

Drivers of Disinfection Byproduct Formation and Speciation in Small, Chlorinated Coastal Groundwater Systems: Relative Roles of Bromide and Organic Matter, and the Need for Improved Source Water Characterization and Monitoring

Journal:	Environmental Science: Water Research & Technology
Manuscript ID	EW-ART-07-2020-000663.R1
Article Type:	Paper

1	
2	
3	Drivers of Disinfection Byproduct Formation and
4	Speciation in Small, Chlorinated Coastal
5	Groundwater Systems: Relative Roles of Bromide
6	and Organic Matter, and the Need for Improved
7	Source Water Characterization and Monitoring
8	
9	
10	
11 12	Tessora R. Young, [†] Steve Deem, [§] Jolyn C. Leslie, [§] Virpi Salo-Zieman, [‡] Huan He, [†] Michael C. Dodd ^{†,*}
13 14 15 16 17	[†] University of Washington, Department of Civil and Environmental Engineering, Seattle, WA [§] Washington State Department of Health, Office of Drinking Water, Kent, WA [‡] Confluence Engineering Group LLC, Seattle, WA
19 20 21 22	Author e-mail addresses: tessora.young@kubota.com, steve.deem@doh.wa.gov, jolyn.leslie@doh.wa.gov, virpi@confluence-engineering.com, huanhe@uw.edu, doddm@uw.edu
23 24 25 26	*Corresponding author contact details: 305 More Hall, Box 352700; Seattle, WA 98195-2700 206-685-7583; fax: 206-543-1543; e-mail: doddm@uw.edu

Table of Contents Entry

- 28
- 29 Small, chlorinated coastal groundwater systems are uniquely susceptible to elevated (especially
- 30 brominated) DBP formation, due to the potential for high bromide and DOM levels, technical
- and resource constraints, and limited regulatory oversight.

33 Abstract

Numerous small public groundwater systems on coastal islands in Washington State 34 35 (WA) that are susceptible to seawater intrusion have reported disproportionately high frequencies of regulatory exceedances for halogenated organic DBPs; especially brominated 36 DBPs. Fifteen such systems spread across a ~1000 km² study area were monitored quarterly over 37 a year in a collaboration between the WA Department of Health and University of Washington to 38 identify key drivers of these trends, and to develop operational and regulatory recommendations 39 aimed at minimizing DBP formation in these and similar systems in WA and elsewhere. [Br-] 40 alone was not observed to be a strong predictor of DBP formation potentials (DBP-FPs) or 41 speciation for source waters across the study area, likely due to accompanying large variations in 42 43 [DOC]. However, bromine substitution factors correlated relatively well with [Br⁻]/[DOC] ratios, highlighting the importance of both [Br-] and [DOC] in governing DBP formation and speciation 44 in coastal groundwaters. Overall DBP-FPs correlated strongly with [DOC], UV absorbance at 45 254 nm (A₂₅₄), and selected size exclusion chromatography (SEC) and fluorescence metrics for 46 each groundwater, with A₂₅₄ a particularly strong surrogate for DOC. This was consistent with 47 high uniformity of DOM properties (confirmed from SUVA₂₅₄, fluorescence index, PARAFAC 48 components, and SEC chromatograms) across the study area. Specific DBP-FPs (e.g., ~72 49 $\mu g_{TTHM}/mg_{C}$) for the source waters were quite high compared to typical groundwaters, pointing 50 51 to inherently high DOM reactivity as an additional factor in the frequent DBP regulatory exceedances observed for the investigated sites. Measurements also revealed seasonal trends 52 53 (e.g., in [Br⁻] and [DOC]) correlated with DBP formation, but not captured by routine regulatory 54 monitoring, as well as widespread inconsistencies in chlorination practices at the studied systems. While such factors and correlations are well established for surface waters, this work 55

56 provides one of the few examinations incorporating both laboratory and full-scale observations

to demonstrate their importance in small, coastal groundwater systems. Based on these findings,

58 WA has adopted a number of changes in its design manual for new groundwater disinfection

59 systems, and is evaluating changes in its disinfection monitoring and DBP programs that may

also serve as models for wider implementation.

62 Water Impact Statement

- 63 Laboratory and field investigation of DBPs, bromide, DOM, and other water and operational
- 64 parameters in small, chlorinated coastal groundwater systems susceptible to seawater intrusion
- 65 linked frequent regulatory DBP exceedances and brominated DBP yields to highly variable
- bromide and DOC levels, seasonal trends, and chlorination practices not captured by compliance
- sampling; highlighting needs/opportunities for better understanding/controlling DBP formation
- 68 in such systems.

69 Introduction

In Washington State (WA), 35 out of 571 (6.1%) public groundwater systems have 70 71 exceeded maximum contaminant levels (MCLs) for halogenated organic disinfection byproducts (DBPs), compared to 12 out of 208 (5.8%) public surface water systems. 27 of the 35 72 groundwater systems that have reported elevated levels of trihalomethanes (THMs) and/or 73 haloacetic acids (HAAs) are small, chlorinated groundwater systems (population range 28 to 74 871) concentrated in Island and San Juan Counties (Figure 1). Many of these systems have also 75 reported higher proportions of brominated THMs and HAAs, which are often more harmful than 76 their chlorinated analogues.¹⁻⁴ The occurrence of such a high proportion of groundwater systems 77 exceeding DBP MCLs in a distinct geographic area was initially unexpected by the Washington 78 79 State Department of Health (WA DOH), and indicated that chlorinated groundwater systems within this region are uniquely susceptible to challenges in meeting DBP compliance targets. 80 It is known that aquifers in these coastal counties may be prone to seawater intrusion.^{5, 6} 81 82 Thus, elevated bromide levels originating from seawater intrusion may represent one possible explanation for the DBP trends observed at some of the Island and San Juan County sites. Prior 83 work has shown that increases in source water bromide accompanying seawater intrusion can 84 have substantial impacts on DBP formation in chlorinated waters.⁷⁻¹² This results from the rapid 85 oxidation of bromide by free chlorine (predominantly hypochlorous acid and its conjugate base 86 hypochlorite, or HOCl/OCl⁻) to form free bromine (i.e., hypobromous acid/hypobromite, or 87 HOBr/OBr⁻),¹³ each of which may then react with DBP precursor moieties in dissolved organic 88 matter (DOM) within a water to generate a mixture of chlorinated and brominated DBPs, with 89 90 free bromine reacting faster with and more efficiently halogenating DOM and activated aromatic compounds than free chlorine.¹³⁻¹⁵ Consequently, higher proportions of brominated DBPs are 91

Figure 1. Locations of public water systems that have exceeded DBP MCLs for THMs and/or
HAAs. Groundwater sites are indicated by turquoise circles, and surface water sites by red
circles. The study area counties (encompassing an overall land area of ~382 mi², or 990 km²) are
outlined within the thick, dark blue line.

97

generally observed as bromide levels increase.^{7, 8, 10, 16-24} A number of studies have also reported 98 higher total molar THM and/or HAA yields when bromide levels increase while dissolved 99 organic carbon (DOC) concentrations remain constant.^{7, 8, 10, 11, 16, 20-22, 25} In addition to increased 100 101 regulated THM and/or HAA formation, higher bromide levels may lead to increases in total organic bromine and various unregulated DBPs, 7, 8, 19, 26, 27 with consequent health risks. 1-4, 27, 28 102 Another potential factor behind the observed DBP trends at the Island and San Juan 103 County sites may relate to the type and amount of DOM present in their water sources, as DBP 104 formation potentials and speciation can vary widely due to differences in quantities and inherent 105 properties of source water DOM. Although groundwaters are often reported to be less enriched 106 in DBP precursors than surface waters,^{23, 29-36} with median specific DBP yields per mg carbon 107 reported to ~10-20% lower for groundwaters than surface waters,³² specific DBP yields for some 108 groundwaters can be substantially higher than for typical surface waters.^{32, 37} A wealth of 109

literature highlights the greater role of hydrophobic, aromatic-enriched fractions of DOM as
DBP precursor material compared to less aromatic, hydrophilic DOM fractions,^{32, 38-46} where the
relative proportions of each can vary substantially depending on water source.^{43, 44, 47-53}
Groundwater is often depleted in aromatic, hydrophobic fractions relative to surface water,^{49, 51, 54-60} though the opposite trend has been reported in some cases.^{55, 61} Although overall DOC
concentrations are often reported to be higher in surface waters,^{23, 32, 36, 56, 58-60} this is also not
always the case.^{7, 11, 62}

While the literature evaluating relationships of surface water DOM characteristics and 117 quantities to DBP formation is extensive, ^{33, 38, 40, 43, 46, 50, 53, 56, 60, 62-66} fewer studies have included 118 a substantial focus on the role of groundwater DOM in driving DBP formation.^{7, 8, 11, 33, 56, 66, 67} 119 Furthermore, within the very limited subset of studies specifically addressing coastal 120 groundwaters, the potential importance of DOM composition in driving DBP formation does not 121 appear to have been extensively investigated.^{7, 8, 11} Thus, in the context of the present work, it 122 was of considerable interest and importance to gain a better understanding of how both quantities 123 (i.e., DOC concentrations) and composition of source water DOM may influence the observed 124 trends in DBP formation at each of the Island and San Juan County sites. 125 126 In addition to bromide concentrations and DOM quantity/quality, DBP formation and speciation may also be influenced by water quality parameters and operational variables such as 127 pH, temperature, chloride, iodide, and TDS concentrations, ammonia concentrations, and applied 128

129 chlorine concentration and contact time (amongst others). Unfortunately, routine monitoring of

130 groundwater sources does not typically include many of the key water quality parameters noted

above that may influence DBP formation (e.g., bromide, iodide, total organic carbon (TOC),

132 DOC, and ammonia levels),^{68, 69} and source water DOM characterization has never been

undertaken at the study sites prior to now. Consequently, little information existed prior to the 133 present study that could help confirm the influence of seawater intrusion, elucidate properties of 134 source water DOM pools, or otherwise explain observed trends in the study area; in particular, 135 why DBP yields could exceed regulatory limits in a given coastal groundwater system even 136 while a nearby groundwater system consistently meets regulatory criteria. Additionally, 137 138 regulatory monitoring of DBPs in such small systems is generally conducted infrequently (often only once per year) and within the distribution system at points temporally and spatially removed 139 from disinfection facilities, complicating direct association of reported DBP levels with 140 variations in source water characteristics. Furthermore, because United States Environmental 141 Protection Agency (US EPA) guidance documents tend to focus on surface water systems, no 142 groundwater- or small system-specific federal guidance on source monitoring or mitigation 143 actions to minimize DBP formation are currently available to WA DOH or other state agencies 144 to provide to such water systems. 145

In response to the above gaps in knowledge, the WA DOH partnered with the University 146 of Washington (UW) to undertake a comprehensive investigation of source water quality and 147 operational characteristics for a cross section of utilities within the affected areas of WA over a 148 full year, from September, 2015, through August, 2016. A primary aim of the work was to 149 identify water quality and operational characteristics correlated with and potentially responsible 150 for formation of chlorinated and brominated THMs and HAAs at many of the groundwater 151 152 systems in question, including a variety of raw and treated water quality parameters associated with inorganic constituents and DOM. An additional major aim was to develop a knowledge 153 base that could be used to inform general guidelines for regulatory, design, and operational 154 155 personnel in minimizing DBP formation at similar small, coastal groundwater systems – not only

in WA, but also in other regions of the US and other nations.

The sample sites selected for the study included 18 groundwater sources supplying 15 157 public community water systems (each serving less than 900 consumers) located in San Juan and 158 Island Counties, distributed across ~1000 km² of land surface area within the Puget Sound region 159 of WA (Figure 1). All of the systems practice continuous free chlorination treatment, with twelve 160 161 utilizing only chlorination, and three also practicing more extensive treatment for water softening and/or removal of iron and manganese – including pre-oxidation with free chlorine and/or 162 permanganate, greensand filtration, ion exchange, and/or aeration. Treatment descriptions are 163 164 included in Table S1. Ten of the selected systems have exceeded the MCL for total trihalomethanes (TTHMs) during routine regulatory sampling, with six of these having primarily 165 brominated byproducts. Three of the selected systems also exceeded the MCL for HAA5 (the 166 167 sum of 5 regulated HAAs: mono-, di-, and trichloroacetic acid, and mono- and dibromoacetic acid). Five of the selected systems (here designated as IC02, IC03, IC04, SJC05, and SJC07, 168 169 with the prefixes IC and SJC representing Island County and San Juan County, respectively) have not exceeded the MCL for TTHMs or HAAs, and were included to enable comparisons of 170 systems reporting low DBP levels with systems reporting high DBP levels. In Figure 2, the 171 172 averaged results of historical DBP regulatory compliance samples (spanning 2010–2016) are shown for each site. Regulatory sampling frequency during that period ranged from triennial to 173 174 quarterly, and a majority of the systems in the study collected DBP regulatory compliance 175 samples from only one location in the distribution system.

