (>1500 273 milliamps per square centimeter $[mA/cm^2]$) than the alkaline electrolyzer cell (200-600 mA/cm²), which 274 supports the higher-pressure operation of PEM electrolysis and reduces the downstream burden to 275 compress the syngas at the HB reactor.^{16,28}

276 PEM electrolyzer technology has an energy efficiency of up to 72%.²⁰ In this analysis, we assume 277 that PEM electrolyzer energy efficiency is 63% based on a lower heating value of H₂, meaning that 63%278 of the input electric energy would be stored in the H_2 product in the form of chemical energy (lower 279 heating value).²⁹ The electricity for electrolysis is assumed to be sourced from renewable resources, such 280 as wind or solar. However, to balance the supply and demand of intermittent and geographically isolated 281 renewable electricity, storage equipment, such as an H_2 storage tank and/or battery, is needed to enable a 282 consistent H₂ supply to the HB loop. This may increase the capital investment and impact the cost of the 283 ammonia produced, which is beyond the scope of this analysis.

284 High-temperature electrolysis with solid oxide electrolysis cell

285 A solid oxide electrolysis cell (SOEC) is used for high-temperature electrolysis (HTE) 286 applications due to its ability to withstand high temperatures. H₂ production from high-temperature 287 electrolysis using SOEC provides higher electrical energy efficiency than low-temperature electrolysis, since part of the total process energy requirement is satisfied by heat rather than electricity.⁶ In this 288 289 analysis, we assume that the required heat and electricity are provided by a high-temperature gas-cooled 290 reactor (HTGR) using uranium (U-235) as fuel. The upstream energy use and emissions associated with 291 uranium mining, conversion, enrichment, and transportation are estimated by the GREET model.^{20,30} In 292 the HTGR, heat is generated to increase the temperature of steam entering the SOEC to approximately 293 800°C. The remaining heat drives a high-efficiency gas turbine to produce electricity for the electrolysis 294 process. Reactions 15 and 16 represent the reactions at the cathode and anode of SOEC, respectively.²⁸

$$H_2 0 + 2e^- \to H_2 + 0^{2-} \tag{15}$$

296

$$0^2 \to \frac{1}{2} O_2 + 2e^-$$
 (16)

H₂ is produced at the cathode and separated from the steam by cooling and condensation of water.
For both water electrolysis pathways, LTE and HTE, the overall reaction is the same and is given
by Reaction 17:

$$H_2 O \xrightarrow{electricity} H_2 + \frac{1}{2} O_2 \tag{17}$$

301 According to the reaction stoichiometry, when producing 1 kg of H₂, 7.9 kg of O₂ is produced as a by-

302 product. In this analysis, no credits have been given to by-product O₂ from N₂ production from air or H₂

- 303 production from water.
- 304

Table 1: Inventories for conventional and alternative ammonia production

Technologies	Electricity (GJ)	Natural gas (GJ)	N ₂ @ 8 bar (metric ton)	H ₂ @ 20 bar (metric ton)	Energy efficiency	
		Ammonia proc	luction (per m	etric ton NH ₃)		
Integrated conventional ammonia production based on SMR	0.47	36.5*	-	-		
		N ₂ produc	tion (per metr	ic ton N ₂)		
Cryogenic distillation	0.584	-	-	-		
Pressure swing adsorption	1.313	-	-	-		
		H ₂ produc	tion (per metr	ic ton H ₂)		
Electrolysis of sodium chloride solution	6.225	-	-	-		
Steam cracking of NGLs	1.8	120	-	-		
Low-temperature PEM electrolysis	190	-	-	-	63%	
High-temperature solid oxide electrolysis	-	-	-	-	50%**	
		Ammonia proc	luction (per m	etric ton NH ₃)		
Electric-based Haber-Bosch	1.165	-	0.822	0.178		
*28.3% of the total natural	gas input is use	ed as fuel.				

305 306

A thermal-to-hydrogen efficiency of 50% is used.³¹

307

3. Results and Discussion 308

Cradle-to-plant-gate fossil energy consumption 309

- 310 Figure 3 shows the cradle-to-plant-gate fossil energy consumption for various ammonia
- 311 production pathways. The conventional SMR pathway consumes the highest amount of fossil energy
- 312 because it uses mainly fossil natural gas as feedstock and process fuel.

