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Abstract

The performance of existing gas sensors often degrades in the field conditions because of the 

loss of the measurement accuracy in the presence of interferences. Thus, new sensing approaches 

are required with improved sensor selectivity.  We are developing a new generation of gas 

sensors, known as multivariable sensors, that have several independent responses for multi-gas 

detection with a single sensor. In this study, we analyze capabilities of natural and fabricated 

photonic three-dimensional (3-D) nanostructures as sensors for detection of different gaseous 

species such as vapors and non-condensable gases. We employed bare Morpho butterfly wing 

scales to control their gas selectivity with different illumination angles. Next, we chemically 

functionalized Morpho butterfly wing scales with a fluorinated silane to boost the response of 

such nanostructure to vapors of interest and to suppress the response to ambient humidity.  

Further, we followed our earlier developed design rules of sensing nanostructures and fabricated 

bioinspired inorganic 3-D nanostructures to achieve a functionality beyond natural Morpho 

scales. These fabricated nanostructures have embedded catalytically active gold nanoparticles to 

operate at high temperatures of � 300 oC for detection of gases for solid oxide fuel cell (SOFC) 

applications.  Our performance advances in detection of multiple gaseous species with specific 

nanostructure designs were achieved by coupling spectral responses of these nanostructures with 

machine learning (a.k.a. multivariate analysis, chemometrics) tools.  Our newly acquired 

knowledge from studies of these natural and fabricated inorganic nanostructures coupled with 

machine learning data analytics allowed us to advance our design rules of sensing nanostructures 

toward needed gas selectivity for numerous gas monitoring scenarios at room and high 

temperatures for industrial, environmental, and other applications.

Keywords: sensing, solid oxide fuel cell, photonic, nanostructure, bioinspired 
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1.  Introduction

Accurate detection of gases of interest is demanded in contemporary applications ranging 

from urban pollution and industrial safety to medical diagnostics, process control, and homeland 

protection.1  Existing sensors often have their performance degraded in field conditions because 

of the loss of the measurement accuracy in the presence of interferences.2, 3 Therefore, in 

demanding applications, conventional analytical instruments are preferred.4-7 Unfortunately, 

these instruments are inconvenient in the field even with reduced carrier gas, vacuum, or power 

demands,8 but are an unavoidable alternative to existing sensors. 

Thus, innovative approaches are required to improve sensor selectivity that will allow 

accurate detection of gases of interest in the background of other gases. Recently, a new 

generation of gas sensors, known as multivariable sensors, has emerged with a fundamentally 

different perspective for sensing to eliminate limitations of existing sensors9-18 and conventional 

sensor arrays with up to 216 sensing elements in the array.19-25  The field of sensor arrays (also 

known as electronic noses) has matured to an understanding of their applicability and limitations 

outside controlled laboratory conditions (e.g., an uncorrelated drift of each sensor in an array, 

inability to provide accurate quantitation of multiple vapors in their mixtures, and inability to 

operate in the presence of high levels of known and unknown interferences).18

Multivariable sensors (also known as intelligent,26 multiparameter,27 high-order,28 or 

multidimensional signatures29 sensors, virtual multisensor systems,30 or virtual sensor arrays31) 

provide several partially or fully independent responses from a sensor.9-18  Among different 

designs of multivariable sensors, we discovered that a Morpho butterfly photonic 3-D 

nanostructure provided an unusual high selectivity of vapor sensing.32 These initial results 
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inspired our studies to understand the origin of such gas selectivity33 and to implement such 

knowledge in fabricated artificial bio-inspired photonic nanostructures.34 

In this study, we analyze effects of different gaseous species such as vapors and non-

condensable gases on sensing performance of natural and fabricated photonic 3-D nanostructures. 

To control gas selectivity, we studied effects of different illumination angles and chemical 

functionalization of bare Morpho butterfly wing scales.  We followed our design rules of sensing 

nanostructures34 and fabricated bioinspired inorganic 3-D nanostructures to achieve a 

functionality beyond natural Morpho scales. These nanostructures have embedded catalytically 

active gold nanoparticles to operate at high temperatures for detection of H2 and CO gases.  

Detection of these gases in the presence of numerous interferences such as CO2, CH4, and H2O is 

important for solid oxide fuel cell (SOFC) applications.35-38 Our performance advances in 

detection of multiple gaseous species with specific nanostructure designs were accomplished by 

coupling the optical spectral responses of these nanostructures with machine learning tools.  Our 

new acquired knowledge from studies of these natural and fabricated inorganic nanostructures 

coupled with machine learning data analytics allowed us to advance our design rules of sensing 

nanostructures toward needed gas selectivity for numerous gas monitoring scenarios.