Water quality parameters monitored for each raw water sample collected during this
study included Cl⁻, Br⁻, total iodine (TI), and NH₃-N concentrations; total dissolved solids (TDS)
concentration; conductivity; heterotrophic plate count (HPC); adenosine triphosphate (ATP)

Figure 2. Historical averages from 2010-2016 regulatory measurements of (a) THM; and (b) 180 HAA concentrations in the distribution system (HAA5 species denoted by bold, black borders in 181 bars and legend; remaining HAA species comprising HAA9 denoted by bars with hatched fills). 182 Average BSF_{TTHM} or BSF_{HAA9} values for regulatory measurements are plotted (circles) on the 183 secondary y-axis. Dashed lines represent the US EPA MCLs for TTHMs and HAA5. BDCM -184 bromodichloromethane, DBCM - dibromochloromethane, CAA - monochloroacetic acid, 185 DCAA - dichloroacetic acid, TCAA - trichloroacetic acid, BAA - monobromoacetic acid, 186 DBAA – dibromoacetic acid, TBAA – tribromoacetic acid, BCAA – bromochloroacetic acid, 187 BDCAA – bromodichloroacetic acid. DBCAA – dibromochloroacetic acid. 188

concentration; organic carbon (TOC and DOC) concentration; UV absorbance at 254 nm (A_{254}); 190 and 7-day disinfection byproduct formation potentials (DBP-FPs) of chlorinated and brominated 191 THMs and HAAs. In addition, DOM in each water sample was characterized by (a) HPLC/size 192 exclusion chromatography with online UV/visible, fluorescence, and DOC detection 193 (HPLC/SEC-UV/fluor./DOC) - to determine the relative distributions of various molecular 194 weight fractions of DOM present in the samples,^{47, 48, 70} and (b) acquisition of fluorescence 195 excitation-emission matrixes (EEM) with subsequent processing by parallel factor analysis 196 197 (PARAFAC) as a means of identifying characteristic signatures of fluorescent components present in the DOM.⁷¹⁻⁷³ In treated water samples, all of the above parameters were monitored 198

aside from conductivity and Cl⁻, Br⁻, TI, NH₃-N, and TDS concentrations. Operational water
quality parameters monitored during sampling at each location included free and total chlorine
concentrations, pH, and water temperature. Monthly regulatory compliance reports
encompassing the sampling dates for each water system were also reviewed to determine average
free chlorine residuals and theoretical seasonal water residence times in their distribution systems
(ranging from 1.1 to 15.5 days).

Through collection and analysis of the data described above, the WA DOH and UW 205 sought to address a number of specific objectives, including to: (1) identify parameters strongly 206 207 correlated with DBP formation in chlorinated groundwater systems in San Juan and Island Counties, in particular with formation of brominated byproducts, (2) determine the extent to 208 which observed DBP trends are driven specifically by elevated bromide levels (due to seawater 209 210 intrusion or other causes) and/or by DOM properties that predispose a site to uniquely high DBP yields, (3) evaluate factors that can result in adjacent water systems with similar well locations 211 exhibiting very different DBP compliance results, (4) establish whether and how variations in 212 DBP yields may vary with season, seawater influence, or other as yet unidentified cause(s), (5) 213 identify readily measurable water quality parameters (and/or surrogates thereof) that could be 214 215 used by regulators, design engineers, and utility personnel to predict DBP formation potential in these and other coastal groundwater systems, and (6) recommend modifications to current 216 regulatory and/or operational requirements to improve source water characterization and 217 218 monitoring, and ultimately help minimize DBP formation in such systems. It is important to note that formation of iodinated DBPs (I-DBPs) may also be of concern during chlorination (and 219 220 moreso chloramination) of coastal groundwaters and other waters containing elevated iodide levels.^{8, 74} However, as the principal focus of this work was on better understanding causes of 221

MCL exceedances associated with regulated DBPs at the study sites, the scope of investigation
was limited primarily to evaluation of factors influencing chlorinated and brominated THM and
HAA formation.

More broadly, this work was also undertaken with the overarching objectives of (a) 225 providing a bridge between laboratory investigations demonstrating the high susceptibility of 226 coastal groundwaters to regulated and unregulated DBP formation (from prior studies,^{7, 8, 11} and 227 within the current work) and practical experiences by full-scale utilities, (b) highlighting widely 228 shared characteristics of small, chlorinated coastal groundwater systems (in WA and elsewhere) 229 230 that may predispose them to elevated levels of regulated and unregulated DBPs (especially brominated DBPs) – including not only inherent characteristics of their water supplies, but also 231 technical and/or resource limitations that may hinder their abilities to recognize and respond to 232 such challenges, and (c) identifying opportunities for improving source water quality 233 characterization and monitoring practices that simultaneously take into account the unique 234 circumstances of small systems while also ensuring provision of safe water to consumers. 235

236

237 Materials and Methods

Materials. All reagents and solvents used were of at least ACS reagent grade. All
aqueous solutions were prepared using Milli-Q® grade water (ρ ≥ 18.2 MΩ•cm). Calibration and
internal standards for analyses of THMs and HAAs were obtained from Sigma-Aldrich. Free
chlorine stock solutions were prepared from commercially-available sodium hypochlorite (5%,
J.T. Baker) and standardized spectrophotometrically using ε = 350 M⁻¹cm⁻¹ at 292 nm.⁷⁵
BacTiter- GloTM Microbial Cell Viability Assay kits were obtained from Promega.
Sample Collection and General Analytical Methods. Samples were obtained during

four consecutive quarters, with quarter 1 (Q1) samples collected in autumn, quarter 2 (Q2) 245 samples collected in winter, quarter 3 (Q3) samples collected in spring, and quarter 4 (Q4) 246 samples collected in summer. Specific collection dates for each sample site are listed in Table 247 S1. Based on historic rainfall patterns, Q1 and Q4 occurred during the dry season and Q2 and Q3 248 occurred during the rainy season. The study included 8 water systems on Whidbey and Camano 249 250 Islands within Island County, WA (labelled here with the prefix IC) and 7 water systems on San Juan Island within San Juan County, WA (labelled here with the prefix SJC). Only raw water 251 samples were collected for the 12 systems using free chlorination treatment alone. Raw and 252 253 treated water samples were collected for the three systems utilizing more extensive treatment. Free chlorine residuals in treated samples were quenched upon sampling, using 10-fold molar 254 excess Na₂S₂O₃. Raw water samples from Source03, Source04, and Source05 of system IC06 255 256 were blended in the lab prior to analyses and DBP-FP tests to ensure consistency with water composition at the full-scale, as all three sources are piped separately but blended together on-257 site before undergoing iron and manganese treatment and chlorination. The blending ratio used 258 in the lab was based on source flow proportions employed at the IC06 treatment facility at the 259 time of sampling. 260

Prior to sample collection, sample taps were opened and diverted to waste to clear stagnant water. Samples for ATP and HPC analyses were collected following a 30 second flush after heat-sterilizing the sample taps using a portable butane torch. All other water samples were collected directly and stored headspace-free. During on-site sampling, pH, temperature, and free and total chlorine measurements were obtained according to standard methods.⁷⁶ Free and total chlorine were measured in the filtered water (where applicable) and/or at the entry to the distribution system. Analyses of Cl⁻,⁷⁷ Br⁻,⁷⁷ NH₃-N,⁷⁸ TDS,⁷⁶ conductivity,⁷⁶ and HPC⁷⁶ were

268	completed by a certified drinking water laboratory (AmTest Laboratories, Kirkland, WA) in
269	accordance with standard and US EPA methods. TI - comprising the sum of iodide, iodate, and
270	molecular iodine - was also measured by AmTest, using inductively coupled plasma-atomic
271	emission spectroscopy with procedures based on US EPA Method 200.7 (note that TI species
272	could not be quantified individually by this method). ⁷⁹ Samples used for ATP measurements
273	were stored at 4 °C upon receipt at the UW labs, and processed within 24 hours (see Text S1 for
274	details of ATP measurements). Samples used for DOC, A254, HPLC/SEC, fluorescence EEM
275	analyses, and DBP-FP tests were filtered with Milli-Q-rinsed 0.45 μ m polyethersulfone (PES)
276	membranes (Sterlitech) and stored at 4 °C upon receipt at the UW labs. Samples for TOC
277	analyses were likewise stored at 4 °C upon receipt, but omitted the filtration step.
278	TOC and DOC concentrations were measured using a Shimadzu TOC-L _{CSH} high-
279	temperature catalytic combustion system. ⁸⁰ Free chlorine measurements during DBP-FP tests
280	were undertaken using DPD colorimetry. ⁷⁶ An Orion 5 Star meter with Orion ROSS Ultra pH
281	electrode was used to measure pH in the UW labs. Field measurements of free and total chlorine
282	concentrations were undertaken with a Hach Pocket Colorimeter II and DPD Reagent packets (as
283	per manufacturer instructions), and field measurements of pH were obtained using a Hach
284	Sension+ pH1 meter with Sension+ pH Probe 5050T.
285	UV Absorbance (A254), Fluorescence EEM, and PARAFAC Analyses. Measurements

of A_{254} and fluorescence EEMs were obtained for each sample (at native sample pH) on a Horiba Aqualog spectrofluorometer, using a 1 × 1 cm quartz cell. Excitation wavelengths ranged from 240 – 600 nm and emission wavelengths ranged from 245.2 – 826.7 nm. Sample EEMs were processed using Aqualog software to correct for inner filter effects, and Raman and Rayleigh scattering. PARAFAC analyses were performed on the whole set of IC and SJC sample EEMs to

291 deconvolute the aggregate fluorescence for each sample into discrete fluorescent components

indicative of DOM composition and reactivity (using tools available at

293 <u>www.models.life.ku.dk/algorithms</u>).⁷² PARAFAC analysis and component selection criteria are

described in detail in Text S2.

HPLC/SEC-UV/Fluor./DOC Analyses. Size fractions of DOM were characterized by 295 296 means of online HPLC/SEC-UV/fluor./DOC analyses, using a variation on reported methods (i.e., using pH 6.85, 13.8 mM phosphate buffer as mobile phase).^{48, 70} Samples were resolved 297 using a Tosoh Toyopearl HW-50S (250 mm x 20 mm, 3 µm) size exclusion column installed on 298 a Dionex UltiMate 3000 HPLC equipped with a UV diode array detector, fluorescence detector 299 $(\lambda_{ex} = 320 \text{ nm}/\lambda_{em} = 450 \text{ nm})$, and GE Sievers 900 Series Turbo online organic carbon detector 300 with an inline inorganic carbon remover. Potassium hydrogen phthalate and polystyrene 301 302 sulfonate standards were used to develop calibration curves for DOC concentration and molecular weight (MW), respectively. OpenChrom software (Lablicate GmbH and scientific 303 304 community) was used to integrate peaks.

Disinfection Byproduct Formation Potential Tests and Analyses. Experiments to 305 determine THM and HAA 7-day formation potentials (THM-FP and HAA-FP) were undertaken 306 in accordance with SM 5710B,⁷⁶ with minor modifications. In each experiment, 25 mL volumes 307 of filtered and buffered samples (10 mM phosphate, pH 7) contained within headspace-free 308 309 amber glass vials were dosed with free chlorine concentrations expected to yield a final target residual of 3 - 5 mg/L as Cl₂. After 7 days incubation at $25 \pm 2 \text{ °C}$, two or more experimentally-310 independent replicate samples with free chlorine concentrations within the target residual range 311 were quenched with sodium thiosulfate (Na₂S₂O₃) and analyzed for THMs and HAAs. 312 313 Samples were processed for analyses of THMs and HAAs in accordance with US EPA

314	Method 552.3, ⁸¹ with several modifications. Twenty mL of $Na_2S_2O_3$ -quenched samples were
315	acidified to $pH < 2$ with 98% purity H ₂ SO ₄ . After adding 2.7 M sodium sulfate, THMs and
316	protonated HAAs were extracted into 4 mL methyl tert-butyl ether (MTBE) amended with
317	internal standards (100 μ g/L 1,2,3-trichloropropane and 2,3-dibromopropanoic acid) via
318	vigorous mixing. Then, 3 mL of the MTBE layer containing THMs and HAAs was separated
319	from the aqueous phase, and HAAs were esterified via addition of 1 mL acidified methanol (10%
320	volume H_2SO_4) and heating at 50 °C for 2 hours. Control experiments confirmed that THM
321	recoveries were not affected by passage through the HAA esterification step. After esterification,
322	residual acid was neutralized with saturated aqueous NaHCO ₃ , and the mixed organic layer
323	analyzed on a 30 m \times 0.25 mm, 1.0 μm HP-1ms Ultra Inert column on a Shimadzu GC-2010
324	with electron capture detector.