313

317 For the alternative ammonia production pathways, preparing syngas via N₂-CD and H₂-LTE 318 consumes the least fossil energy per metric ton of NH₃ produced, a 93% reduction from the conventional 319 SMR pathway. This is because most of the energy in this pathway is required for H_2 production, and we 320 assume that renewable electricity generated from solar or wind is used for this process. The majority of 321 the energy consumed when producing H_2 via HTE is also non-fossil, since this process utilizes nuclear 322 energy for both heat and power. For H₂ produced from the CA process, more fossil energy is consumed 323 than in water electrolysis, which sources renewable electricity, since the U.S. grid mix is assumed to be 324 used in the CA process for the cooling/drying and compression of H₂. Of the 2019 U.S. grid mix, 63% is 325 generated from fossil resources — coal and natural gas. A significantly higher amount of fossil energy is 326 consumed in the H₂-SC pathways as a result of the substitution method used to evaluate by-product H_2 in 327 the base case, as mentioned earlier. In that method, natural gas combustion is assumed to substitute for the 328 heat loss resulting from selling byproduct H₂. However, even in this scenario, the ammonia production 329 consumes 32% less fossil energy than the conventional SMR pathway.

330 Cradle-to-plant-gate GHG emissions

331 Figure 4 depicts the cradle-to-plant-gate GHG emissions for various ammonia production

332 pathways.

333

Figure 4: Cradle-to-plant-gate GHG emissions in base case co-product treatment methods. Electricity source for N₂
 production and HB loop: 2019 U.S. grid generation mix. The "conversion-related process emission" from the
 conventional SMR pathway consists of CO₂ generated from WGS reactor per Reaction 2. "Energy use in HB loop"
 represents the emissions associated with producing and using energy in the HB process, which includes GHG
 emissions from natural gas combusted in industrial boilers to provide process heat.

Figure 4 shows that all alternative pathways generate lower cradle-to-plant-gate GHG emissions
 than the conventional SMR pathway. Of all the alternative pathways, obtaining N₂ from cryogenic

341 distillation and H₂ from LTE using renewable electricity has the lowest cradle-to-plant-gate GHG

emissions, representing a 91% decrease from the conventional SMR pathway.

The contribution of N_2 production to cradle-to-plant-gate GHG emissions varies among different ammonia production pathways. For the pathway where N_2 production has the highest contribution to the cradle-to-plant-gate GHG emissions (N_2 -PSA and H_2 -LTE), it accounts for 48% of the total emissions. This is because producing N_2 via PSA is more energy intensive than cryogenic distillation (Table 1) and H_2 produced from renewable electricity powered LTE does not contribute to GHG emissions. It is noteworthy that for the conventional SMR pathway, N_2 in the syngas is not produced with ASU but by

349 depleting the O_2 in the air during natural gas combustion for process heat, and thus does not explicitly 350 contribute to cradle-to-plant-gate GHG emissions.

In this analysis, we assume that all the alternative pathways use a common HB process to produce NH₃, which consumes 1.165 GJ of U.S. grid electricity per metric ton NH₃ and leads to 0.156 metric tons GHG/metric ton NH₃. For pathways where H₂ is produced mainly from non-fossil sources (LTE and HTE), this emission translates into a 48% to 71% contribution to the cradle-to-plant-gate GHG emissions. However, if H₂ is a by-product from the steam cracker plant under the substitution co-product treatment method, this emission contributes only 9% to the overall life cycle emissions.

357 Sensitivity analysis

358 Regional electricity generation mix

Figure 5 shows the impact of the regional utility grid generation mix on the cradle-to-plant-gate GHG emissions for ammonia production. Here, we assume that N_2 is produced via cryogenic distillation and ammonia is produced via HB using the regional grid generation mix. For electricity consumed in various H₂ production pathways (e.g., H₂-CA and H₂-SC), we also assume that regional grid generation mix is used.

There are eight major electricity regions in the contiguous U.S., which have different shares of electricity generation technologies. The GHG emission intensity of different regional grid generation mixes is shown in Figure 5. A lower GHG emission intensity for the electricity generation mix results in lower cradle-to-plant-gate GHG emissions for ammonia.