2.  Multivariable gas sensors as next generation analytical instruments  

2.1.  Principles of multivariable gas sensors

Modern conventional gas sensors (Figure 1A) were not designed to differentiate gases39-

43 leading to the need of sensor arrays.19, 44 Conventional gas sensors perform best when the 

levels of gases of interest are high and when the gas of interest swamps others.3  Thus, 

conventional single-output gas sensors respond not only to a gas of interest but also to many 

other gases (Figure 1B).  To discriminate gaseous species, other design principles are more 
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appropriate with one or more independent measurement variables (outputs) implemented in a 

single instrument.  Traditional mature analytical instruments are based on these design principles 

(Figure 1C).  Their high performance capabilities are provided by independent variables in their 

outputs, e.g. retention time in gas chromatography and mass-to-charge ratio in mass 

spectrometry detectors, drift time in ion-mobility or wavelengths in infrared detectors. 

Independent outputs allow selective detection of different gases of interest and rejection of 

interferences (Figure 1D).  

Diverse designs of multivariable sensors have the common goal � to overcome the gas 

cross-sensitivity of existing single-output sensors. Multivariable sensors are built following the 

design rules of traditional instruments to have independent variables but to provide different 

types of such variables for multi-gas detection. General design criteria for multivariable sensors 

involve (1) a sensing material structure with diverse responses to different gases, (2) a 

multivariable transduction methodology to provide independent outputs and to recognize these 

different gas responses, (3) excitation conditions of the multivariable sensor to maximize these 

different gas responses, and (4) data analytics (�machine learning�) to provide multianalyte 

quantitation, rejection of interferences, and drift minimization. 

Over the recent years, multivariable gas sensors were demonstrated based on diverse 

principles including multi-output field-effect transistors, broad-range impedance spectroscopy, 

radio frequency and microwave resonators, photonic nanostructures as well as electromechanical 

devices such as tuning forks, thickness shear mode devices, and acoustic-wave devices.18  All 

multivariable sensors form independent variables in sensor response to deliver sensor 

performance similar to traditional analytical instruments (Figure 1D) but with reduced size and 

power, for example by using bio-inspired photonic nanostructures (Figure 1E). Such technical 
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solution eliminates the size limitations of traditional analytical instruments and allows 

miniaturization, leading to previously unachievable deployments.

2.2.  The role of �machine learning� tools in multivariable gas sensors

Tools for multivariate analysis of data from multivariable sensors can be adapted from 

those used for sensor arrays (Table 1)18 and other areas of science.45, 46 The capabilities of 

multivariable sensors are determined by the number of independent outputs (also known as 

dispersion, dimensionality, or order)18 generated by the sensor upon the data analysis. With the 

increase of the sensor dispersion, multivariable gas sensors discriminate known and uncalibrated-

for interferences and individual gases in complex mixtures.18, 47, 48 

While many of multivariable sensors have only 2-D dispersion,49-64 there is a growing 

number of multivariable sensors with higher dispersion. Recent examples of 3- to 4-D dispersion 

include radio frequency and optical sensors as well as field-effect transistors.13, 18, 29, 31-34, 65-78 

Multivariable photonic sensors based on bio-inspired structural designs demonstrated 3- to 4-D 

dispersion18, 32-34, 65, 70-78 in detection of individual condensable vapors and their mixtures.  

2.3.  General design rules of structure-based photonic multivariable gas sensors 

Structure-based photonic sensors are comprised of units that are comparable with the 

wavelength of interrogation light.79-81  Such sensors often operate based on single-output vapor 

quantitation principles such as detection of wavelength shift of the resonance peak82-86 or 

detection of signal magnitude change at a single wavelength.87  Monitoring of multiple gases of 

interest using these approaches requires traditional sensor arrays.83, 88, 89  However, these physical 

structures also allow multivariable performance of photonic sensors.32, 33, 65, 90, 91 92, 93
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A tree-like photonic nanostructure of microscopic scales that produces iridescence of 

tropical Morpho butterflies was found to be attractive for sensing of volatiles32 because of its 

open-air architecture that allows volatiles to interact with all its regions such as ridges, lamella, 

and microribs (Figure 1E).  From the initial32 and detailed33 studies of the multi-vapor-response 

of natural Morpho scales, numerical analysis of optical effects from multiple vapors,34 and 

fabrication of bio-inspired nanostructures using modern lithographic tools,34, 94-97 we have 

developed general design rules of structure-based photonic multivariable sensors for condensable 

vapors and non-condensable gases that involve physical and chemical design criteria.34, 94-97 

Physical design is achieved by the nanostructure geometry and physical mechanisms of 

light loss in the nanostructure. Geometry of the nanostructure involves interferometric lamella 

and their supporting ridges resulting in a highly ordered hierarchical photonic design also 

contributing to the diffraction effects from the nanostructure. Vertical ridges serve as spacers to 

provide a high refractive index contrast (air gap) between lamella and to induce the ability for 

gaseous species to interact with all the regions of the nanostructure. A small controlled loss of 

light in the nanostructure (by material extinction and/or scattering) results in a desired 

enhancement of diversity of reflectance spectra of localized gas-nanostructure interactions.  This 

loss gives rise to distinct signatures of reflectance spectra that are induced by the optical 

attenuation when light propagates between the top and bottom regions of the lamella stack.