326 **Results and Discussion**

Source Water Characteristics and Operational Parameters. Table 1 presents the ranges of
general water quality parameters measured in samples of the raw and treated water sources for
all studied systems. Descriptions of measured pH, NH₃-N, TDS, conductivity, ATP, and HPC
values are provided in Text S3.

Halide Concentrations. All of the study sites are located near coastlines and potentially susceptible to seawater influence or intrusion. Seawater influence can be indicated by elevated (>100 mg/L) chloride concentrations and molar ratios of $[Br^-]/[Cl^-]$ close to the value for natural seawater of ~1.5 × 10⁻³.^{5-8, 82, 83} Over the study year, IC01, IC05 Source02, IC07, SJC01, and SJC02 exhibited levels of chloride near or above the 100 mg/L threshold often associated with risk of seawater intrusion, with SJC02 exhibiting concentrations in excess of 150 mg/L (Table 1).

Table 1. Source water physical and inorganic parameters

	Raw Water ^a							Treated Water ^a				
System Name	рН	Temp.	Chloride	Bromide	Total iodine	[Br [_]]/[Cl [_]]	Cond.	TDS	NH ₃ -N	рН	Free Chlorine Residual	Total Chlorine Residual
	_	°C	mg/L	mg/L	mg/L	molar ratio × 10 ³	µmhos/cm	mg/L	mg/L	-	mg/L as Cl ₂	mg/L as Cl ₂
IC01	6.96 - 7.64	10.5 - 12.2	84 - 105	0.22 - 0.58	nd	0.93 - 2.91	550 - 620	340 - 390	nd - 0.005	7.13 - 7.83	0.17 - 0.3	0.23 - 0.37
IC02	6.96 - 7.28	10.2 - 12.7	61 - 69	0.14 - 0.26	nd - 0.12	0.95 - 1.67	610 - 950	300 - 450	0.32 - 0.40	7.11 - 7.7	nd - 0.05	nd - 0.83
IC03	7.73 - 7.75	12.0 - 13.0	17 - 18	0.05 - 0.57	nd - 0.12	1.23 - 14.6	390 - 460	240 - 320	nd	7.63 - 8.03	0.33 - 0.34	0.37 - 0.39
IC04	7.32 - 7.71	11.7 - 13	48 - 50	0.1 - 0.14	nd - 0.43	0.89 - 1.26	430 - 490	260 - 330	0.64 - 0.77	7.60 - 7.95	0.05 - 0.16	1.11 - 2.6
IC05 - S02	6.94 - 7.60	11.6 - 12.4	117 -140	0.25 - 0.38	nd - 0.21	0.83 - 1.33	660 - 780	420 - 540	0.33 - 0.39	7.8 - 8.1	0.03 - 0.23	0.47 - 1.22
IC05 - S03	6.80 - 7.40	11.3 - 12.0	61 - 67	0.12 - 0.24	nd - 0.20	0.88 - 1.64	580 - 680	400 - 460	0.23 - 0.92	7.41 - 7.67	nd - 0.03	0.19 - 0.25
IC06	7.0 - 7.35	11.2 - 16.0	57 - 88	0.14 - 0.31	nd - 0.15	1.02 - 2.86	660 - 950	350 - 580	0.06 - 1.06	8.01 - 8.13	0.08 - 0.77	0.14 - 0.94
IC07	7.16 - 7.36	11.7 - 12.4	92 - 145	0.16 - 0.48	nd - 0.25	0.75 - 1.59	840-1200	500 - 730	0.92 - 2.27	7.25 - 7.82	0.03 - 0.23	0.4 - 11.2
IC08	7.20 - 7.72	11.3 - 12.2	89 - 102	0.18 - 0.29	nd - 0.12	0.78 - 1.34	860 - 970	450 - 630	2.70 - 3.20	8.20 - 8.33	0.03 - 0.09	0.3 - 2.9
SJC01	7.36 - 7.7	10.8 - 11.3	130 - 151	0.14 - 0.57	nd	0.41 - 1.70	480 - 890	470 - 490	nd - 0.006	na	0.25 - 0.60	0.4 - 0.81
SJC02	7.66 - 7.82	11.2 - 11.6	176 - 258	0.19 - 0.59	nd	0.39 - 1.19	1100 - 1200	590 - 640	0.15 - 0.19	na	0.06 - 0.64	0.19 - 0.79
SJC03 - S01	7.42 - 7.77	11.3 - 12.2	66 - 114	0.07 - 0.19	nd	0.27 - 1.08	710 - 800	410 - 440	nd - 0.07	na	0.44 - 0.77	0.54 - 0.95
SJC03 - S02	7.48 - 7.75	10.2 - 13.9	32 - 70	nd - 0.10	nd	0.35 - 1.12	420 - 520	220 - 300	nd - 0.03	na	0.38 - 0.77	0.54 - 0.95
SJC04	7.40 - 7.92	8.7 - 12.1	69 - 110	nd - 0.31	nd	1.21 - 2.80	710 - 1110	410 - 510	nd - 0.07	na	0.54 - 1.05	0.68 - 1.24
SJC05	7.56 - 7.72	12 - 13.1	51 - 73	0.06 - 0.15	nd	0.42 - 1.18	560 - 610	300 - 360	0.06-0.11	na	nd - 0.39	0.015 - 0.43
SJC06	7.3 - 7.55	10.5 - 12.1	16 - 40	nd - 0.12	nd	0.55 - 1.40	480 - 510	240 - 350	nd - 0.02	na	0.02 - 0.06	0.02 - 0.21
SJC07	7.71 - 8.21	11.1 - 11.7	34 - 51	0.05 - 0.38	nd	0.46 - 4.95	480 - 550	210 - 300	0.12-0.15	na	0.71 - 1.06	0.71 - 1.29

^a Data are provided as ranges of measurements obtained for each sample site over the duration of the study. nd = not detected.

Some apparent seasonal trends in chloride levels were also noted, with significantly 339 higher chloride levels observed for several SJC sites (SJC01, SJC02, SJC03 Source01, and 340 SJC07) during O1 and O4, and significantly higher levels observed during O3 and O4 for two IC 341 sites (IC07 and IC08). Bromide levels ranged from below the detection limit (0.05 mg/L) to as 342 high as 0.71 mg/L (Table 1), and varied widely from Q1-4, with much higher levels measured in 343 Q4 for a number of sites. TI was detectable in only a few samples (LOD = 0.1 mg/L), though in 344 some cases at elevated concentrations, with the highest level (0.43 mg/L) recorded for IC04 in 345 Q3 (Table 1). Since iodine species could not be distinguished in TI analyses, the proportions 346 present as iodide are uncertain; thus, measured TI values can only be taken as upper limits of 347 possible iodide concentrations. 348

Molar ratios of $[Br^-]/[Cl^-]$ measured for each site varied from $0.4 \times 10^{-3}-1.5 \times 10^{-2}$, but 349 were more typically within a range of $\sim 1-2 \times 10^{-3}$ (Table 1). Overall, bromide concentrations 350 were only weakly correlated ($R^2 = 0.32$) with chloride concentrations across the sample set 351 (Figure S1). Although chloride levels in excess of 100 mg/L and $[Br^-]/[Cl^-]$ ratios near 1.5×10^{-3} 352 imply the existence of seawater intrusion, they are not definitive, and can be attributed to other 353 354 sources, such as connate water, sea spray deposition, manure application, or septic field infiltration.^{5, 6, 83} Thus, the relatively weak correlation of [Br⁻] with [Cl⁻] could reflect influences 355 356 from various factors other than or in addition to seawater intrusion.

Nevertheless, the data in Table 1 (including TDS and conductivity values; see Text S3) suggest that seawater intrusion may influence the chemistry of a number of the water supplies investigated – potentially leading to elevated halide levels. Especially notable in this context is that neither bromide nor iodide are part of regulatory source water monitoring in federal or WA regulations. Although beyond the scope of this work, the potential for elevated iodide

362	concentrations (and associated impacts on I-DBP formation) in source waters warrants further
363	study within this context, especially in light of the potential health risks of I-DBPs. ^{1, 2, 27, 28}
364	Total and Dissolved Organic Carbon. Across the sample set, DOC concentrations ranged
365	from $0.54 - 7.9 \text{ mg}_{C}/L$ (Figure S3a). TOC and DOC concentrations for individual sites
366	frequently exhibited variation across quarters, with particularly high seasonal variation observed
367	in the case of SJC06, for which DOC varied from 1.3 to 7.9 mg_C/L , with lower values in the dry
368	season (Q1, Q4) and higher values in the rainy season (Q2, Q3). Such trends for SJC06 suggest
369	that heavy precipitation may result in increased percolation of DOC into the aquifer from
370	external sources or DOC-rich soils within the recharge zone, and may in turn result in significant
371	seasonal impacts on the effectiveness of the chlorination process at this site. TOC for each site
372	appeared to be essentially all dissolved, with TOC concentrations exhibiting a nearly 1:1
373	correlation with the corresponding DOC concentrations for each sample (Figure S3b).
374	UV Absorbance at 254 nm (A_{254}). Values of A_{254} can provide a measure of the abundance
375	of aromatic DOM constituents in a given sample, and in many cases, a reasonable surrogate of
376	DOC concentration on the whole (provided the relationship of A_{254} to DOC concentration is
377	known, e.g., via determination of specific UV absorbance (SUVA ₂₅₄)). ^{50, 63} Similar to DOC,
378	measurements of A254 also varied substantially across the sample set (Figure S4), but generally
379	correlated well with DOC over the study period ($R^2 = 0.95$) (Figure 3a), consistent with previous
380	findings for various other waters. ^{37, 63, 84} Exceptionally high A ₂₅₄ values were noted in the treated
381	IC samples and the Q3 SJC07 sample (Figure S4), and were excluded from the correlation with

Figure 3. (a) A₂₅₄ versus DOC concentration; (b) SEC-DOC Peak B+C concentration versus
 DOC concentration; and (c) PARAFAC Fmax1 versus DOC concentration. Spectroscopic
 measurements (A₂₅₄ and F_{max1}) were obtained at native sample pH. Data points and error bars
 represent means and standard deviations, respectively, obtained from at least duplicate
 experimentally-independent measurements.