Figure 5 demonstrates that if the Northeast Power Coordinating Council (NPCC) grid mix is used to prepare syngas via N_2 -CD and H_2 -LTE, instead of the U.S. average grid mix, the cradle-to-plant-gate GHG emission per metric ton of ammonia produced can be reduced by 44%. This is because the NPCC grid has the largest share of near-zero-carbon nuclear and hydro power generation of all utility regions.²⁰

Figure 5: Impact of regional electricity grid generation mix and co-product treatment method on cradle-to-plant-gate
GHG emissions of various ammonia production pathways. The grey horizontal line represents the cradle-to-plantgate GHG emissions of the conventional SMR pathway in the context of 2019 U.S. grid generation mix. Regional
electric grids: Western Electricity Coordinating Council (WECC), Midwest Reliability Organization (MRO),
Southwest Power Pool (SPP), Texas Reliability Entity (TRE), SERC Reliability Corporation (SERC), Florida
Reliability Coordinating Council (FRCC), Reliability First Corporation (RFC), and Northeast Power Coordinating
Council (NPCC).

372

Figure 5 also shows that if grid electricity is used to produce H_2 via LTE (H_2 -grid mix-LTE), the cradle-to-plant-gate GHG emissions would increase by a factor of 21 over using renewable electricity from solar/wind to power H_2 -LTE, exceeding those from the conventional SMR pathway. This finding suggests using electricity generated mainly from fossil resources to electrolyze water to produce H_2 needed for the HB process would increase life cycle GHG emissions compared to the natural gas SMR pathway, which agrees well with previous findings in the literature.¹²

Therefore, the carbon intensity of the electricity used to power all processes in the ammonia production pathway is crucial for the cradle-to-plant-gate GHG emissions associated with ammonia production. In this analysis, we assume that grid electricity is used to power N_2 -CD and ammonia-HB, since these processes require a steady energy supply to operate in the continuous mode. The cradle-to-

390 plant-gate GHG emissions of ammonia can be further reduced if renewable electricity can be supplied 391 continuously to provide the energy required by N_2 production and the HB synthesis loop. In that case, the 392 ammonia produced can be carbon-free. However, mitigating the intermittency of renewable resources 393 such as wind and solar would require energy storage, which impacts the economics of their supply and 394 thus the economics of ammonia production.

395 Co-product treatment methods for H₂ production

Figure 5 also illustrates the impact of the H₂ by-product treatment method on the cradle-to-plant gate GHG emissions for various ammonia production pathways.

398 For byproduct H₂ from CA plants, using the substitution co-product treatment method results in 399 higher cradle-to-plant-gate GHG emissions (1.84 metric tons GHG/metric ton ammonia) than the venting 400 treatment (0.37 metric ton GHG/metric ton ammonia), due to the additional natural gas used to substitute 401 for the energy in the exported H_2 . Employing mass allocation instead of venting slightly increases the 402 cradle-to-plant-gate GHG emissions (0.51 metric ton GHG/metric ton ammonia). This is because instead 403 of being treated as a waste, as in mass allocation, the environmental burdens of the CA plant are 404 distributed between sodium hydroxide, chlorine, and H₂ based on their mass shares in the total plant mass 405 output.

406 A similar conclusion can be drawn for byproduct H_2 from steam cracker plants: The substitution 407 co-product treatment method leads to higher cradle-to-plant-gate GHG emissions than the mass allocation 408 treatment. Despite the co-product treatment methods, the life cycle GHG reduction benefits of all 409 altenative ammonia production pathways using by-product H_2 are robust compared to the conventional 400 SMR pathway.

411 Key process parameters

In this analysis, the assumptions for key process parameters are shown in Table 2. We assess how
varying these parameters within predefined ranges affects the cradle-to-plant-gate GHG emissions of

- 414 ammonia. Electrolyzer efficiency for H₂-LTE has not been included, since renewable electricity from
- 415 solar/wind is assumed to power water electrolysis, and thus the efficiency value is inconsequential to
- 416 GHG emissions.
- 417

Table 2: Key process parameters and their potential ranges assumed for stochastic analysis

	Assumption	Range	Unit
HB reaction pressure	200	150 - 250 ^{5,7}	bar
Pressure drop in the HB loop	6%	3% - 10%	
Single-pass conversion rate in HB loop	15%	$10\% - 35\%^7$	
Electricity use for cryogenic ASU	0.2	$0.15 - 0.25^{26}$	kWh/m ³
Ammonia condensation temperature	-30	- 25 – - 33 ⁵	°C

418

419 We randomly sampled each parameter within its corresponding range 2000 times, assuming 420 uniform distribution, and used the sampled values to generate the cradle-to-plant-gate GHG emission 421 results. Figure 6(a) indicates that the assumed ranges of key process parameters lead to a wide range in 422 cradle-to-plant-gate GHG emissions from the N₂-CD and H₂-LTE pathway. The baseline value is 0.221 423 metric ton GHG/metric ton NH₃, as indicated by the dashed line, with a standard deviation of 0.015 424 metric ton GHG/metric ton NH₃. By decreasing the HB reactor pressure, reducing the pressure drop in the 425 HB loop, increasing the single-pass conversion rate, and reducing the electricity consumption per unit of 426 N₂ produced, the cradle-to-plant-gate GHG emission of ammonia can be reduced by 20% to 0.178 metric 427 ton GHG/metric ton NH₃.