Chemical design uses spatially controlled functionalization of the nanostructure to 

promote distinct interactions of diverse gaseous species within the nanostructure. Diverse 

functionality can be also introduced into the horizontal and vertical regions of the nanostructures. 

The availability of the broad range of materials allows tuning the response selectivity of a given 

nanostructure across the wide range of gaseous species and operating temperatures. 
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In our work, we are optimizing performance of multivariable sensors by refining their 

material, structural, and excitation characteristics based on the results of multivariate (�machine 

learning�) analysis. We perform the iterative multivariate machine learning analysis of system 

performance in each iteration (Figure 2).  Our examples of sensing parameters for their 

optimization include sensitivity, selectivity, response/recovery times, dynamic range, and 

stability. In this Discussion, we present our results on sensitivity and selectivity of the system.   

3.  Experimental

In this study, we evaluated responses of natural and fabricated nanostructures to diverse 

vapors and non-condensable gases in laboratory conditions. Optical measurements with all 

samples were performed in reflectance mode32-34, 94, 97 as schematically depicted in Figure 1E. 

The illumination angle was at 45o unless specified otherwise.  Conventionally, when spectral 

changes are small, the differential reflectance spectral response I�5J7 is measured in traditional 

optical instruments98 and in gas sensors.32-34  The differential reflectance spectral response I�5J7 

of photonic 3-D nanostructures is given by

I�5J7 = �5J7H�05J7 (eq.1)

where �5J7 is the spectrum of the sensing nanostructure upon exposure to gaseous species of 

interest and R05J7 is the spectrum of the sensing nanostructure upon exposure to a carrier gas (a 

blank). Thus, the common features in the two spectra before and during gas exposure cancel and 

the I�5J7 spectrum accentuates the subtle differences due to gas response.  

We used systems to operate with non-hazardous gas mixtures or explosive and toxic 

gases.94, 97  Measurements with natural Morpho butterfly nanostructures were performed at room 

temperature using air as a blank carrier gas with different concentrations of condensable vapors 
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ranging from 0.09 to 0.5 P/P0, where P is vapor partial pressure and P0 is the saturated vapor 

pressure. Measurements with the fabricated 3-D photonic nanostructures were performed with 

different non-condensable gases using nitrogen as a blank carrier gas using a built-in-house gas 

flow cell with an integrated heater to bring a sensing nanostructure sample to � 300 �C.97  

To investigate computationally the gas-selectivity control in 3-D nanostructures with 

different light illumination angles, we applied the finite-difference time domain (FDTD) 

computational method. We simulated the spectral response of the 3-D nanostructure using a 

periodic boundary condition and a perfect matched layer. Simulations were done in 2-D to 

improve speed. The excitation plane was set above the top lamella of the nanostructure with the 

monitor plane above the excitation plane. The excitation wave was pointed downwards at a 

chosen angle. The reflectance intensity was obtained from the power received at the monitor 

plane. The spectra upon exposures to vapors were the ratio of the received optical power at the 

monitor plane to the optical power of the excitation wave.  For visualization, we further 

processed spectra using eq. 1. 

From the available machine leaning tools (see Table 1) in this study we report results of 

using Principal component analysis (PCA). It is the most popular tool in data analysis in 

multivariable sensors17, 18, 47, 48, 99, 100 and sensor arrays.101, 102 With PCA we were reducing data 

sets of I�5J7 spectra from different gaseous species and their different concentrations or 

measurement angles for easier interpretation by calculating orthogonal principal components 

(PCs) oriented in the direction of the maximum variance within each data set. The spectra for 

analysis were from the equilibrated responses to gaseous species and the blank. 
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4.  Results and discussion

4.1.  3-D nanostructured materials

For gas-phase sensing reported in this study, we utilized natural Morpho butterfly scales 

and fabricated nanostructures. Morpho butterfly scales were functionalized with 

trimethoxy(nonafluorohexyl)silane using vapor deposition.34 Bare and functionalized Morpho 

butterfly nanostructures were tested for their responses to diverse and closely related vapors.  