382

DOC as outliers. While the origins of the high absorbance within the Q3 SJC07 sample remain 389 unclear, the high A₂₅₄ values observed for the treated IC samples were due to background 390 391 absorbance from excess Na₂S₂O₃ used to quench free chlorine during sampling. SUVA₂₅₄ values were quite uniform for the aggregate IC and SJC dataset, even across 392 seasons, with an overall SUVA₂₅₄($\pm 95\%$ C.I.) = 3.1(± 0.2) (m×mg_C/L)⁻¹ after exclusion of the Q3 393 SJC07 and IC post-treatment outliers noted above (Figure 3a). This is within the range of typical 394 SUVA₂₅₄ values for groundwaters and surface waters.^{7, 8, 18, 32, 53, 80} The relatively low SUVA₂₄₅ 395 variability within the IC and SJC samples suggests similar DOM properties and fairly uniform 396 diagenetic processing within the aquifers at each site. 397 HPLC/SEC–UV/Fluor./DOC Size Fractions. In accordance with previous studies, HPLC-398 SEC chromatograms can be resolved into the following regions representing characteristic size 399 fractions of DOM: (A) biopolymers and high MW hydrophilic compounds, (B) humic 400

substances, (C) building blocks (i.e., humic substance sub-constituents), (D) low MW acids, and 401 (E) low MW neutral molecules.^{47, 48, 70} An example chromatogram is depicted in Figure S5. The 402 late eluting peak in the DOC chromatogram corresponds to HCO_3^{-7}/CO_3^{-2} that was not 403 completely removed by the system's inorganic carbon removal module (due to the high levels of 404 total carbonate in some of the groundwater samples). All sample chromatograms lacked a 405 406 distinct biopolymer/high MW hydrophilic DOC peak – an important indicator for DOM of recent biological origin (e.g., algal- or wastewater-derived organic matter). This indicates that DOM in 407 the samples is primarily naturally occurring and terrestrial in origin, consistent with relatively 408 pristine groundwaters.^{47, 48} This is also consistent with the generally low average HPCs and ATP 409 levels observed across the sample set (Text S3, Table 1). 410 The SEC peaks corresponding to fractions (B) and (C) (humic substances and building 411 blocks) contain aromatic constituents responsible for much of the fluorescence and A₂₅₄ of bulk 412 DOM in the samples.^{47, 48} The DOC signal areas for these peaks (henceforth referred to together 413 as SEC-DOC Peak B+C concentration, in mg_C/L, or [SEC-DOC Peak B+C], in molar units) in 414 turn provided a potential quantitative surrogate measurement of aromatic DOM constituents for 415 each sample (Figure S6), and correlated relatively well with bulk DOC measurements ($R^2 =$ 416 0.89) (Figure 3b). The relative uniformity of [SEC-DOC Peak B+C]/[DOC] ratios across 417 samples also suggests low seasonal variation in DOM character (as opposed to quantity), even 418 for SJC06; consistent with the noted uniformity in SUVA₂₅₄ values (Figure 3a). 419 420 Fluorescence. Prior work has demonstrated that DOM source can be distinguished via characteristic regions of excitation-emission maxima and ratios of fluorescence intensity 421 obtained at specific excitation-emission wavelength pairs.^{39, 47, 51, 85-93} In all IC and SJC samples, 422 423 local excitation/emission maxima were observed within the ranges of 250-270/400-450 nm and

424	320-340/400-450 nm (see Figure S7a for a representative fluorescence EEM), which are typical
425	for humic-like constituents associated with terrestrial DOM. ^{39, 44, 71, 90, 93, 94} By comparison, DOM
426	constituents characteristic of microbial activity (e.g., bacteria in wastewaters, algae in surface
427	waters) exhibit excitation/emission maxima attributed to amino acids/proteins and soluble
428	microbial products in the region 250-300/330-380 nm. ^{39, 44, 47, 86-88, 93} PARAFAC modeling of the
429	full sample set identified 4 components that together could account for the observed EEMs
430	(Table S2, Figure S7b-e), with Component 1 representing the dominant contribution to bulk
431	DOM fluorescence in the IC and SJC samples (based on magnitudes of fluorescence intensity,
432	F_{max}), followed by Components 2, 4, and 3 (Text S2). Literature analogues to Components 1-3
433	are typically attributed to humic-like constituents of DOM, whereas analogues to Component 4
434	have been attributed to protein-like (possibly microbially-derived) constituents (see Table S2 for
435	comparisons to analogous components reported by other investigators). ^{60, 64, 71, 93, 95, 96} The
436	relative dominance of humic-like constituents in comparison to protein-like constituents provides
437	additional evidence that the DOM at each site is predominantly terrestrial in origin. In general, of
438	the four PARAFAC components, F_{max} values for Component 1 (F_{max1} , summarized in Figure
439	S7f) were found to correlate most strongly with DOC concentrations ($R^2 = 0.75$) (Figure 3c),
440	though correlations were weaker than for A_{254} or SEC-DOC Peak B+C concentrations (Figure
441	3a,b). The increased variability in fluorescence characteristics could be due to a variety of
442	factors, including differences in relative fluorophore and UV chromophore abundance (e.g., due
443	to differences in extents or types of light-absorbing aromatic group substitution), ^{51, 94} effects of
444	metal-DOM complexes,97 or higher susceptibility of fluorophores (compared to UV
445	chromophores) to variations in pH (as samples were analyzed at their native pH values,
446	averaging 7.4(±0.3) for IC sites and 7.6(±0.2) for SJC sites). ^{51, 94, 98-100}

447	Calculation of the fluorescence index (FI) (i.e., the ratio of emission intensities at $\lambda = 470$
448	nm ($I_{\text{Ex370/Em470}}$) and $\lambda = 520$ nm ($I_{\text{Ex370/Em520}}$) for excitation at $\lambda = 370$ nm ^{51, 91, 101}) yields an
449	average FI($\pm 95\%$ C.I.) = 1.6(± 0.1) across the study area (Figure S8). This FI value –
450	intermediate between the bounds of \sim 1.2 and \sim 1.8 typically attributed to purely terrestrial and
451	purely microbial character, respectively ^{91, 102} – suggests a contribution of microbial processing
452	to the DOM fluorescence signature, and when taken together with the SUVA ₂₅₄ , SEC, and
453	PARAFAC data noted above, is generally consistent with soil-derived, terrestrial DOM subject
454	to heterotrophic metabolism and/or physical-chemical fractionation in shallow aquifers,
455	peatlands, and wetlands. ^{54, 102, 103} The relative constancy of the FI (Figure S8) also further affirms
456	the high spatial and temporal homogeneity of DOM character across the study area.
457	
458	Disinfection Byproducts. Formation Potentials and Bromine Substitution Factors. Seven-day
459	DBP-FP tests are designed to enable standardized measurements of the concentrations in a given
460	water sample of DBP precursors that react when continuously exposed to an elevated chlorine
461	residual over an extended time. ^{16, 62, 76, 104, 105} While DBP-FP values may not directly reflect the
462	DBP concentrations that can be expected to form under the operating conditions within the
463	treatment facility or distribution system for a given site (as they do not account for variations in
464	pH, temperature, or free chlorine exposure likely to be encountered in practice), ¹⁰⁴ the holding
465	time (7 days) specified for the DBP-FP test is within ranges of theoretical maximum distribution
466	residence times for most of these small systems (Table S1). Thus, DBP-FP measurements can
467	provide valuable insight into the "worst-case" conditions that can be anticipated at each site.
160	
408	Standardization of the conditions used for the formation potential tests also facilitates

characteristics of DBP precursors amongst the full sample set.

471	As a complement to DBP-FP measurements, bromine substitution factors (BSFs) can	
472	provide a measure of the molar proportion of bromine incorporation relative to overall halogen	
473	content of the THMs or HAAs. BSFs for TTHM (BSF _{TTHM}), HAA5 (BSF _{HAA5}), and HAA9	
474	(BSF_{HAA9}) were calculated according to Equations 1-3, ¹⁰⁶	
475	$BSF_{TTHM} = \frac{[BDCM] + 2 \times [DBCM] + 3 \times [Bromoform]}{3 \times [TTHM]}$	(2)
476	$BSF_{HAA5} = \frac{[BAA] + 2 \times [DBAA]}{([CAA] + [BAA]) + 2 \times [DCAA] + [DBAA]) + 3 \times [TCAA]}$	(3)
477	$BSF_{HAA9} = \frac{[BAA] + [BDCAA] + [BCAA] + 2 \times ([DBAA] + [DBCAA]) + 3 \times [TBAA]}{[CAA] + [BAA] + 2 \times ([DCAA] + [BCAA] + [DBCAA]) + 3 \times ([TCAA] + [BDCAA] + [DBCAA] + [TBAA])}$	(4)
478	where BSF values range from 0 to 1, with the minimum and maximum signifying exclusively	
479	chlorinated or brominated THMs or HAAs, respectively.	
480	Figure 4 shows measured THM-FPs and HAA-FPs, in addition to corresponding BSF	
481	values, for each sample site over the four study quarters, as well as the historical six-year avera	ge
482	(2010–2016) of distribution system DBP concentrations reported for regulatory compliance	
483	purposes (also depicted in Figure 2). For most of the water systems, DBP-FPs did not correlate	
484	directly with the six-year averages of regulatory distribution sampling; typically, DBP-FPs wer	e
485	higher, consistent with differences between conditions used in the formation potential tests and	
486	those encountered in the field. ¹⁰⁴ However, sites with historically elevated DBP concentrations	or
487	BSFs did consistently yield high DBP-FPs or associated BSFs; aside from IC01 and SJC01, for	r
488	which Q1-Q3 TTHM-FP levels were below their historical averages. Of the five study sites with	th
489	historically low regulatory DBP yields, DBP-FP results for two (IC03 and SJC05) were	
490	consistent with the regulatory monitoring results, while DBP-FPs for the other three systems	

- 492 **Figure 4.** (a) Average THM-FP; and (b) average HAA-FP, plotted with measured historical TTHM and HAA5 averages between
- 2010-2016. Species included in HAA5 are denoted by bold, black bordered bars; remaining HAA species comprising HAA9 are
- denoted by bars with hatched fills. BSF_{TTHM} or BSF_{HAA9} for each sample is also plotted (circles) on the secondary y-axis. *Q2 samples
- plotted for SJC04 Source02 are the operating blend of Source03 and Source03. Average DBP-FP values from at least duplicate (and
- 496 typically triplicate) experimentally-independent measurements. Dotted/Dashed lines represent the US EPA MCLs for TTHMs/HAA5.

497 (IC02, IC04, and SJC07) exceeded the historical average.

As evident from the DBP-FP data in Figure 4, nearly every site included in the study 498 (with the exception of IC03) exhibited TTHM-FP levels in excess of the TTHM MCL, indicating 499 that they could each potentially exceed the TTHM MCL under chlorination conditions sufficient 500 to ensure complete consumption of THM precursor groups. Furthermore, only 5 sites (IC01, 501 502 IC03, SJC01, SJC02, and SJC05) consistently yielded HAA5-FP values below the HAA5 MCL, illustrating that the majority are also at potential risk of exceeding the HAA5 MCL. Whether or 503 not sites exceed MCLs in practice must therefore be primarily a function of the operational 504 505 parameters at each site (e.g., pH, temperature, and free chlorine exposure); noting that sites IC02, IC04, SJC05, and SJC07 were included in the study as historically compliant DBP sites, yet each 506 was found to yield TTHM-FP and HAA5-FP values in excess of the MCLs. 507 508 IC samples generally yielded higher TTHM-FPs and HAA9-FPs when compared to SJC samples. The higher TTHM-FP results for IC samples were initially surprising, given that the 509 regulatory sample results for DBPs are similar between the two counties (Figure 2). Sites with 510 the highest TTHM-FPs and HAA9-FPs also yielded mainly chlorinated DBP species, whereas 511 BSF values were higher for many samples with lower DBP-FPs (e.g., IC01, SJC01, SJC02). 512 513 In a number of systems, DBP-FPs varied significantly over the four sampling quarters, consistent with seasonal variations observed for DOC concentrations (Figure S3a). For example, 514 515 TTHM-FPs for SJC03 Source02 and SJC07 varied from low concentrations in Q1 (54 µg/L and 80 µg/L, respectively) to levels three times higher in Q4, and TTHM-FPs for IC07 and IC08 516 517 treated samples quadrupled from Q1 to Q4. Additionally, SJC06 exhibited substantially higher TTHM-FP and HAA-FP in the rainy season (Q2 and Q3) compared to the dry season (Q1 and 518 Q4), ranging from a low of 92 µg/L in Q1 to a high of 646 µg/L TTHM in Q3. Furthermore, 519

520	TTHM-FP for IC05 Source02 more than doubled between Q1 and Q3, from 253 to 573 $\mu g/L.$
521	The correlations of variations in DBP-FP for such sites (Figure 4) with seasonal
522	variations in source water DOC concentrations (Figure S3a) suggest that such trends may
523	likewise contribute to substantial seasonal variations in DBP yields during full-scale treatment,
524	though this would often not be captured under current regulatory monitoring regimens.
525	
526	Correlations of DBP Formation Potentials and BSFs with Source Water Characteristics.
527	General Water Quality Parameters. No clear correlations were observed of TTHM-FP, HAA5-
528	FP, HAA9-FP, or corresponding BSF values with Cl-, Br-, TI, or TDS concentrations;
529	conductivity; NH ₃ -N concentrations; HPCs; or ATP concentrations.
530	Dissolved Organic Carbon Concentrations. As seen in Figure 5, TTHM-FPs, HAA5-FPs,
531	and HAA9-FPs generally correlated well with DOC concentrations (with $R^2 \ge 0.72$), consistent
532	with observations from numerous prior investigations, ^{18, 32, 63, 66, 67, 84, 107} with slopes of the linear
533	regressions for each plot representing rough estimates of the average moles of DBPs formed per
534	mol of untreated DOC (i.e., specific DBP formation potentials) for the IC and SJC samples. The
535	value of 6.9×10^{-3} mol _{TTHM} /mol _C (Figure 5a) corresponds to a mass-based specific TTHM-FP of
536	72 $\mu g_{TTHM}/mg_C$, which is much higher (>90 th percentile for groundwaters) than respective
537	median values of ~40 $\mu g_{TTHM}/mg_C$ and ~50 $\mu g_{TTHM}/mg_C$ reported for a large groundwater and
538	surface water dataset, ³² suggesting that DOM in the IC and SJC source waters is particularly rich
539	in DBP precursors compared to DOM pools in many other waters. Furthermore, the strength of
540	the correlations also indicates that DOM quality and reactivity toward free chlorine were fairly
541	consistent across the sample set (i.e., that DBP-FPs across the study area were mainly a function
542	of DOC concentration, rather than differences in DOM character from site to site or seasonally),

Figure 5. (a) TTHM-FP; (b) HAA5-FP; and (c) HAA9-FP plotted versus [DOC]. Treated
samples were excluded because of limited differences in [DOC] (and DBP precursors) before
and after treatment processes applied at each site. Data points and error bars represent means and
standard deviations, respectively, obtained from at least duplicate (and typically triplicate)
experimentally-independent measurements.