This is further confirmed by the sensitivity analysis shown in Figure 6(b), which shows the effect of varying each parameter within the specified range, one at a time. In the tornado plot, the x-axis indicates the percentage differences induced by each process parameter as compared to the baseline scenario. For the N₂-CD and H₂-LTE pathway to produce ammonia, the electricity consumed to produce one unit of N₂ is the most influential parameter. This is partly because in this pathway, the life cycle GHG emissions resulting from N₂ production contribute 29% to the life cycle results. Reducing the electricity

434 consumption from 0.2 to 0.15 kWh/m³ N₂ produced can lower the cradle-to-plant-gate GHG emissions by 7.3%. Reducing the HB reaction pressure from 200 bar to 150 bar while maintaining the single-pass 435 436 conversion rate leads to a 6.6% decrease in the cradle-to-plant-gate GHG emissions. Improving the 437 single-pass conversion rate in the HB loop from 15% to 35% would reduce the cradle-to-plant-gate GHG 438 emissions of ammonia production by 4.5%, since a higher single-pass conversion rate would reduce the 439 amount of recycled syngas that needs to be recompressed. A single-pass conversion rate of 35%, instead 440 of 15%, would reduce the size of the recycled syngas stream by two-thirds. Therefore, less energy would 441 be required for recycled syngas recompression, if the single-pass pressure drop in the HB loop remains 442 the same. With a lower single-pass pressure drop, the energy consumption for recycled syngas recompression would be further reduced. 443

Figure 6: Impacts of assumptions on key process parameters on the cradle-to-plant-gate GHG emission of ammonia
 produced via N₂-CD and H₂-LTE.

447 4. Conclusion

444

In this study, we evaluated various ammonia production pathways in terms of their cradle-toplant-gate energy use and GHG emissions. Four methods for syngas H₂ production were assessed. LTE using renewable electricity outperforms all other technology pathways for H₂ production with respect to cradle-to-plant-gate GHG emissions of ammonia. However, the successful deployment of this technology may require energy storage to buffer the intermittent renewable electricity, which may negatively impact

453 the economics of low-carbon ammonia production. Sourcing H₂ from HTE with SOEC using nuclear power can produce ammonia with low cradle-to-plant gate GHG emissions similar to sourcing H₂ from 454 455 LTE using wind/solar electricity, but has the advantage of a steady supply of electricity (i.e., nuclear 456 electricity), which may improve the economics of producing low-carbon ammonia. Utilizing the by-457 product H_2 from chlorine-alkali and steam cracker plants has the potential to produce ammonia at a large 458 scale. However, the cradle-to-plant gate GHG emission of the ammonia produced depends on the co-459 product treatment method of by-product H₂. Two methods for syngas N₂ production are assessed: The 460 PSA technology is more energy intensive but has a faster response rate than cryogenic distillation. The 461 life cycle GHG reduction benefits of all altenative ammonia production pathways are robust compared to the conventional SMR pathway. 462

463 5. Conflicts of interest

464 There are no conflicts of interest to declare.

465 6. Acknowledgment

This research was supported by the U.S. Department of Energy Advanced Research Projects Agency – Energy under Contract No. 18/CJ000/01/01. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

473 7. References

474 (1) Giddey, S.; Badwal, S. P. S.; Munnings, C.; Dolan, M. Ammonia as a Renewable Energy
475 Transportation Media. *ACS Sustain. Chem. Eng.* 2017, *5* (11), 10231–10239.

- 476 https://doi.org/10.1021/acssuschemeng.7b02219.
- 477 (2) Food and Agriculture Organization of the United Nations. *World Fertilizer Trends and Outlook to*478 2020 Summary Report; 2017.
- 479 (3) Morgan, E.; Manwell, J.; McGowan, J. Wind-Powered Ammonia Fuel Production for Remote
- 480 Islands: A Case Study. *Renew. Energy* **2014**, *72*, 51–61.
- 481 https://doi.org/10.1016/j.renene.2014.06.034.
- 482 (4) Liu, X.; Reddi, K.; Elgowainy, A.; Lohse-Busch, H.; Wang, M.; Rustagi, N. Comparison of Well-
- 483 to-Wheels Energy Use and Emissions of a Hydrogen Fuel Cell Electric Vehicle Relative to a
- 484 Conventional Gasoline-Powered Internal Combustion Engine Vehicle. Int. J. Hydrogen Energy

485 **2020**, *45* (1), 972–983. https://doi.org/10.1016/j.ijhydene.2019.10.192.