Fabrication of 3-D bio-inspired nanostructures was performed per design rules developed earlier 

for condensable vapors and refined for non-condensable gases (see Section 2.3). The 

nanostructures were fabricated using conventional photolithography and chemical etching 

forming several layers of horizontal lamella supported by the vertical ridge.34, 94-97 All materials 

in these nanostructures were inorganic and included catalytic metal nanoparticles (5 to 50 nm in 

diameter) and metal-oxide capping layers on nanoparticles to promote the reactions with gases of 

interest.68, 103  Results reported in this study for H2 and CO analyte gases were achieved using 

fabricated inorganic nanostructures with variable size catalytic metal nanoparticles capped with a 

metal-oxide ceria layer. Examples of electron micrographs of 3-D nanostructures illustrate our 

designs with gold metal nanoparticles (Figure 3).  Examples of samples of sensing 

nanostructures are presented in Figure 4.  Our work is in progress toward optimization of the 

fabrication conditions to achieve desired nanostructure geometries and their functionalization 

control.  

4.2.  Experimental gas-selectivity control with light illumination angle

In our initial experiments of responses of bare natural Morpho nanostructures to three 

vapors such as water, methanol, and ethanol,32 we observed that the diversity of spectral 

response to different vapors was dependent on the illumination angle.  In this study, we explored 
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this effect in a quantitative detail with three vapors of diverse chemical families such as water, 

chloroform, and dimethylformamide.

We performed vapor exposures at three illumination angles of 20o, 40o, and 60o measured 

from the normal to the nanostructure surface. For the initial visual interpretation, Figure 5A-C 

compare �R(�) spectra from these vapors.  At a small illumination angle of 20o, the �R(�) 

spectra of three vapors were very similar. The differences in �R(�) spectra were becoming more 

significant at 40o and 60o. For the more quantitative interpretation, Figure 5D illustrates the PCA 

scores plot of the first two PCs where we observed two interesting features.  First, the angular 

spread between the response directions of the same sensing nanostructure to three vapors was 

increasing from 20 o to 40o and to 60o.  Second, the relative magnitudes of the responses were 

decreasing from 20 o to 40o and to 60o.  Thus, results of machine learning analysis demonstrated 

a trade-off between the strongest response magnitude and the best discrimination between vapors 

as controlled by the implemented illumination angle.  

4.3.  Numerical analysis of gas-selectivity control with light illumination angle

To investigate the gas-selectivity control in 3-D nanostructures with different light 

illumination angles, we applied the FDTD method that provides a direct integration of 

Maxwell's time-dependent equations and is a popular tool for simulations of photonic 

nanostructured gas sensors.104-106  We performed simulations of effects of different vapors and 

their concentrations using a nanostructure with four lamella and utilized the values from our 

prior studies34 of variable refractive index (n = 1.3, 1.4, 1.5, and 1.6) and variable thickness (d = 

5 nm, 10 nm, and 15 nm) of the adsorbed vapors. Concentrations of vapors were related to 
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condensed liquid layers of thickness d = 5 nm, 10 nm, and 15 nm as formed on the nanostructure, 

detailed earlier.33, 34  Adsorption of model vapors increased the effective refractive index of the 

sensor by replacing a fraction of air by a fraction of a liquid analyte with its gas-phase 

concentration-dependent thickness. Thus, we simulated vapor concentrations as related to liquid 

layers of different thickness d formed on the nanostructure.33, 34

Examples of the planar electromagnetic field that interacts with the 3-D sensing 

nanostructure at different angles such as 0o, 30o, and 60o from the normal to the substrate of the 

nanostructure are illustrated in the top plots of Figure 6A-C.  These results show that diverse 

illumination angles created the electromagnetic field that interacted with the 3-D nanostructure 

with different symmetry. The simulated �R(�) spectra for three illumination angles are presented 

in the middle plots of Figure 6A-C.  The scores plots of the built PCA models for each of the 

sets of the simulated �R(�) spectra are depicted in the bottom plots of Figure 6A-C.  These PCA 

scores plots depict that four model vapors represented by the four refractive indices used for the 

adsorbate layer (n = 1.3, 1.4, 1.5, and 1.6) at their three concentrations represented by the 

adsorbate layer of thickness d = 5 nm, 10 nm, and 15 nm distinctly affected the reflectance 

spectra producing clearly resolved four arms in the PCA response. 

The contributions for the first three principal components as a function of the 

illumination angle are presented in Figure 6D. For the largest diversity in sensor response, the 

contributions of the higher principal components are desired to be as high as possible.18  From 

these simulation results we observed that there was a maximum in the contribution of PC3 and a 

corresponding minimum in the contribution of PC1 at a 30o-illumination angle.  In future, we 

plan to use FDTD modeling also as a rapid structure-screening tool to assess the gas 
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selectivity and the effects of fabrication imperfections on sensing performance of our 

structures.