550 consistent with the relatively constant $SUVA_{254}$ and FI values noted above.

551 UV absorbance (A_{254}). When samples exhibiting extraneous absorbance (i.e., the treated

552 IC samples and the Q3 SJC07 sample) were excluded, correlations of TTHM-FP, HAA5-FP, and

553 HAA9-FP with A_{254} were fairly strong (with $R^2 \ge 0.73$ in all three cases; Figure 6), consistent

with the strong correlations of A_{254} with DOC (Figure 3a), and in good agreement with many

prior observations.^{33, 53, 63, 66, 84, 96, 108, 109} In contrast, no clear correlations of DBP-FPs with

556 SUVA₂₅₄ were observed (Figure S9), primarily on account of the minimal variability in SUVA₂₅₄

values across the sample set (note the clustering of data around the mean SUVA₂₅₄ = $3.1(\pm 0.2)$

558 $(m \times mg_C/L)^{-1}$ in Figure S9). This further highlights that variations in DBP-FPs within the study

area arise primarily from differences in quantity rather than character of source water DOM.

560 *HPLC/SEC–UV/Fluor./DOC Size Fractions*. As shown in Figure S10, TTHM-FP,

561 HAA5-FP, and HAA9-FP correlated fairly well with [SEC-DOC Peak B+C], though the

562

Figure 6. (a) TTHM-FP; (b) HAA5-FP and; (c) HAA9-FP plotted versus A_{254} . Regression lines were obtained with and without outlier samples exhibiting extraneous absorbance due to background matrix constituents (i.e., treated samples and the Q3 sample of SJC07). Measurements of A_{254} were obtained at native sample pH. Data points and error bars represent means and standard deviations, respectively, obtained from at least duplicate (and typically triplicate) experimentally-independent measurements.

570 coefficients of determination for regressions of DBP-FP versus [SEC-DOC Peak B+C] ($R^2 \ge$

571 0.69) were lower than those versus bulk DOC concentrations ($R^2 \ge 0.72$) or A_{254} ($R^2 \ge 0.73$).

572 *Fluorescence*. In previous studies, PARAFAC components having similar

excitation/emission characteristics as Components 1, 2, and 3 (as defined in this model), have

been positively correlated with THM and HAA formation potentials.^{53, 60, 64, 71, 96, 110} The

575 fluorophore groups comprising these components are likely to include pools of activated

aromatic molecules that exhibit relatively high reactivity toward free chlorine, and may hence

serve as precursors for DBP formation.⁷¹ The present work found that F_{max} for Component 1

578 (F_{max1}) correlated strongly with F_{max2} and F_{max3} (with $R^2 \ge 0.97$); therefore, F_{max1} was evaluated

as a general surrogate for such DBP precursors. Figure S7f depicts the F_{max1} values derived for

each site. As shown in Figure S11, TTHM-FP, HAA5-FP, and HAA9-FP each correlated with

581	F_{max1} ($R^2 \ge 0.60$), though with lower coefficients of determination than for DOC, A_{254} , or [SEC-
582	DOC Peak B+C] (consistent with the greater variability of F_{max1} across the sample set).
583	Relative Concentrations of Bromide and DOC. Neither DBP-FPs nor BSFs correlated
584	well with concentrations of bromide alone ($R^2 < 0.20$), as shown in Figures S12 and S13. When
585	considering that speciation of HAAs and THMs involves competition of free bromine and free
586	chlorine for the same DBP precursor sites in DOM, and that free bromine generally reacts faster
587	with organic compounds (leading to more brominated DBPs for equivalent levels of free
588	bromine and chlorine), ^{7, 13, 15, 16, 18, 22, 111} it is clear that bromination of DBP precursor sites will
589	depend on available concentrations of free bromine and DBP precursor sites. In a system
590	containing excess free bromine, DBP precursor sites would be predominantly brominated (with
591	BSF approaching 1 as free bromine concentration increases relative to DBP precursor sites),
592	whereas in a system limited by free bromine, DBP precursor sites that are not rapidly brominated
593	could instead react with excess free chlorine, leading to lower BSFs. Thus, BSF should depend
594	on the ratio of [Br-] to DBP precursor site concentrations (assuming stoichiometric conversion of
595	bromide to free bromine by molar excess free chlorine). Provided DBP precursor concentrations
596	are proportional to DOC concentrations, BSF should increase to an asymptotic maximum with
597	increasing [Br-]/[DOC] ratios as more free bromine becomes available to react with precursor
598	sites in lieu of free chlorine, consistent with prior observations. ^{7, 8, 11, 18-20, 112} To investigate this,
599	BSF_{TTHM} , BSF_{HAA5} , and BSF_{HAA9} data obtained for IC and SJC samples were fit to a model of
600	the form, $[BSF] = 1 - e^{-m([Br-]/[DOC])}$, where, <i>m</i> represents an empirical constant dependent on
601	properties of the DOM subjected to halogenation. As shown in Figure 7a,c, regression of the data
602	according to this model yielded reasonably good correlations ($R^2 \geq 0.65$) for BSF_{TTHM} and
603	BSF_{HAA9} when IC03 samples were excluded (as BSFs for the IC03 site were biased by very low

604

Figure 7. (a) BSF_{TTHM}; (b) BSF_{HAA5}; and (c) BSF_{HAA9} plotted versus the molar ratio of bromide
 to dissolved organic carbon (DOC) concentrations.

total HAA and THM values in the denominators of the BSF expressions). In contrast, only a weak correlation was observed for BSF_{HAA5} (Figure 7b) – likely because only a subset of the brominated HAAs are included in HAA5. A recent study has also shown strong correlations of BSF with [Br⁻]/A₂₅₄ ratios.¹¹² Accordingly, the IC and SJC data could also be fit to the model [BSF] = $1 - e^{-m([Br-]/A_{254})}$, though correlations were not as strong as for [Br⁻]/[DOC] (with R² = 0.46, 0.48, and 0.65 for BSF_{TTHM}, BSF_{HAA5}, and BSF_{HAA9}, respectively, when excluding IC03 and Q3 SJC07 sample data for reasons noted above and in the discussion of Figure 3a).

616 **Practical Implications.** *Dual Impacts of DOC and Bromide on DBP Formation in Coastal*

- *Groundwater Systems*. Two of the most significant water quality parameters identified in thisstudy as influencing DBP formation potentials and speciation in the investigated groundwaters
- are [DOC] and [Br⁻], consistent with prior findings.^{7, 11, 16, 18, 22, 32, 63, 67, 113 As noted above, DOM}
- 620 in groundwaters at the studied sites appears to be primarily terrestrial in origin (i.e., soil-derived,

621	and not originating from algae, wastewater, or other anthropogenic sources); therefore source
622	control efforts toward mitigating DBP formation are not practical. The DOM character is also
623	fairly consistent from site to site, with TOC being nearly all dissolved (Figure S3b). The relative
624	invariance of DOM character at the IC and SJC sites suggests that accurate knowledge of DOC
625	(or TOC) concentrations in source waters in the study area can be used to anticipate groundwater
626	systems that are more likely to have HAA and THM compliance issues associated with
627	chlorination. For example, DBP-FPs for the IC and SJC sites suggest that TTHMs would not
628	likely exceed MCLs for source waters with less than ~1.2 mg _C /L of DOC, while HAA5s would
629	not likely exceed MCLs for source waters with less than ~2.1 mg _C /L of DOC (Figure 5a,b). DOC
630	(or TOC) should in turn be considered a critical design and routine monitoring parameter for
631	groundwater systems such as these, as is already the case for surface water systems. ^{68, 69}
632	The large seasonal variations observed in DOC concentrations and DBP-FP values for
633	several groundwater sources in the study have significant implications for WA's implementation
634	of the US EPA's Stage 1 and 2 Disinfectants and Disinfection Byproducts Rules (DBPRs). Many
635	groundwater systems that chlorinate are only required to collect a single annual DBP sample to
636	characterize DBP levels in the system (usually during the period of warmest water temperature,
637	such as in the summer/dry season, which is also generally a high demand/lower water age period
638	for these systems). ^{68, 69} If this sample result is low, no further samples are collected during the
639	rest of the year. This approach for determining potential exposure of water system customers to
640	DBPs is predicated on the assumption that groundwater quality and distribution system residence
641	time do not change throughout the year, which is not the case for some sites included in this
642	study and could likewise be a concern for many other groundwater sources. Regular monitoring
643	of DOC (or TOC) concentrations in the source waters of these and other coastal groundwater

sites is therefore highly recommended. In the event that more frequent monitoring is needed, 644 there is also potential for utilizing A₂₅₄ as a surrogate for DOC concentration, considering the 645 widespread availability of lab and field spectrophotometers and the utility of A₂₅₄ as a predictor 646 of DBP-FPs across the investigated sample set, and in many other systems.^{53, 56, 63, 84, 96, 108, 109, 114} 647 In contrast to HAA-FP and THM-FP values, DBP speciation – as quantified by means of 648 649 BSFs – does not appear to exhibit direct dependence on any single parameter monitored during the study. Rather, because of variations in both [Br-] and [DOC] across the study area, BSFs 650 appear to depend primarily on *molar ratios* of [Br-]/[DOC], with higher [Br-]/[DOC] values 651 652 indicative of a higher tendency to form brominated HAAs and THMs (especially the unregulated HAAs included in HAA9, as evident from the bars with hatched fills in Figure 4), as observed in 653 prior studies.^{10, 11, 18, 112, 113} Thus, it may be feasible to utilize [Br-]/[DOC] to estimate the extent 654 655 to which DBPs are likely to be dominated by brominated species at various groundwater sites. To evaluate variations in DBP yields and speciation across the IC and SJC sites with 656 respect to both [Br-] and [DOC], measured DBP-FP and BSF values were re-plotted in heat maps 657 versus [Br⁻] and [DOC] (Figure 8), akin to matrix diagrams presented by Krasner et al. (1994) 658 for an investigation of seawater intrusion in surface waters of the Sacramento-San Joaquin River 659 Delta.¹⁰ Consistent with Figure 5, Figure 8a-c shows that TTHM-FP, HAA5-FP, and HAA9-FP 660 increased with increasing DOC concentrations, and that there was little dependence of DBP-FPs 661 on [Br] alone across the IC and SJC sites (see also Figure S12). Figure 8 also shows that while 662 663 sites with higher [DOC] levels exhibited higher absolute yields of mostly chlorinated DBP species, sites with lower [DOC] levels exhibited higher proportions of brominated DBPs at a 664 given [Br-] level, in agreement with prior studies.^{7, 10, 18, 111, 113} Accordingly, the IC and SJC sites 665 666 at greatest risk for high proportions of brominated DBPs (BSFs > 0.1) appeared to be those with

Figure 8. Heat map plots of (a) TTHM-FP); (b) HAA5-FP; (c) HAA9-FP; (d) BSF_{TTHM}; (e)
BSF_{HAA5}; and (f) BSF_{HAA9} plotted versus [DOC] and [Br⁻].

671 high [Br⁻] (above ~2.5 μ mol/L, or ~200 μ g/L) and low [DOC] (below ~250 μ mol/L, or ~3 mg_{C}/L), or [Br⁻]/[DOC] ratios above ~0.01 (Figure 7). This agrees quite well with findings by 672 Francis et al. (2010) based on Information Collection Rule data.¹¹³ 673 By combining the DBP-FP and BSF datasets, one can also conclude more generally that 674 groundwater systems with low [Br⁻] and high [DOC] (e.g., SJC06) are at risk for high absolute 675 676 levels of DBP formation, but with a predominance of chlorinated DBPs, whereas systems with high [Br] and low [DOC] (e.g., SJC01) would likely exhibit relatively lower absolute levels of 677 DBP formation, but with the risk of substantial proportions of brominated DBPs, consistent with 678 prior observations.^{10, 113} Systems falling into the upper right quadrants of each panel of Figure 8 679

Page 36 of 55

(i.e., systems with high [Br⁻] *and* high [DOC]) would likely be of greatest concern from a
regulatory and public health perspective, as these would be anticipated to exhibit high levels of
DBP formation *and* high BSFs,^{9, 10, 17, 20} though additional measurements from systems with such
characteristics would be needed to confirm this.