- 486 (5) Smith, C.; Hill, A. K.; Torrente-Murciano, L. Current and Future Role of Haber–Bosch Ammonia
 487 in a Carbon-Free Energy Landscape. *Energy Environ. Sci.* 2020, 331–344.
- 488 https://doi.org/10.1039/c9ee02873k.
- 489 (6) Bicer, Y.; Dincer, I.; Zamfirescu, C.; Vezina, G.; Raso, F. Comparative Life Cycle Assessment of
- 490 Various Ammonia Production Methods. J. Clean. Prod. 2016, 135, 1379–1395.
- 491 https://doi.org/10.1016/j.jclepro.2016.07.023.
- 492 (7) Morgan, E. R.; Manwell, J. F.; McGowan, J. G. Sustainable Ammonia Production from U.S.
- 493 Offshore Wind Farms: A Techno-Economic Review. ACS Sustain. Chem. Eng. 2017, 5 (11),
- 494 9554–9567. https://doi.org/10.1021/acssuschemeng.7b02070.
- 495 (8) Ammonia—a renewable fuel made from sun, air, and water—could power the globe without
- 496 carbon | Science | AAAS https://www.sciencemag.org/news/2018/07/ammonia-renewable-fuel-
- 497 made-sun-air-and-water-could-power-globe-without-carbon (accessed Mar 5, 2020).
- 498 (9) Liu, X.; Kwon, H.; Northrup, D.; Wang, M. Shifting Agricultural Practices to Produce
- 499 Sustainable, Low Carbon Intensity Feedstocks for Biofuel Production. *Environ. Res. Lett.* 2020, 15
- 500 (8), 084014. https://doi.org/10.1088/1748-9326/ab794e.
- 501 (10) Johnson, M. C.; Palou-Rivera, I.; Frank, E. D. Energy Consumption during the Manufacture of

- 502 Nutrients for Algae Cultivation. *Algal Res.* **2013**, *2* (4), 426–436.
- 503 https://doi.org/10.1016/j.algal.2013.08.003.
- 504 (11) Zhang, W. F.; Dou, Z. X.; He, P.; Ju, X. T.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y. L.;
- 505 Zhang, Y.; Wu, L.; Chen, X. P.; Cassman, K. G.; Zhang, F. S. New Technologies Reduce
- 506 Greenhouse Gas Emissions from Nitrogenous Fertilizer in China. *Proc. Natl. Acad. Sci. U. S. A.*
- 507 **2013**, *110* (21), 8375–8380. https://doi.org/10.1073/pnas.1210447110.
- 508 (12) Bicer, Y.; Dincer, I.; Vezina, G.; Raso, F. Impact Assessment and Environmental Evaluation of
- 509 Various Ammonia Production Processes. *Environ. Manage.* **2017**, *59* (5), 842–855.
- 510 https://doi.org/10.1007/s00267-017-0831-6.
- 511 (13) Pfromm, P. H. Towards Sustainable Agriculture: Fossil-Free Ammonia. J. Renew. Sustain. Energy
 512 2017, 9 (3), 034702. https://doi.org/10.1063/1.4985090.
- 513 (14) Frattini, D.; Cinti, G.; Bidini, G.; Desideri, U.; Cioffi, R.; Jannelli, E. A System Approach in
- 514 Energy Evaluation of Different Renewable Energies Sources Integration in Ammonia Production
- 515 Plants. *Renew. Energy* **2016**, *99*, 472–482. https://doi.org/10.1016/j.renene.2016.07.040.
- 516 (15) Miura, D.; Tezuka, T. A Comparative Study of Ammonia Energy Systems as a Future Energy
- 517 Carrier, with Particular Reference to Vehicle Use in Japan. *Energy* **2014**, *68*, 428–436.
- 518 https://doi.org/10.1016/j.energy.2014.02.108.
- 519 (16) Morgan, E. R. Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore
 520 Wind, 2013.
- 521 (17) Bicer, Y.; Dincer, I. Life Cycle Assessment of Ammonia Utilization in City Transportation and
 522 Power Generation. *J. Clean. Prod.* 2018, *170*, 1594–1601.
- 523 https://doi.org/10.1016/j.jclepro.2017.09.243.
- 524 (18) Lee, D. Y.; Elgowainy, A. By-Product Hydrogen from Steam Cracking of Natural Gas Liquids
- 525 (NGLs): Potential for Large-Scale Hydrogen Fuel Production, Life-Cycle Air Emissions
- 526 Reduction, and Economic Benefit. Int. J. Hydrogen Energy 2018, 43 (43), 20143–20160.
- 527 https://doi.org/10.1016/j.ijhydene.2018.09.039.