4.4. Control of discrimination of multiple vapors by functionalization of Morpho scales 

To explore our ability to control discrimination of multiple vapors, we utilized natural 

Morpho butterfly scales and functionalized them with trimethoxy(nonafluorohexyl)silane. Such 

functionalization of natural Morpho butterfly nanostructures with a volatile silane was 

selected to enhance diversity of the response to different vapors.107-109 We selected 

vapors of water and the first nine linear alcohols such as methanol, ethanol, 1-propanol, 1-

butanol, 1-pentanol, 1- hexanol, 1-heptanol, 1-octanol, and 1-nonanol, with four concentrations 

of each vapor.  

Spectral responses �R(�) of bare and functionalized Morpho butterfly nanostructures to 

ten vapors are compared in Figure 7.  Upon visual inspection, we had three observations about 

�R(�) spectra of the functionalized versus bare nanostructures.  First, the overall response 

magnitude was higher. Second, the response magnitude to water vapor was suppressed.  Third, 

there was a pronounced tail in spectral response at longer wavelengths, perhaps due to 

wavelength-dependent scatter from the silane-functionalized nanostructure.  

A comparison of dynamic responses of bare and functionalized Morpho butterfly 

nanostructures to ten vapors is depicted in Figure 8A,B.  These responses are illustrated with 

two replicates at 550 nm and 620 nm, which are the maxima of the �R(�) spectra of the bare and 

functionalized Morpho nanostructures, respectively. Each vapor was presented to the 
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nanostructures at four concentrations of 0.09, 0.13, 0.18, and 0.22 P/P0.  To reduce effects of the 

exposure history and to speed up the recovery time of the Morpho wing sample to its baseline, a 

hydration step between switching to different vapors was used (see Figure 8C for zoomed-in 

display). The hydration step was done by exposing the sample to water vapor at 0.35 P/P0.33  

From dynamic data, we see that upon fluorosilane functionalization, the response magnitude to 

water vapor was reduced by � 1.5 fold.  Figure 8C compares the sensitivity of the Morpho 

butterfly nanostructure to alcohols ranging from 1-propanol to 1-nonanol (vapors 4 - 10) before 

and after functionalization. These alcohols were previously not resolved using bare Morpho 

scales.33 The sensitivity to these alcohols was enhanced by 4 to 7.5 fold upon functionalization. 

To assess the ability to discriminate between water and nine alcohol vapors, we analyzed 

the �R(�) spectra using PCA.  Figure 9A-B depict results of discrimination of ten vapors with a 

bare Morpho nanostructure by plotting the same 3-D scores plot at different angles for better 

visualization. This data illustrate that the bare nanostructure discriminated well water, methanol, 

and ethanol vapors, similar to prior results with these vapors32, 33 but the responses to other 

alcohol vapors were too close to each other to be discriminated.  However, upon chemical 

functionalization, the Morpho nanostructure discriminated all ten vapors. Figure 9C-D present 

the PCA scores plot at different angles to highlight this discrimination ability.  Thus, an 

appropriate chemical functionalization of natural Morpho butterfly nanostructure enhanced the 

response to vapors of interest by up to 7.5 fold and reduced humidity response by � 1.5 fold.   

4.5.  Response of fabricated photonic 3-D nanostructures to H2 and CO gases

For H2 and CO sensing for SOFC applications,35-38 we fabricated 3-D nanostructures with 

a ridge of SiNx material, lamella of SiO2 material, and gold nanoparticles embedded between the 
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base and capping ceria layers.  The goal of these tests was to evaluate response diversity of the 

nanostructures to H2 and CO gases and to assess the linearity of the response to H2 and CO.  

Measurements of nanostructure responses to H2 and CO were performed with exposures 

to H2 gas at 4 %, 8 %, and 11%, followed by exposures to CO gas at 6 %, 13 %, and 19%.  The 

differential reflectance spectra �R(�) of these responses are presented in Figure 10. The key 

aspect of the these spectra is in the pronounced effect of the gold nanoparticles that resulted in 

the plasmonic signature of the nanostructure between 640 nm to 720 nm. 

Results of replicate (n = 2) measurements of nanostructure responses to H2 and CO gases 

are depicted in Figure 11 at four exemplary wavelengths.  We selected these wavelengths for the 

response visualization to highlight two important observations.  First, the response magnitude 

followed the increasing concentrations of H2 and CO but with some non-linearity. Second, the 

relative magnitudes of the response to H2 and CO were wavelength-dependent.  For example, the 

relative magnitudes of the responses to the highest tested concentrations of H2 and CO gases 

were in the range from 3:1 to 1.5:1 as shown in Figure 11 at four exemplary wavelengths.  