Potential Influence of Seawater Intrusion. [Cl-] in excess of 100 mg/L and [Br-]/[Cl-] 684 ratios approaching or exceeding that of natural seawater ($\sim 1.5 \times 10^{-3}$) suggest that multiple IC 685 686 and SJC sites may be at risk of seawater intrusion (Table 1). While this risk is well known for the 687 study area, it has thus far been managed as a water resource and taste issue rather than a health 688 concern. However, increased [Br-] due to seawater intrusion could have important consequences for managing DBP formation and speciation in the future.^{7,9} As evident from the data in Table 1 689 and Figures S3, 4, and 7, unregulated HAA yields are higher with increased [Br⁻] for a given 690 691 [DOC] level, yet frequent, comprehensive monitoring of HAA9 levels may not be feasible in many cases. Furthermore, recent studies also suggest that high [Cl⁻] may favor shifts in free 692 chlorine and bromine species from HOCl and HOBr to the much more reactive Cl₂ and BrCl, 693 which could result in increased DBP formation.^{7, 13, 115-117} In light of the above, regular 694 monitoring of [Br-] and [Cl-] is highly recommended for at risk sites, in addition to identification 695 of alternate water sources in the event that seawater intrusion becomes significant enough to 696 preclude compliance with DBP MCLs. 697

698

699

Effects of Iron and Manganese Treatment. Additional treatment steps at systems IC06–IC08 did not substantially influence DOC/TOC or DBP-FP levels (Figures S3a and 4).

Chlorination Practices and Reporting. All of the IC and SJC systems submit monthly
 compliance reports to WA DOH that typically include water production, chlorine usage, and free
 chlorine residuals measured 1-5 times/week. Notably, total [NH₃-N] measurements during the

703 study identified significant NH₃-N levels in source waters at a number of sites (Table 1). This 704 appeared to result in maintenance of combined chlorine rather than free chlorine in treated waters at these sites (Figure S14). However, review of compliance reports during the months in which 705 study samples were collected showed that only one system measured both free and total chlorine; 706 707 the rest reported only free chlorine. Accordingly, monthly reports recorded very low distribution 708 system free chlorine; nearly every water system had at least one quarter with a monthly average free chlorine residual <0.2 mg/L as Cl₂, and six sites never exceeded 0.2 mg/L as Cl₂ in the 709 distribution system. Field measurements of free and total chlorine at entries to the distribution 710 711 systems also varied significantly at certain sites over time (Figure S14), indicating inconsistent chlorination practices. Low chlorine residuals measured at certain sites, or instances of 712 unintentional chloramination at others, may also indicate vulnerabilities to microbial risks. 713 714 The measurement of combined chlorine, as opposed to free chlorine, in IC04 samples is of particular note, as it could provide an explanation for very low HAA and THM levels reported 715 in regulatory compliance samples for this site. This also highlights the possibility of using NH₂Cl 716 as an alternative disinfectant to minimize DBP formation at some sites, though investigation of 717 potential effects on nitrogenous and iodinated DBP formation would be needed beforehand.8 718 719 In general, free chlorine residuals reported in Island County were also lower than in San Juan County. This could explain why IC systems have historically had DBP levels similar to SJC 720 systems during compliance monitoring (Figure 2), even though average DOC appears higher and 721 722 laboratory tests yielded higher DBP-FPs for IC systems (Figures S3a and 4). The finding that study systems follow inconsistent chlorination operating and reporting 723 practices - resulting in highly variable and unstable distribution system free chlorine residuals -724 725 has significant implications for WA's implementation of the DBPRs. This indicates that the

726 public may be intermittently exposed to higher DBP levels – particularly of more harmful brominated DBPs - than regulatory monitoring indicates, due to significant fluctuations in free 727 chlorine residuals (whether caused by operational variation, changes in water quality, or other 728 unidentified factors). It is unlikely that these findings are limited to just the systems included in 729 this study. This suggests that in the future, implementation of the DBPRs for coastal groundwater 730 731 utilities in WA and other states should include emphasis on chlorination best practices and regular monitoring of key indicators for DBP-FPs (e.g., [Br⁻], [DOC], or appropriate surrogates), 732 rather than relying solely on limited TTHM/HAA5 sampling to characterize DBP levels. 733 734

735 Conclusions

736 Careful examination of correlations amongst THM-FP and HAA-FP values and the suite of water quality parameters monitored during this study showed that neither yields nor speciation 737 patterns of THMs and HAAs at the study sites were clearly associated with Cl-, TI, or TDS 738 739 concentrations; conductivities; NH₃-N concentrations; HPCs; or ATP concentrations. In contrast, THM-FP and HAA-FP values exhibited strong positive correlations with DOC concentrations 740 (which in turn correlated extremely well with TOC concentrations) and with A254 across the 741 sample set over the full duration of the study. Weaker, but still relatively strong correlations were 742 observed with SEC and fluorescence metrics. DOM characteristics were quite uniform from site 743 to site, indicating that the *concentration* of DOC, rather than variation in DOM *character*, is the 744 primary driver controlling THM-FPs and HAA-FPs within the study area. 745

These data suggest that regular monitoring of DOC (or TOC) concentrations could provide an important means of evaluating the propensities for THM and HAA formation at these and other small, coastal groundwater systems, though this is not currently required under the

749	DBPRs. ^{68, 69} Regular monitoring of DOC (or TOC) concentrations in the source waters of small
750	coastal groundwater utilities is therefore highly recommended as a modification to current
751	regulations. Alternatively, A ₂₅₄ can likely serve as a suitable surrogate for DOC, considering the
752	relative simplicity and low cost of monitoring A254, and its strong correlation with [DOC] and
753	DBP-FPs across the investigated sample set and in general.
754	In contrast to THM-FPs and HAA-FPs, THM and HAA speciation patterns – as
755	quantified by means of BSF values - did not exhibit direct dependence on any single parameter
756	monitored during the study. Rather, they depended strongly on the ratios of [Br-]/[DOC] in each
757	sample, with higher [Br-]/[DOC] values indicative of a higher tendency to form brominated
758	THMs and HAAs. Thus, it may also be feasible to utilize [Br-]/[DOC] ratios as a means of
759	estimating the extent to which THM and HAA formation are likely to be dominated by
760	brominated species at various sites. Regular monitoring of bromide is therefore also highly
761	recommended as a complement to DOC (or TOC) or A_{254} for these and similar systems,
762	especially those potentially susceptible to seawater intrusion, as a modification to current rules.
763	This work and the accompanying review of IC and SJC system operation and reporting
764	practices also show that some chlorination facilities are operating inconsistently, and that current
765	monitoring requirements do not capture the range of water characteristics or operating conditions
766	at the study sites; most notably with respect to source water [DOC] and [Br-], and free chlorine
767	within treatment and distribution systems. The observation that a number of the study sites may
768	be prone to maintenance of combined rather than free chlorine residuals, coupled with the
769	possibility of elevated iodide levels in source waters, also highlights the need for future work to
770	assess the potential formation of elevated nitrogenous and iodinated DBP levels under operating
771	conditions typical of these and similar systems. Based on the study findings, WA has adopted

772	chan	ges in its design manual for new groundwater disinfection systems including testing of all	
773	grou	ndwater sources for seasonal trends in [DOC] and total [NH ₃ -N], as well as [Br-] and [Cl-]	
774	for c	oastal groundwater sources, ¹¹⁸ and is evaluating changes in its disinfection monitoring and	
775	DBP	programs that may also serve as models for wider regional and national implementation.	
776			
777	Con	iflicts of Interest	
778	Ther	e are no conflicts of interest to declare.	
779			
780	Ack	nowledgements	
781	Krist	ta Chavez – Water Treatment Program, Office of Drinking Water, WA DOH, Kent, WA,	
782	USA – is gratefully acknowledged for conducting field sampling and for developing standard		
783	operating procedures for field measurements. This work was supported by the WA DOH, Office		
784	of Drinking Water, under contract number N21704. Support for T.R.Y. from a National Science		
785	Four	ndation Graduate Research Fellowship (ID: 2015177669) is also gratefully acknowledged.	
786			
787	Ref	erences	
788	1.	S. D. Richardson, M. J. Plewa, E. D. Wagner, R. Schoeny, D. M. DeMarini, Occurrence,	
789		genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in	
790		drinking water: a review and roadmap for research, Mutat. Res Rev. Mut. Res., 2007,	
791		636(1-3), 178-242.	
792	2.	M. J. Plewa, E. D. Wagner, M. G. Muellner, K. M. Hsu, S. D. Richardson. Comparative	
793		Mammalian Cell Toxicity of N-DBPs and C-DBPs. In: T. Karanfil, S. W. Krasner, P.	

794		Westerhoff, Y. Xie, editors. Disinfection By-Products in Drinking Water: Occurrence,
795		Formation, Health Effects, and Control. ACS Sym. Ser. 995, 2008. 36-50.
796	3.	S. Regli, J. Chen, M. Messner, M. S. Elovitz, F. J. Letkiewicz, et al., Estimating potential
797		increased bladder cancer risk due to increased bromide concentrations in sources of
798		disinfected drinking waters, Environ. Sci. Technol., 2015, 49(22), 13094-102.
799	4.	C. Kolb, R. A. Francis, J. M. VanBriesen, Disinfection byproduct regulatory compliance
800		surrogates and bromide-associated risk, J. Environ. Sci., 2017, 58(191-207.
801	5.	T. Wixom, B. Snow. San Juan County Water Resources Management Plan WRIA 2. San
802		Juan County Board of County Commissioners, Friday Harbor, WA; 2004.
803	6.	D. Kelly. Island County Water Resource Management Plan: Appendix F - Seawater
804		intrusion topic paper. 2005.
805	7.	E. C. Ged, T. H. Boyer, Effect of seawater intrusion on formation of bromine-containing
806		trihalomethanes and haloacetic acids during chlorination, Desalination, 2014, 345(85-93.
807	8.	A. Szczuka, K. Parker, C. Harvey, E. Hayes, A. Vengosh, et al., Regulated and unregulated
808		halogenated disinfection byproduct formation from chlorination of saline groundwater,
809		Water Res., 2017, 122(633-44.
810	9.	C. Kolb, M. Pozzi, C. Samaras, J. M. VanBriesen, Climate change impacts on bromide,
811		trihalomethane formation, and health risks at coastal groundwater utilities, ASCE-ASME J.
812		Risk Uncertain. Eng. Syst. A, 2017, 3(3), 04017006.
813	10.	S. W. Krasner, M. J. Sclimenti, E. G. Means, Quality degradation: implications for DBP
814		formation, J. Am. Water Works Ass., 1994, 86(6), 34-47.
815	11.	W. W. Wu, P. A. Chadik, Effect of bromide ion on haloacetic acid formation during
816		chlorination of Biscayne aquifer water, J. Environ. Eng., 1998, 124(10), 932-8.

817	12.	A. A. Kampioti, E. G. Stephanou, The impact of bromide on the formation of neutral and
818		acidic disinfection by-products (DBPs) in Mediterranean chlorinated drinking water, Water
819		Res., 2002, 36(10), 2596-606.
820	13.	M. B. Heeb, J. Criquet, S. G. Zimmermann-Steffens, U. Von Gunten, Oxidative treatment
821		of bromide-containing waters: formation of bromine and its reactions with inorganic and
822		organic compounds-a critical review, Water Res., 2014, 48(15-42.
823	14.	P. Westerhoff, P. Chao, H. Mash, Reactivity of natural organic matter with aqueous
824		chlorine and bromine, <i>Water Res.</i> , 2004, 38(6), 1502-13.
825	15.	J. Criquet, E. M. Rodriguez, S. Allard, S. Wellauer, E. Salhi, et al., Reaction of bromine
826		and chlorine with phenolic compounds and natural organic matter extracts-Electrophilic
827		aromatic substitution and oxidation, Water Res., 2015, 85(476-86.
828	16.	J. M. Symons, S. W. Krasner, L. A. Simms, M. Sclimenti, Measurement of THM and
829		precursor concentrations revisited: the effect of bromide ion, J. Am. Water Works Ass.,
830		1993, 85(1), 51-62.
831	17.	G. A. Cowman, P. C. Singer, Effect of bromide ion on haloacetic acid speciation resulting
832		from chlorination and chloramination of aquatic humic substances, Environ. Sci. Technol.,

- 833 1996, 30(1), 16-24.
- 834 18. S. Chellam, S. W. Krasner, Disinfection byproduct relationships and speciation in
- chlorinated nanofiltered waters, *Environ. Sci. Technol.*, 2001, 35(19), 3988-99.
- 836 19. M. S. Ersan, C. Liu, G. Amy, T. Karanfil, The interplay between natural organic matter and
- bromide on bromine substitution, *Sci. Total Environ.*, 2019, 646(1172-81.