528	(19)	Lee, D. Y.; Elgowainy, A.; Dai, Q. Life Cycle Greenhouse Gas Emissions of Hydrogen Fuel
529		Production from Chlor-Alkali Processes in the United States. Appl. Energy 2018, 217 (February),
530		467-479. https://doi.org/10.1016/j.apenergy.2018.02.132.
531	(20)	Energy Systems. Argonne National Laboratory. The Greenhouse Gases, Regulated Emissions, and
532		Energy Use in Technologies (GREET) Model https://greet.es.anl.gov/ (accessed Apr 16, 2019).
533	(21)	Wang, M.; Elgowainy, A.; Lee, U.; Benavides, Pahola Burnham, A.; Cai, H.; Dai, Q.; Hawkins,
534		T.; Kelly, J.; Kwon, H.; Liu, X.; Lu, Z.; Ou, L.; Sun, P.; Winjobi, O.; Xu, H. Greenhouse Gases,
535		Regulated Emissions, and Energy Use in Transportation Model ® (2019 Excel). USDOE Office of
536		Energy Efficiency and Renewable Energy (EERE) 2019. https://doi.org/10.11578/GREET-Excel-
537		2019/dc.20200706.1.
538	(22)	IPCC (Intergovernmental Panel on Climate Change). Climate Change 2014. Synthesis Report.;
539		Geneva, Switzerland, 2015.
540	(23)	Wang, M.; Elgowainy, A.; Lee, U.; Benavides, P. T.; Burnham, A.; Cai, H.; Dai, Q.; Hawkins, T.
541		R.; Kelly, J.; Kwon, H.; Liu, X.; Lu, Z.; Ou, L.; Sun, P.; Winjobi, O.; Xu, H. Summary of
542		Expansions and Updates in GREET® 2019; Argonne, IL (United States), 2019.
543		https://doi.org/10.2172/1569562.
544	(24)	Araújo, A.; Skogestad, S. Control Structure Design for the Ammonia Synthesis Process. Comput.
545		Chem. Eng. 2008, 32 (12), 2920–2932. https://doi.org/10.1016/j.compchemeng.2008.03.001.
546	(25)	Aspen Plus. Aspentech.
547	(26)	Heinz-Wolfgang, H. Industrial Gases Processing; WILEY-VCH Verlag GmbH & Co. KGaA,
548		2008. https://doi.org/10.1002/9783527621248.
549	(27)	Lee, DY.; Elgowainy, A. A.; Dai, Q. Life Cycle Greenhouse Gas Emissions of By-Product
550		Hydrogen from Chlor-Alkali Plants; 2017. https://doi.org/10.2172/1418333.
551	(28)	Buttler, A.; Spliethoff, H. Current Status of Water Electrolysis for Energy Storage, Grid Balancing
552		and Sector Coupling via Power-to-Gas and Power-to-Liquids: A Review. Renew. Sustain. Energy
553		<i>Rev.</i> 2018, 82 (September 2017), 2440–2454. https://doi.org/10.1016/j.rser.2017.09.003.
		25

554	(29)	Ruth, M. F.; Mayyas, A. T.; Mann, M. K. Manufacturing Competitiveness Analysis for PEM and
555		Alkaline Water Electrolysis Systems; 2019.
556	(30)	Lampert, D. J.; Cai, H.; Wang, Z.; Keisman, J.; Wu, M.; Han, J.; Dunn, J.; Sullivan, J. L.;
557		Elgowainy, A.; Wang, M.; Keisman, J. Development of a Life Cycle Inventory of Water

- 558 Consumption Associated with the Production of Transportation Fuels; Argonne, IL (United
- 559 States), 2015. https://doi.org/10.2172/1224980.
- 560 (31) Dai, Q.; Elgowainy, A.; Kelly, J.; Han, J.; Wang, M. Life Cycle Analysis of Hydrogen Production
 561 from Non-Fossil Sources; 2016.