To assess the ability to discriminate between H2 and CO, we analyzed �R(�) spectra of 

the nanostructure using PCA.  The scores plot shown in Figure 12 illustrates the ability to 

discriminate these gases.  Our next steps are to optimize the nanostructure design by increasing 

the length of the lamella and by functionalization of these extended-length lamella with gold 

nanoparticles of different size.  Such geometry will enhance the response magnitude and the 

discrimination between H2 and CO under different test conditions.68, 97, 103  

4.6.  Elimination of effects of CH4, CO2, and H2O in determination of H2 and CO using 

fabricated photonic 3-D nanostructures
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We applied our methodology of fabrication of 3-D nanostructures to the initial 

demonstration of elimination of effects of interfering gases such as CH4, CO2, and H2O.  These 

gases were identified as interferences in detection of H2 and CO for SOFC applications.35-38  In 

these experiments for selective determination of H2 and CO we used our nanostructure design 

with gold nanoparticles of different size. Concentrations of H2 and CO were 12.5 %, 25 %, and 

37.5%. The CO2 and CH4 interferents were at 37.5 %. The H2O vapor interferent was at 30 % 

RH.  The differential reflectance �R(�) spectra of H2 and CO are compared with CH4, CO2, and 

H2O interferences in Figure 13 depicting their significant differences. 

An example of a dynamic response of the nanostructure at 950 nm upon exposure to fives 

gases with three replicates is illustrated in Figure 14. Responses to H2 and CO were always at 

least 2 to 3 times stronger versus CH4, CO2, and H2O. Further, the difference in responses at 

multiple wavelengths (see Figure 13) allowed us to reject the effects from CH4, CO2, and H2O 

by performing multivariable spectral analysis. The PCA scores plots present results as the first 

three PCs (Figure 15A) and as the first two PCs and PC4 (Figure 15B) to illustrate a 4-D 

dispersion of the response. These PCA scores plots showed that the nanostructure discriminated 

between the H2 and CO gases of interest and three interferences CH4, CO2, and H2O. 

5.   Conclusions

At present, for detection of gaseous species two classes of detectors exist with 

fundamentally different design principles.  One such class of detectors is single-output sensors 

that are miniature, low power, and cost-attractive devices.  The single-output design principles of 

such sensors were contemplated last century to serve the needs of detection of expected gases of 

interest assuming that the responses to interferences are not of a concern. For detection of 

gaseous chemicals of interest for myriad of contemporary applications, responses of such single-
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output detectors to gaseous chemicals of interest and practical interferences become un-

distinguishable, decreasing the value of these sensors. Another class of detectors is traditional 

analytical instruments designed with multiple outputs to serve in conditions with expected 

known and unknown interferences. Unfortunately, design principles of traditional analytical 

instruments do not allow to operate with power, size, and cost that are comparable to those of 

single-output sensors.   

Our bio-inspired photonic sensing nanostructures that are under development with the 

most recent results demonstrated here, share the mathematical principles of multiple outputs with 

traditional analytical instruments but without their large power, size, and cost limitations.  Per 

design, bio-inspired photonic sensing nanostructures provide such capabilities by their 

nanostructured features, chemical functionalization, and excitation principles. Machine learning 

tools allow the analysis of the multivariate data and the relation of the weighted outputs to the 

concentrations of one or more gaseous species of interest. 

Our work is in progress to advance our sensing designs to operate in conditions with 

known and unknown interferences by implementing nanostructures with enhanced spectral 

diversity of responses to gaseous species of interest and interferences. We expect that in 

detection of mixtures for SOFC and other applications, we may face challenges that include the 

relative reactivity of different gases with the sensing surface and the ability to quantify three, 

four, and more gases with a single nanostructure design. We are solving these challenges by 

optimization of our multivariable sensing designs by refining the material, structural, and 

excitation characteristics of the sensing system via the iterative multivariate machine learning 

analysis of system performance. This systematic reduction of technical risks will facilitate 

transition of this scientifically innovative sensing technology to practice.
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Table 1.  Examples of typical machine learning (a.k.a. multivariate analysis, chemometrics) 

tools for data analysis of multivariable sensors.18   

Algorithm Description

Principal 

component 

analysis (PCA)

Unsupervised algorithm that reduces a multidimensional data set for its 

easier interpretation by calculating orthogonal principal components (PCs) 

oriented in the direction of the maximum variance within the data set. The 

first PC contains the highest degree of variance, and other PCs follow in the 

order of decreasing variance. Thus, PCA concentrates the most significant 

characteristics (variance) of the data into a lower dimensional space.

Discriminant 

Analysis (DA)

Models the difference between the classes of data and maximizes the ratio of 

between-class variance to the within-class variance. Requires an input of 

distinction between independent variables and dependent variables.

Artificial Neural 

Network (ANN)

A system of a large number of simple highly interconnected processing 

elements ("neurons") that exchange messages between each other to process 

information by their dynamic state response to external inputs.  The 

connections have numeric weights that can be tuned based on experience, 

making neural nets adaptive to inputs and capable of learning.

Hierarchical 

cluster analysis 

(HCA) 

Classifies samples using a dendrogram representation.  Often, a Ward�s 

method is applied that shows the Euclidean distance between the samples. 