838	20.	G. Hua, D. A. Reckhow, J. Kim, Effect of bromide and iodide ions on the formation and
839		speciation of disinfection byproducts during chlorination, Environ. Sci. Technol., 2006,
840		40(9), 3050-6.
841	21.	E. Chang, Y. Lin, P. Chiang, Effects of bromide on the formation of THMs and HAAs,
842		Chemosphere, 2001, 43(8), 1029-34.
843	22.	T. Bond, J. Huang, N. J. Graham, M. R. Templeton, Examining the interrelationship
844		between DOC, bromide and chlorine dose on DBP formation in drinking water-a case
845		study, Sci. Total Environ., 2014, 470(469-79.
846	23.	C. J. Nokes, E. Fenton, C. J. Randall, Modelling the formation of brominated
847		trihalomethanes in chlorinated drinking waters, Water Res., 1999, 33(17), 3557-68.
848	24.	M. Langsa, S. Allard, I. Kristiana, A. Heitz, C. A. Joll, Halogen-specific total organic
849		halogen analysis: Assessment by recovery of total bromine, J. Environ. Sci., 2017, 58(340-
850		8.
851	25.	K. M. Parker, T. Zeng, J. Harkness, A. Vengosh, W. A. Mitch, Enhanced formation of

- disinfection byproducts in shale gas wastewater-impacted drinking water supplies, *Environ*. *Sci. Technol.*, 2014, 48(19), 11161-9.
- 26. J. Tan, S. Allard, Y. Gruchlik, S. McDonald, C. Joll, et al., Impact of bromide on halogen
 incorporation into organic moieties in chlorinated drinking water treatment and distribution
 systems, *Sci. Total Environ.*, 2016, 541(1572-80.
- 27. Y. Yang, Y. Komaki, S. Y. Kimura, H.-Y. Hu, E. D. Wagner, et al., Toxic impact of
- bromide and iodide on drinking water disinfected with chlorine or chloramines, *Environ*.
- *Sci. Technol.*, 2014, 48(20), 12362-9.

- E. D. Wagner, M. J. Plewa, CHO cell cytotoxicity and genotoxicity analyses of disinfection
 by-products: an updated review, *J. Environ. Sci.*, 2017, 58(64-76.
- 862 29. S. Parvez, Z. Rivera-Núñez, A. Meyer, J. M. Wright, Temporal variability in
- trihalomethane and haloacetic acid concentrations in Massachusetts public drinking water
- systems, *Environ. Res.*, 2011, 111(4), 499-509.
- 865 30. M. J. McGuire, R. G. Meadow, AWWARF trihalomethane survey, *J. Am. Water Works*866 *Ass.*, 1988, 80(1), 61-8.
- 867 31. M. Varma, A. Balram, H. Katz, Trihalomethanes in groundwater systems, *J. Environ. Sys.*,
 868 1984, 14(2), 115-25.
- BDOM and NOM as precursors in watershed sources: AWWA Research Foundation; 2007.
- 33. H. Gallard, U. von Gunten, Chlorination of natural organic matter: kinetics of chlorination
 and of THM formation, *Water Res.*, 2002, 36(1), 65-74.
- 34. Y. Zhang, C. Collins, N. Graham, M. R. Templeton, J. Huang, et al., Speciation and
- variation in the occurrence of haloacetic acids in three water supply systems in England,
- 875 *Water Environ. J.*, 2010, 24(3), 237-45.
- 35. C. Adams, T. Timmons, T. Seitz, J. Lane, S. Levotch, Trihalomethane and haloacetic acid
- disinfection by-products in full-scale drinking water systems, *J. Environ. Eng.*, 2005,
- 878 131(4), 526-34.
- 879 36. H. D. Coulibaly, M. J. Rodriguez, Portrait of drinking water quality in small Quebec
 880 municipal utilities, *Water Quality Research Journal*, 2003, 38(1), 49-76.

881	37.	D. A. Reckhow, P. C. Singer. Formation and Control of Disinfection By-products. In: J. K.
882		Edzwald, editor. Water Quality and Treatment: A Handbook on Drinking Water. 6th ed.
883		New York, NY: AWWA/McGraw-Hill; 2011.
884	38.	L. Liang, P. C. Singer, Factors influencing the formation and relative distribution of
885		haloacetic acids and trihalomethanes in drinking water, Environ. Sci. Technol., 2003,
886		37(13), 2920-8.
887	39.	W. Chen, P. Westerhoff, J. A. Leenheer, K. Booksh, Fluorescence excitation - Emission
888		matrix regional integration to quantify spectra for dissolved organic matter, Environ. Sci.
889		Technol., 2003, 37(24), 5701-10.
890	40.	D. A. Reckhow, P. C. Singer, R. L. Malcolm, Chlorination of humic materials: byproduct
891		formation and chemical interpretations, Environ. Sci. Technol., 1990, 24(11), 1655-64.
892	41.	CW. Li, M. M. Benjamin, G. V. Korshin, Use of UV spectroscopy to characterize the
893		reaction between NOM and free chlorine, Environ. Sci. Technol., 2000, 34(12), 2570-5.
894	42.	G. V. Korshin, CW. Li, M. M. Benjamin, Monitoring the properties of natural organic
895		matter through UV spectroscopy: a consistent theory, Water Res., 1997, 31(7), 1787-95.
896	43.	G. Hua, D. A. Reckhow, I. Abusallout, Correlation between SUVA and DBP formation
897		during chlorination and chloramination of NOM fractions from different sources,
898		Chemosphere, 2015, 130(82-9.
899	44.	J. A. Leenheer, JP. Croué, Characterizing Aquatic Dissolved Organic Matter, Environ.
900		Sci. Technol., 2003, 37(1), 18A-26A.
901	45.	I. Kristiana, H. Gallard, C. Joll, JP. Croué, The formation of halogen-specific TOX from
902		chlorination and chloramination of natural organic matter isolates, Water Res., 2009,
903		43(17), 4177-86.

904	46.	S. E. Barrett, S. W. Krasner, G. L. Amy. Natural Organic Matter and Disinfection By-
905		Products: Characterization and Control in Drinking Water—An Overview. In: S. E. Barrett,
906		S. W. Krasner, G. L. Amy, editors. Natural Organic Matter and Disinfection By-Products.
907		ACS Sym. Ser. 761, 2000. 2-14.
908	47.	N. Her, G. Amy, D. McKnight, J. Sohn, Y. M. Yoon, Characterization of DOM as a
909		function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC, and
910		fluorescence detection, <i>Water Res.</i> , 2003, 37(17), 4295-303.
911	48.	S. A. Huber, A. Balz, M. Abert, W. Pronk, Characterisation of aquatic humic and non-
912		humic matter with size-exclusion chromatography - organic carbon detection - organic
913		nitrogen detection (LC-OCD-OND), Water Res., 2011, 45(2), 879-85.
914	49.	YP. Chin, G. Aiken, E. O'Loughlin, Molecular weight, polydispersity, and spectroscopic
915		properties of aquatic humic substances, Environ. Sci. Technol., 1994, 28(11), 1853-8.
916	50.	J. L. Weishaar, G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii, et al., Evaluation of
917		specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of
918		dissolved organic carbon, Environ. Sci. Technol., 2003, 37(20), 4702-8.
919	51.	D. M. McKnight, E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe, et al.,
920		Spectrofluorometric characterization of dissolved organic matter for indication of precursor
921		organic material and aromaticity, Limnol. Oceanogr., 2001, 46(1), 38-48.
922	52.	JP. Croue, G. V. Korshin, M. M. Benjamin. Characterization of natural organic matter in
923		drinking water: AWWA Research Foundation; 2000.
924	53.	A. D. Pifer, J. L. Fairey, Suitability of Organic Matter Surrogates to Predict
925		Trihalomethane Formation in Drinking Water Sources, Environ. Eng. Sci., 2014, 31(3),

926 117-26.

927	54.	S. Inamdar, N. Finger, S. Singh, M. Mitchell, D. Levia, et al., Dissolved organic matter
928		(DOM) concentration and quality in a forested mid-Atlantic watershed, USA,
929		Biogeochemistry, 2012, 108(1-3), 55-76.
930	55.	M. Chen, R. M. Price, Y. Yamashita, R. Jaffé, Comparative study of dissolved organic
931		matter from groundwater and surface water in the Florida coastal Everglades using multi-
932		dimensional spectrofluorometry combined with multivariate statistics, Appl. Geochem.,
933		2010, 25(6), 872-80.
934	56.	B. Chen, P. Westerhoff, Predicting disinfection by-product formation potential in water,
935		Water Res., 2010, 44(13), 3755-62.
936	57.	L. K. McDonough, H. Rutlidge, D. M. O'Carroll, M. S. Andersen, K. Meredith, et al.,
937		Characterisation of shallow groundwater dissolved organic matter in aeolian, alluvial and
938		fractured rock aquifers, Geochim. Cosmochim. Acta, 2020, 273(163-76.
939	58.	Y. Shen, F. H. Chapelle, E. W. Strom, R. Benner, Origins and bioavailability of dissolved
940		organic matter in groundwater, Biogeochemistry, 2015, 122(1), 61-78.
941	59.	S. Singh, S. Inamdar, M. Mitchell, P. McHale, Seasonal pattern of dissolved organic matter
942		(DOM) in watershed sources: influence of hydrologic flow paths and autumn leaf fall,
943		Biogeochemistry, 2014, 118(1-3), 321-37.
944	60.	D. W. Johnstone, N. P. Sanchez, C. M. Miller, Parallel Factor Analysis of Excitation-
945		Emission Matrices to Assess Drinking Water Disinfection Byproduct Formation During a
946		Peak Formation Period, Environ. Eng. Sci., 2009, 26(10), 1551-9.
947	61.	Sb. Huang, Yx. Wang, T. Ma, L. Tong, Yy. Wang, et al., Linking groundwater
948		dissolved organic matter to sedimentary organic matter from a fluvio-lacustrine aquifer at

949		Jianghan Plain, China by EEM-PARAFAC and hydrochemical analyses, Sci. Total
950		Environ., 2015, 529(131-9.
951	62.	G. L. Amy, P. A. Chadik, Z. K. Chowdhury, Developing models for predicting
952		trihalomethane formation potential and kinetics, J. Am. Water Works Ass., 1987, 79(7), 89-
953		97.
954	63.	J. K. Edzwald, W. C. Becker, K. L. Wattier, Surrogate parameters for monitoring organic
955		matter and THM precursors, J. Am. Water Works Ass., 1985, 77(4), 122-32.
956	64.	A. D. Pifer, J. L. Fairey, Improving on SUVA(254) using fluorescence-PARAFAC analysis
957		and asymmetric flow-field flow fractionation for assessing disinfection byproduct
958		formation and control, <i>Water Res.</i> , 2012, 46(9), 2927-36.
959	65.	D. W. Johnstone, C. M. Miller, Fluorescence excitation-emission matrix regional
960		transformation and chlorine consumption to predict trihalomethane and haloacetic acid
961		formation, Environ. Eng. Sci., 2009, 26(7), 1163-70.
962	66.	D. M. White, D. S. Garland, J. Narr, C. R. Woolard, Natural organic matter and DBP
963		formation potential in Alaskan water supplies, Water Res., 2003, 37(4), 939-47.
964	67.	R. E. Miller, S. J. Randtke, L. R. Hathaway, J. E. Denne, Organic carbon and THM
965		formation potential in Kansas groundwaters, J. Am. Water Works Ass., 1990, 82(3), 49-62.
966	68.	National Primary Drinking Water Regulations; Subpart L - Disinfectant Residuals,
967		Disinfection Byproducts, and Disinfection Byproduct Precursors, 40 CFR 141, 130-135.
968	69.	National Primary Drinking Water Regulations; Subpart V - Stage 2 Disinfection
969		Byproducts Requirements, 40 CFR 141, 620-629.

970	70.	N. Her, G. Amy, D. Foss, J. Cho, Y. Yoon, et al., Optimization of method for detecting and
971		characterizing NOM by HPLC-size exclusion chromatography with UV and on-line DOC
972		detection, Environ. Sci. Technol., 2002, 36(5), 1069-76.
973	71.	S. K. L. Ishii, T. H. Boyer, Behavior of Reoccurring PARAFAC Components in
974		Fluorescent Dissolved Organic Matter in Natural and Engineered Systems: A Critical
975		Review, Environ. Sci. Technol., 2012, 46(4), 2006-17.
976	72.	C. A. Stedmon, R. Bro, Characterizing dissolved organic matter fluorescence with parallel
977		factor analysis: a tutorial, Limnol. Oceanogr.: Methods, 2008, 6(572-9.
978	73.	R. M. Cory, D. M. McKnight, Fluorescence spectroscopy reveals ubiquitous presence of
979		oxidized and reduced quinones in dissolved organic matter, Environ. Sci. Technol., 2005,
980		39(21), 8142-9.
981	74.	E. Agus, N. Voutchkov, D. L. Sedlak, Disinfection by-products and their potential impact
982		on the quality of water produced by desalination systems: A literature review,
983		Desalination, 2009, 237(1-3), 214-37.

- 75. K. Kumar, R. A. Day, D. W. Margerum, Atom-Transfer Redox Kinetics General-AcidAssisted Oxidation of Iodide by Chloramines and Hypochlorite, *Inorg. Chem.*, 1986,
- 986 25(24), 4344-50.
- 987 76. APHA/AWWA. Standard Methods for the Examination of Water and Wastewater. 22 ed.
 988 Washington D.C.: American Public Health Association; 2012.
- 989 77. J. Pfaff. US EPA Method 300.0: Determination of inorganic anions by ion
- chromatography. 1993.
- 991 78. J. O'Dell. US EPA Method 350.1: Determination of Ammonia Nitrogen by Semi-
- automated Colorimetry. 1993.

993	79.	T. D. Martin, C. A. Brockhoff, J. T. Creed. US EPA Method 200.7: Determination of
994		metals and trace elements in water and wastes by inductively coupled plasma-atomic
995		emission spectrometry. 1994.
996	80.	B. B. Potter, J. C. Wimsatt. US EPA Method 415.3: Determination of Total Organic
997		Carbon and Specific UV Absorbance at 254nm in Source Water and Drinking Water. 2009
998	81.	D. J. Munch, J. W. Munch, A. M. Pawlecki. EPA Method 552.2: Determination of
999		Haloacetic acids and Dalapon in Drinking Water by Liquid-Liquid Extraction,
1000		Derivatization and Gas Chromatography with Electron Capture Detection. 1995.
1001	82.	F. J. Millero, R. Feistal, D. G. Wright, T. J. McDougall, The composition of Standard
1002		Seawater and the definition of the Reference-Composition Salinity Scale, Deep Sea Res. (I
1003		Oceanogr. Res. Pap.), 2008, 55(1), 50-72.
1004	83.	M. Land, E. G. Reichard, S. M. Crawford, R. R. Everett, M. W. Newhouse, et al. Ground-
1005		water quality of coastal aquifer systems in the West Coast Basin, Los Angeles County,
1006		California, 1999-2002. Sacramento, CA; 2004.
1007	84.	P. C. Singer, S. D. Chang, Correlations between trihalomethanes and total organic halides
1008		formed during water treatment, J. Am. Water Works Ass., 1989, 81(8), 61-5.
1009	85.	R. K. Henderson, A. Baker, K. R. Murphy, A. Hamblya, R. M. Stuetz, et al., Fluorescence
1010		as a potential monitoring tool for recycled water systems: A review, Water Res., 2009,
1011		43(4), 863-81.

- 1012 86. S. N. Nam, S. W. Krasner, G. L. Amy. Differentiating effluent organic matter (EfOM) from
- 1013 natural organic matter (NOM): Impact of EfOM on drinking water sources. In: Y. J. Kim,
- 1014 U. Platt, editors. Advanced Environmental Monitoring2008. 259-70.

1015	87.	P. G. Coble, Marine optical biogeochemistry: The chemistry of ocean color, Chem. Rev.,
1016		2007, 107(2), 402-18.
1017	88.	C. A. Stedmon, S. Markager, R. Bro, Tracing dissolved organic matter in aquatic
1018		environments using a new approach to fluorescence spectroscopy, Mar. Chem., 2003,
1019		82(3), 239-54.
1020	89.	P. G. Coble, Characterization of marine and terrestrial DOM in seawater using excitation
1021		emission matrix spectroscopy, Mar. Chem., 1996, 51(4), 325-46.
1022	90.	J. A. Korak, A. D. Dotson, R. S. Summers, F. L. Rosario-Ortiz, Critical analysis of
1023		commonly used fluorescence metrics to characterize dissolved organic matter, Water Res.,
1024		2014, 49(327-38.
1025	91.	R. M. Cory, M. P. Miller, D. M. McKnight, J. J. Guerard, P. L. Miller, Effect of
1026		instrument-specific response on the analysis of fulvic acid fluorescence spectra, Limnol.
1027		Oceanogr.: Methods, 2010, 8(2), 67-78.
1028	92.	MH. Lee, C. L. Osburn, KH. Shin, J. Hur, New insight into the applicability of
1029		spectroscopic indices for dissolved organic matter (DOM) source discrimination in aquatic
1030		systems affected by biogeochemical processes, Water Res., 2018, 147(164-76.
1031	93.	R. D. Holbrook, J. H. Yen, T. J. Grizzard, Characterizing natural organic material from the
1032		Occoquan Watershed (Northern Virginia, US) using fluorescence spectroscopy and
1033		PARAFAC, Sci. Total Environ., 2006, 361(1-3), 249-66.
1034	94.	J. J. Mobed, S. L. Hemmingsen, J. L. Autry, L. B. McGown, Fluorescence characterization
1035		of IHSS humic substances: Total luminescence spectra with absorbance correction,
1036		Environ. Sci. Technol., 1996, 30(10), 3061-5.

- 95. S. A. Baghoth, S. K. Sharma, G. L. Amy, Tracking natural organic matter (NOM) in a
 drinking water treatment plant using fluorescence excitation-emission matrices and
- 1039 PARAFAC, *Water Res.*, 2011, 45(2), 797-809.
- 1040 96. K. M. Beggs, R. S. Summers, Character and chlorine reactivity of dissolved organic matter
- 1041 from a mountain pine beetle impacted watershed, *Environ. Sci. Technol.*, 2011, 45(13),
- **1042** 5717-24.
- 97. S. A. Green, F. M. M. Morel, N. V. Blough, Investigation of the Electrostatic Properties of
 Humic Substances by Fluorescence Quenching, *Environ. Sci. Technol.*, 1992, 26(2), 294302.
- 1046 98. A. Baker, S. Elliott, J. R. Lead, Effects of filtration and pH perturbation on freshwater
 1047 organic matter fluorescence, *Chemosphere*, 2007, 67(10), 2035-43.
- 1048 99. R. G. M. Spencer, L. Bolton, A. Baker, Freeze/thaw and pH effects on freshwater dissolved
 1049 organic matter fluorescence and absorbance properties from a number of UK locations,
- 1050 *Water Res.*, 2007, 41(13), 2941-50.
- 1051 100. N. Patel-Sorrentino, S. Mounier, J. Y. Benaim, Excitation-emission fluorescence matrix to
- study pH influence on organic matter fluorescence in the Amazon basin rivers, *Water Res.*,
 2002, 36(10), 2571-81.
- 1054 101. R. Jaffé, D. McKnight, N. Maie, R. Cory, W. McDowell, et al., Spatial and temporal
- variations in DOM composition in ecosystems: The importance of long-term monitoring of
 optical properties, *J. Geophys. Res.: Biogeosci.*, 2008, 113(G4),
- 1057 102. A. M. Hansen, T. E. Kraus, B. A. Pellerin, J. A. Fleck, B. D. Downing, et al., Optical
- 1058 properties of dissolved organic matter (DOM): Effects of biological and photolytic
- degradation, *Limnol. Oceanogr.*, 2016, 61(3), 1015-32.

- 1060 103. A. J. McCabe, W. A. Arnold, Multiple linear regression models to predict the formation
- 1061 efficiency of triplet excited states of dissolved organic matter in temperate wetlands,
- 1062 *Limnol. Oceanogr.*, 2018, 63(5), 1992-2014.
- 1063 104. S. R. Summers, S. M. Hooper, H. M. Shukairy, G. Solarik, D. Owen, Assessing DBP
- 1064 Yield: Uniform Formation Conditions, J. Am. Water Works Ass., 1996, 88(6), 80-93.
- 105. A. A. Stevens, J. M. Symons, Measurement of trihalomethane and precursor concentration
 changes, J. Am. Water Works Ass., 1977, 546-54.
- 1067 106. G. H. Hua, D. A. Reckhow, Evaluation of bromine substitution factors of DBPs during
 1068 chlorination and chloramination, *Water Res.*, 2012, 46(13), 4208-16.
- 1069 107. S. C. Chapra, R. P. Canale, G. L. Amy, Empirical models for disinfection by-products in
 1070 lakes and reservoirs, *J. Environ. Eng.*, 1997, 123(7), 714-5.
- 1071 108. A. Obolensky, P. C. Singer, Development and interpretation of disinfection byproduct
- 1072 formation models using the Information Collection Rule database, *Environ. Sci. Technol.*,
 1073 2008, 42(15), 5654-60.
- 1074 109. J. Sohn, G. Amy, J. W. Cho, Y. Lee, Y. Yoon, Disinfectant decay and disinfection by-
- 1075 products formation model development: chlorination and ozonation by-products, *Water*
- 1076 *Res.*, 2004, 38(10), 2461-78.
- 1077 110. P. Jutaporn, M. Armstrong, O. Coronell, Assessment of C-DBP and N-DBP formation
- potential and its reduction by MIEX® DOC and MIEX® GOLD resins using fluorescence
 spectroscopy and parallel factor analysis, *Water Res.*, 2020, 172(115460.
- 1080 111. R. S. Summers, M. A. Benz, H. M. Shukairy, L. Cummings, Effect of separation processes
- 1081 on the formation of brominated THMs, J. Am. Water Works Ass., 1993, 85(1), 88-95.

1082	112.	L. Zheng, H. Sun, C. Wu, Y. Wang, Y. Zhang, et al., Precursors for brominated haloacetic
1083		acids during chlorination and a new useful indicator for bromine substitution factor, Sci.
1084		Total Environ., 2020, 698(134250.
1085	113.	R. A. Francis, J. M. VanBriesen, M. J. Small, Bayesian statistical modeling of disinfection
1086		byproduct (DBP) bromine incorporation in the ICR database, Environ. Sci. Technol., 2010,
1087		44(4), 1232-9.
1088	114.	K. M. Beggs, J. A. Billica, J. A. Korak, F. L. Rosario-Ortiz, D. M. McKnight, et al.,
1089		Spectral evaluation of watershed DOM and DBP precursors, J. Am. Water Works Ass.,
1090		2013, 105(4), E173-E88.

- 1091 115. M. R. Rose, S. S. Lau, C. Prasse, J. D. Sivey, Exotic Electrophiles in Chlorinated and
- 1092 Chloraminated Water: When Conventional Kinetic Models and Reaction Pathways Fall
 1093 Short, *Environ. Sci. Technol. Lett.*, 2020,
- 1094 116. S. S. Lau, S. M. Abraham, A. L. Roberts, Chlorination revisited: does Cl–serve as a
 1095 catalyst in the chlorination of phenols?, *Environ. Sci. Technol.*, 2016, 50(24), 13291-8.
- 1096 117. Z.-Q. Liu, A. D. Shah, E. Salhi, J. Bolotin, U. von Gunten, Formation of brominated
- trihalomethanes during chlorination or ozonation of natural organic matter extracts and
 model compounds in saline water, *Water Res.*, 2018, 143(492-502.
- 1099 118. WADOH. Water System Design Manual. DOH Publication 331-123. 4th ed: Washington
- 1100 State Department of Health; 2019.

Table of Contents Entry

Small, chlorinated coastal groundwater systems are uniquely susceptible to elevated (especially brominated) DBP formation, due to the potential for high bromide and DOM levels, technical and resource constraints, and limited regulatory oversight.