The Ward�s method is a minimum variance method, which takes into 

consideration the minimum amount of variance between the samples and 

gases (analyte and interferents) to define a cluster.

Support Vector 

Machines (SVM)

Supervised learning models with associated learning algorithms that analyze 

data and recognize patterns, used for classification, regression analysis, and 

outliers detection by finding the decision hyperplane that maximizes the 

margin between the classes. The vectors (cases) that define the decision 

hyperplane are the support vectors.

Independent 

Component 

Analysis (ICA)

Separates a multivariate signal into additive subcomponents by assuming that 

the subcomponents are statistically mutually independent non-Gaussian 

signals. A powerful technique for revealing hidden factors that underlie sets 

of random variables, measurements, or signals.

Partial least 

squares (PLS) 

regression

Determines correlations between the independent variables and the sensor 

response by finding the direction in the multidimensional space of the sensor 

response that explains the maximum variance for the independent variables. 

The key outputs of the developed multivariate models are residual errors of 

calibration and cross-validation. 

Principal 

Component 

Regression 

(PCR)

Regression analysis technique based on PCA by regressing the dependent 

variables on a set of independent variables based on a standard linear 

regression model, but uses PCA for estimating the unknown regression 

coefficients in the model.
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Figure captions 

Figure 1.  Existing gas-detection philosophies versus our developed multivariable gas sensors.  

The gas cross-sensitivity problem of modern conventional sensors (A) originates from their 

design principles based on a single output of a sensor (B).  High performance capabilities of 

traditional analytical instruments (C) are provided by their several independent outputs (D).  

Multivariable sensors also form independent variables in sensor response (D) but with reduced 

size and power, for example by using bio-inspired photonic nanostructures (E). 

Figure 2.  Schematic of our optimization of performance of multivariable sensors by refining the 

material, structural, and excitation characteristics of the sensor system thought the iterative 

multivariate (�machine learning�, ML) analysis of system performance in each iteration.  

Figure 3.  Examples of fabricated bio-inspired photonic 3-D nanostructures for detection of non-

condensable gases at high temperature.  Nanostructure with gold nanoparticles (A) before and 

(B) after capping with a CeO2 layer, respectively.  (C) Cross sectional image and (D) Energy 

Dispersive X-Ray Spectroscopy mapping of Ce, Au, and O shown by different false colors. (E) 

Improved fabrication process of the nanostructure design shown in (C) by providing larger 

opening regions for horizontal lamella. (F) Nanostructure with gold nanoparticles inside the gaps 

between lamella.

Figure 4.  Gas-response testing of fabricated bio-inspired photonic 3-D nanostructures.  (A, B) 

Examples of prepared samples. (C) Built-in-house gas flow cell with an integrated heater and a 
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fiber-optic port for testing of sensing nanostructures for SOFC applications. The fiber-optic port 

was designed to illuminate the sensing nanostructure at 45o angle. 

Figure 5.  Visual and machine learning analysis of spectral differences of response of a bare 

natural Morpho nanostructure to three diverse vapors with changing illumination angle of 20o, 

40o, and 60o.  (A-C) Differential reflectance �R(�) spectra from vapors (1 � 3) water, chloroform, 

and dimethylformamide at three angles;  all vapors at 0.5 P/P0.  (D) PCA scores plot of PC1 and 

PC2 of nanostructure responses to vapors 1 � 3 at three angles. Highlighted with red, green, and 

blue lines are the increasing angles of the arcs between the responses to vapors 1 � 3 as a 

function of illumination angle.  

Figure 6.  Results of FDTD simulations of effects of the illumination angle on the gas-selectivity 

of a 3-D four-lamella sensing nanostructure.  Effects of illumination angles of (A) 0o, (B) 45o, 

and (C) 60o: Top graphs are the planar electromagnetic fields that interact with the 3-D sensing 

nanostructure at different angles. Shown in every graph is the resulting electric field amplitude 

normalized by the excitation electric field amplitude.  Middle graphs are differential reflectance 

�R(�) spectra.  The spectral results are the ratio of the received optical power at the monitor 

plane to the optical power of the excitation wave and normalized using eq. 1.  Bottom graphs are 

PCA scores plots of the first three PCs from four lamella (1-4) interacting with different vapors. 

(D) Contributions of PC1, PC2, and PC3 to the developed PCA models for different illumination 

angles. For these simulations we used vapors of four model solvents with refractive index n = 1.3, 

1.4, 1.5, and 1.6 and their three vapor concentrations being related to condensed liquid layers of 

thickness d = 5, 10, and 15 nm formed on the nanostructure.  
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Figure 7.  �R(�) spectra of Morpho butterfly nanostructures to ten vapors. (A) Bare and (B) 

Fluorosilane-functionalized Morpho butterfly nanostructures. Vapors (at 0.22 P/P0): (1) water; 

(2) methanol; (3) ethanol; (4) 1-propanol; (5) 1-butanol; (6) 1-pentanol; (7) 1- hexanol; (8) 1-

heptanol; (9) 1-octanol; (10) 1-nonanol. Blank gas is (0).

Figure 8.  Dynamic responses of Morpho butterfly nanostructure to ten vapors with replicate (n 

= 2) responses.  (A) Bare and (B) Fluorosilane-functionalized Morpho butterfly nanostructures. 

Vapors: (1) water; (2) methanol; (3) ethanol; (4) 1-propanol; (5) 1-butanol; (6) 1-pentanol; (7) 1- 

hexanol; (8) 1-heptanol; (9) 1-octanol; (10) 1-nonanol. Blank gas is (0). Each vapor was 

presented to the nanostructures at four concentrations of 0.09, 0.13, 0.18, and 0.22 P/P0.  A 

hydration step (red arrows) between switching to different vapors was used to speed up the 

recovery of the wing sample to its baseline and was done by exposing the sample to water vapor 

at 0.35 P/P0. (C) Zoomed-in regions from (A and B) for comparison of sensitivity to vapors 4 to 

10 of the Morpho butterfly nanostructure before (blue lines) and after (green lines) 

functionalization with trimethoxy(nonafluorohexyl)silane.

Figure 9. PCA scores plots of the first three principal components from spectral responses �R(�) 

of Morpho butterfly nanostructures to ten vapors. (A) Bare and (B) Fluorosilane-functionalized 

Morpho butterfly nanostructures. Vapors: (1) water; (2) methanol; (3) ethanol; (4) 1-propanol; 

(5) 1-butanol; (6) 1-pentanol; (7) 1- hexanol; (8) 1-heptanol; (9) 1-octanol; (10) 1-nonanol, with 

four concentrations of each vapor. Each vapor was presented to the nanostructures at four 

concentrations of 0.09, 0.13, 0.18, and 0.22 P/P0 labeled as 1 � 4.  For statistics we used two data 

points per concentration of each vapor and the blank. 
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Figure 10.  Differential reflectance �R(�) spectra of the fabricated photonic 3-D nanostructure 

upon exposures to gases of interest.  (A) H2 and (B) CO.  Gas concentrations: H2 at 4 %, 8 %, and 

11%;  CO at 6 %, 13 %, and 19%.

Figure 11.  Dynamic responses of the fabricated photonic 3-D nanostructure to H2 and CO with 

replicate (n = 2) responses.  (A-D) Responses at � 500 nm, 600 nm, 800 nm, and 900 nm, 

respectively. Gas concentrations: H2 at 4 %, 8 %, and 11%;  CO at 6 %, 13 %, and 19%.

Figure 12.  Scores plot of the developed PCA model based on measurements of responses of the 

fabricated photonic 3-D nanostructure to H2 and CO gases.  Gas concentrations: H2 at 4 %, 8%, 

and 11%;  CO at 6 %, 13 %, and 19%. For statistics we used two data points per concentration of 

both gases and the blank.  

Figure 13. Differential reflectance �R(�) spectra of the fabricated photonic 3-D nanostructure 

with different size gold nanoparticles upon exposures to different gases.  (A,B) Responses to H2 

and CO gases of interest, respectively. (C) Responses to three interference gases such as CH4, 

CO2, and H2O (labeled as Int 1, 2, and 3, respectively). Concentrations of H2 and CO gases were 

12.5 %, 25 %, and 37.5 %. The CO2 and CH4 interferents were at 37.5%. The H2O (water vapor) 

interferent was at 30 % RH. 

Figure 14. Dynamic response of the fabricated photonic 3-D nanostructure to H2 and CO gases 

of interest and three interference gases (CH4, CO2, and H2O (Int 1 - 3). Shown is response at 950 

nm. Concentrations of H2 and CO gases were 12.5 %, 25 %, and 37.5%. The CO2 and CH4 

interferents were at 37.5 %. The H2O (water vapor) interferent was at 30% RH.  
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Figure 15. Scores plots of the developed PCA model based on measurements of the responses of 

the fabricated photonic 3-D nanostructure to a blank, three concentrations of H2 and CO gases of 

interest and one concentration of three interference gases CH4, CO2, and H2O (Int 1 - 3). (A) Plot 

of PC1 vs. PC2 vs. PC3.  (A) Plot of PC1 vs. PC2 vs. PC4.  Concentrations of H2 and CO gases: 

12.5 %, 25 %, and 37.5%. The CO2 and CH4 interferents: at 37.5 %. The H2O vapor interferent: 

at 30 % RH. For statistics we used two data points per concentration of all gases and the blank.  
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